

The reaction is assumed to proceed via the intermediate 4 that underwent intramolecular attack with elimination of chloromethane. However, the formation of imidochloride 5 and successive cyclization to 3 cannot be excluded at present.

Cyclization of *o*-(Methylthio)-anilides with Phosphonitrile Dichloride; Synthesis of 2-Substituted Benzothiazoles

Goffredo Rosini*, Alessandro MEDICI

Istituto di Chimica Organica, Viale Risorgimento 4, I-40136 Bologna, Italy

In the last few years several efficient and convenient utilizations of phosphonitrile dichloride (2) in organic synthesis have been reported¹⁻⁷.

Recently we have found that phosphonitrile dichloride induced cyclization of o-(methylthio)-anilides $1 \mathbf{a} - \mathbf{e}$ (Scheme A) to form 2-substituted benzothiazoles $3\mathbf{a} - \mathbf{e}$ in good yields. Reactions between 2 and compounds $1 \mathbf{a} - \mathbf{e}$ were performed in refluxing dioxan with an excess of triethylamine; our results are summarized in Table 2.

Preparation of *o*-(Methylthio)-anilides 1a-e; General Procedure: Carboxylic acid chloride (20 mmol) in tetrahydrofuran (20 ml) is slowly added to a stirred solution of *o*-(methylthio)-aniline (20 mmol) and triethylamine (22 mmol) in tetrahydrofuran (50 ml). After 1 h at room temperature, triethylamine hydrochloride is collected by filtration and the solution is evaporated under reduced pressure. The crude residue is crystallized from ethanol (1a,b), or dichloromethane/*n*-hexane (1d,e); see Table 1.

Table 1. o-(Methylthio)-anilides 1 from o-(Methylthio)-aniline and Acyl Chlorides

Com- pound	Yield [%]	m.p.	I.R. (KI ^V NH	$\operatorname{Br}\left[\operatorname{cm}^{-1}\right]^{v_{\operatorname{CO}}}$	Molecular formulaª	Reference
1a	90	111-11 3 °	3200	1650	C ₉ H _{±1} NOS (181.2)	8
1b	81	34–36°	3315	1675	$C_{16}H_{25}NOS$ (276.4)	0
1 c	84	9799°	3210	1650	C ₁₄ H ₁₃ NOS (243.3)	8
1 d	87	105-108°	3280	1645	C ₁₈ H ₂₃ NOS (301.4)	
1 e	85	52~54°	3250	1655	C ₁₁ H ₁₄ CINOS (243.8)	

^a All products gave satisfactory microanalyses (C $\pm 0.14\%$, H $\pm 0.06\%$, N $\pm 0.08\%$).

 Table 2.
 2-Substituted Benzothiazoles 3 from o-(Methylthio)-anilides 1 and Phosphonitrile Dichloride

 2.
 2.

Com- pound	Yield [%]	m.p.	¹ H-N.M.R. (CCl ₄) δ [ppm]	Molecular formulaª	Reference
3a	87	oil	8.1-7.1 (m, 4H); 2.8 (s, 3H)	C ₈ H ₇ NS (141.2)	9
3b	85	oil	8.1-7.2 (m, 4 H); 3.07 (t, 2 H, J = 8 Hz); $2.2-0.65$ (m, 15 H)	C ₁₅ H ₂₁ NS (247.4)	
3c	92	112-115°		C13H9NS (211.3)	10
3d	80	74–76°	8.3-7.2 (m, 4 H); 2.2 (m, 8 H); 1.85 (m, 7 H)	C17H19NS (269.4)	
3e	97	oil	8.15-7.1 (m, 4 H); 3.65 (t, 2 H, J = 7Hz); 3.28 (t, 2 H, J = 7Hz); 2.35 (m, 2 H)	C ₁₀ H ₁₀ ClNS (211.7)	

^a All products gave satisfactory microanalyses (C $\pm 0.25\%$, H $\pm 0.08\%$, N $\pm 0.13\%$).

December 1977

Communications

Synthesis of 2-Substituted Benzothiazoles 3a-e; General Procedure: To a refluxing solution of o-(methylthio)-anilide (5 mmol) in dioxan (50 ml) is added drop-wise a solution of phosphonitrile dichloride (2; 5 mmol) and triethylamine (20 mmol) in dioxan (50 ml). The resulting yellow solution is allowed to reflux. After a heating period of 8-10 h, thin layer chromatography indicates the disappearance of the starting materials. The cold reaction mixture is washed with saturated aqueous sodium carbonate solution, extracted with ether, dried (Na₂SO₄), and evaporated under reduced pressure. The crude products are chromatographed on silica gel column eluting with cyclohexane/benzene (7:3); see Table 2.

This work was supported by a grant form the Italian National Research Council (C.N.R.).

Received: July 29, 1977

- L. Caglioti, M. Poloni, G. Rosini, J. Org. Chem. 33, 2979 (1968).
 M. Fieser, L. Fieser, *Reagents for Organic Synthesis*, Vol. 2, Wiley Interscience, New York, N. Y. 1969, p. 206.
- ² K. C. Das, Yu-Yin Lin, B. Weinstein, *Experientia* **25**, 1238 (1969).
- ³ J. Martinez, F. Winternitz, Bull. Soc. Chim. Fr. 1972, 4707.
 ⁴ G. Rosini, G. Baccolini, S. Cacchi, J. Org. Chem. 38, 1060 (1973).
- M. Fieser, L. F. Fieser, *Reagents for Organic Synthesis*, Vol. 4, Wiley Interscience, New York, N. Y., 1974, p. 387.
- ⁵ J. C. Graham, D. H. Marr, Can. J. Chem. 50, 3857 (1972).
- ⁶ J. C. Graham, Tetrahedron Lett. 1973, 3825.
- ⁷ G. Rosini, A. Medici, S. Cacchi, Synthesis 1975, 665.
- ⁸ F. Cialdi, A. Bauiffini, *Farmaco Ed. Sci.* **12**, 206 (1957).
- ⁹ L. M. Clark, J. Chem. Soc. 1928, 2313.
- ¹⁰ H. Gilman, J. A. Beel, J. Am. Chem. Soc. 71, 2328 (1949).