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The anti-cancer drug S-1 (trade name Teysuno in Japan) contains 
three ingredients: tegafur (1), gimeracil (2) and oteracil (3). It 
is commonly used for the treatment of advanced gastric cancer 
(Fig. 1).1 Recently, it has also been used in combination with 
cisplatin to treat other kinds of cancers, such as head and neck 
cancer, colorectal cancer and non-small-cell lung cancers in 
several countries.2–4 Within the drug, the molar ratio of tegafur, 
gimeracil and oteracil is 1:1:0.4.5 Among these ingredients, 
tegafur (1) is the actual chemotherapeutic agent. It is a prodrug 
of 5-fluorouridine (5-FU). Gimeracil (2) can reversibly block 
dihydropyrimidine dehydrogenase (DPD), resulting in higher 
5-FU levels and a prolonged half-life.

Gimeracil (2), 5-chloro-2,4-dihydroxypyridine, has been known 
for over 60 years with several synthetic methods reported.6–9 
However, most of these methods have several drawbacks such 
as long synthetic steps, necessity of the use of special equipment 
(e.g. a sealed tube) and time-consuming procedures. To the best 
of our knowledge, the conventional manufacturing procedure is 
based on the synthetic route reported by Ogawa and co-workers in 
1993.9 This synthetic route involves five steps from commercially 
available malononitrile and trimethyl orthoacetate (Scheme 1). As 
a part of our investigation of the medication S-1, we have developed 
an efficient three-step preparation of gimeracil from easily available 
2,4-dimethoxypyridine (4), which can be purchased from chemical 
reagent companies such as Alfa Aesar. This procedure for gimeracil 
has been patented by us and reported in Chinese.10 Here we report 
the details of our investigations.

Results and discussion
Our synthetic method is outlined in Scheme 2. The starting 
material 2,4-dimethoxypyridine (4) could be prepared from 
2,4-dichloropyridine by nucleophilic substitution of the 
chlorine atoms with freshly prepared sodium methoxide in 
N-methyl-2-pyrrolidone under a nitrogen atmosphere.11 Thus, 
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Fig. 1 Structures of tegafur (1), gimeracil (2) and oteracil (3).
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Scheme 2 Reagents and conditions: (a) NCS (1.1 equiv.), acetonitrile, 50 °C; (b) NCS (2.2 equiv.), acetonitrile, 50 °C, 88%; (c) 3 M HCl, 70 °C, 90%; 
(d) NaI, AcOH, 60 °C, 86%.

Scheme 1 The most widely used synthetic route to gimeracil (2) in industry.
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2,4-dimethoxypyridine (4) was first chlorinated at both C-3 and 
C-5 positions to afford 3,5-dichloro-2,4-dimethoxypyridine (5) in 
88% yield, with N-chlorosuccinimide (NCS) as the chlorination 
reagent. Selective monochlorination at the C-5 position using 
NCS was attempted, but the regioselectivity was poor. The main 
product was 3-chloro-2,4-dimethoxypyridine instead of 5-chloro-
2,4-dimethoxypyridine (Scheme 2, path a). Sulfuryl chloride, 
another widely used chlorination reagent, gave low yields (8–
10%). Compound 5 was hydrolysed in hydrochloric acid to afford 
3,5-dichloro-2,4-dihydroxypyridine (6) in 90% yield. 

Previous reports revealed that the halogen atoms at the C-3 
and C-5 positions behaved rather differently.6 When treated with 
concentrated hydrobromic acid, only the halogen atoms at the C-3 
position could be removed.6 Thus, den Hertog and co-workers 
reported that 5-chloro-2,4-dihydroxypyridine (2) could be prepared 
by heating compound 6 with a solution of hydrobromic acid and 
sodium bisulfite.6 However, this synthetic procedure needed some 
severe conditions, such as high temperature (200 °C) and special 
equipment (sealed tube), making this protocol unsuitable for large 
scale preparation. It was assumed that the reaction might proceed 
by protonation of the enol and then abstraction of the chloride by 
bromide ions to reform the pyridine. Since iodide ions exhibit much 
stronger nucleophilicity than bromide ions, we thought to improve 
the synthetic procedure by using iodide ions as the nucleophiles. 
It was found that the C-3 chlorine atom was removed by heating 
compound 6 in a mixture of sodium iodide and acetic acid at 60 °C 
in excellent yield. 

In conclusion, we have developed a convenient three-step 
synthetic approach to 5-chloro-2,4-dihydroxypyridine (2) in 68% 
overall yield from commercially available 2,4-dimethoxypyridine 
(4). This procedure has potential for industrial production with the 
advantages of short steps, simple operations and good yield. 

Experimental 
Commercial reagents were used without further purification. Melting 
points were measured on a SGW X-4 (INESA) melting point apparatus 
and are uncorrected. 1H NMR spectra were recorded on a Bruker DRX-
400 (400 MHz) instrument. 13C NMR spectra were obtained on a JNM-
EX400 (100 MHz) instrument. Mass spectra (MS) were determined on a 
Bruker MicroTof II mass spectrometer or a Waters High Resolution UPLC-
TOFMS spectrometer. IR spectra were obtained using KBr disks on a FTIR 
Bruker Tensor 27 spectrometer and are given in the ESI for compounds 5, 6 
and 2.

Synthesis of 2,4-dimethoxypyridine (4)11

Freshly prepared sodium methoxide (24 g, 0.44 mol) was added to a 
solution of 2,4-dichloropyridine (15 g, 0.10 mol) in anhydrous N-methyl-
2-pyrrolidone (80 mL). The resulting mixture was stirred at 120° C for 6 
h. The mixture was then cooled to room temperature, diluted with ethyl 
acetate (800 mL) and washed with water. The organic layer was dried over 
Na

2
SO

4
 and concentrated to give 2,4-dimethoxypyridine (4) as a colourless 

oil, which was pure enough to use in the next step: Yield 11.2 g (80%); 
1H NMR (400 MHz, DMSO-d

6
): δ 3.80 (s, 3H), 3.84 (s, 3H), 6.33 (d, J = 

2.0 Hz, 1H), 6.60 (dd, J = 2.0 Hz, J = 5.6 Hz, 1H), 7.97 (d, J = 5.6 Hz, 1H); 

13C NMR (100 MHz, DMSO-d
6
): δ 167.5, 165.4, 147.4, 106.1, 93.8, 55.3, 

53.1; HRMS (ESI) m/z calcd for C
7
H

10
NO

2
: [M + H]+: 140.0706; found: 

140.0707.

Synthesis of 3,5-dichloro-2,4-dimethoxypyridine (5)

NCS (25.0 g, 187 mmol) was added to a solution of 2,4-dimethoxypyridine 
(4) (10.0 g, 71.9 mmol) in acetonitrile (70 mL). The mixture was stirred 
for 3 h at 50 °C before it was evaporated to dryness. Water (50 mL) was 
poured into the residue. The precipitate was collected, washed with water 
and dried to afford a crude product. This was crystallised from anhydrous 
ethanol to give product 5 as a colourless solid: Yield 13.1 g (88%); m.p. 
49–50 °C (lit.12 57 °C); 1H NMR (400 MHz, DMSO-d

6
): δ 3.94 (s, 3H), 

3.95 (s, 3H), 8.22 (s, 1H); 13C NMR (100 MHz, DMSO-d
6
): δ 160.2, 159.9, 

144.5, 118.9, 111.8, 61.5, 55.2; LRMS (ESI) m/z (%): 208 (100) [M (35Cl
2
) 

+ 1]+, 210 (62) [M (35Cl, 37Cl) + 1]+, 212 (15) [M (37Cl
2
) + 1]+; HRMS (ESI) 

m/z calcd for C
7
H

8
35Cl

2
NO

2
: [M + H]+: 207.9927; found: 207.9942; calcd 

for C
7
H

8
35Cl37ClNO

2
: [M + H]+: 209.9898; found: 209.9916; calcd for 

C
7
H

8
37Cl

2
NO

2
: [M + H]+: 211.9871; found: 211.9887.

Synthesis of 3,5-dichloro-2,4-dihydroxypyridine (6): Compound 5 
(10.0 g, 48.0 mmol) and 3 M hydrochloric acid (50 mL) were added to a 
reaction flask. The reaction mixture was heated for 6 h at 70 °C and then 
cooled to room temperature to precipitate compound 6. The precipitate 
was collected, washed with water (70 mL) and oven-dried to afford 6 as a 
colourless solid: Yield 7.8 g (90%); m.p. 298–301 °C (lit.13 298–303 °C); 
1H NMR (400 MHz, DMSO-d

6
): δ 7.61 (s, 1H), 11.89 (br, 2H); 13C NMR 

(100 MHz, DMSO-d
6
): δ 158.6, 158.4, 131.9, 106.2, 105.0; LRMS (ESI) 

m/z (%): 180 (100) [M (35Cl
2
) + 1]+, 182 (65) [M (35Cl, 37Cl) + 1]+, 184 (12) 

[M (37Cl
2
) + 1]+; HRMS (ESI) m/z calcd for C

5
H

4
35Cl

2
NO

2
: [M + H]+: 

179.9614; found: 179.9612; calcd for C
5
H

4
35Cl37ClNO

2
: [M + H]+: 181.9585; 

found 181.9582; calcd for C
5
H

5
37Cl

2
NO

2
: [M + H]+: 183.9557; found: 

183.9559. 
Synthesis of 5-chloro-2,4-dihydroxypyridine (2): A mixture of 

compound 6 (8.0 g, 44 mmol), acetonitrile (100 mL), acetic acid (3 mL) 
and sodium iodide (13.2 g, 88 mmol) was heated for 8 h at 60 °C. Then the 
mixture was cooled to room temperature and poured into 10% sodium 
thiosulfate solution (200 mL) to precipitate a colourless solid, which was 
recrystallised from water to give pure compound 2: Yield 5.6 g (86%); m.p. 
272–273 °C (lit.7 273–274 °C); 1H NMR (400 MHz, DMSO-d

6
): δ 5.70 

(s, 1H), 7.51 (s, 1H), 11.29 (br, 2H) ; 13C NMR (100 MHz, DMSO-d
6
): δ 

163.5, 163.2, 134.6, 105.6, 98.7; LRMS (ESI) m/z (%): 146 (100) [M (35Cl 
+ 1]+, 148 (30) [M (37Cl) + 1]+; HRMS (ESI) m/z calcd for C

5
H

5
35ClNO

2
: 

[M + H]+: 146.0003; found: 146.0012; calcd for C
5
H

5
37ClNO

2
: [M + H]+: 

147.9975; found: 147.9975.
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