nication) has obtained a similar value for TPE- d_1 in CDCl₃. (24) A. Abragam, "The Principles of Nuclear Magnetism", Clarendon Press, Oxford, 1961, p 504,

See, for example, C. Brevard, J. P. Kintzinger, and J. M. Lehn, Chem. Commun., 1193 (1969); C. Brevard and J. M. Lehn, J. Am. Chem. Soc., 92, 4987 (1970).

(26) J. P. Kintzinger, J. M. Lehn, and R. L. Williams, Mol. Phys., 17, 135 (1969).

(27) T_1 for the methine resonance (¹H) of TPE is ~0.7 s. The value of T_2 * employed in the line-shape calculations is based on the width at half height (1.0 Hz) of this resonance.

(28) For another analysis of a spin coupled to a relaxing nucleus, cf. J. A. Pople,

Mol. Phys., 1, 168 (1958), and ref 21b. (29) The TPE used in the present study contains \sim 25% TPE- d_0 , and the d_0 line effectively "hides" the spectrum of the d_1 species. Analyses based on width at half height therefore measure essentially only the line width of the do species. It is significant, however, that over the temperature range 310–370 K (toluene- d_8) the methine proton resonance of this sample does not perceptibly broaden ($w_{1/2h} \sim$ 1.6 Hz; $w_{\rm baseline} \sim$ 5 Hz), nor does the 2 H cou-

pling become apparent. (30) Estimated from the Debye-Einstein equation (ref 21c).

Dennis A. Dougherty, Kurt Mislow*

Department of Chemistry, Princeton University Princeton, New Jersey 08540

John F. Blount*

Chemical Research Department Hoffmann-La Roche, Inc., Nutley, New Jersey 07110

Jan B. Wooten, John Jacobus*

Department of Chemistry, Clemson University Clemson, South Carolina 29631 Received April 25, 1977

Rapid Access to Analogues of Phalloidin by Replacing Alanine-1 in the Natural Toxin by Other Amino Acids¹

Sir:

In extensive studies of structure-activity correlations of the phallotoxins from the toxic mushroom Amanita phalloides.² the amino acid in position 1 (alanine) of phalloidin (1a) has

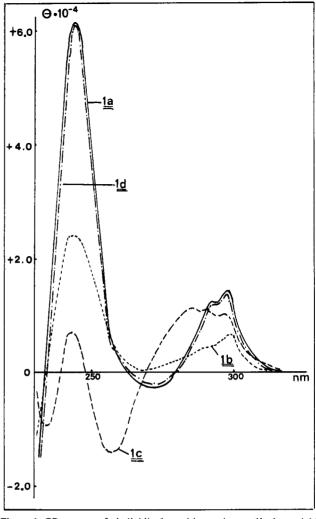


Figure 1. CD spectra of phalloidin 1a and its analogues 1b, 1c, and 1d measured in water solution.

Scheme I

Table I. Yields of Cyclization, R_f Values (on Silica Gel TLC Plates, Kieselgel 60 F₂₅₄ Merck, in 65:25:4 Chloroform-Methanol-Water by Volume), Amino Acid Analyses, and Toxicities (LD₅₀, Milligrams/Kilogram in White Mice)

Amino acid in position 1	No.	Yield of cyclization, %	R _f value		io of o acids	Toxicity
Ala ^a	1a	8.7	0.31	Ala Thr	2.00 0.90	2.0
D-Ala	1b	6.6	0.32	Ala Thr	2.00 0.95	b
Gly	1c	22.0	0.30	Gly Ala Thr	1.00 0.98 1.02	7.5
Val	1d	2.4	0.45	Val Ala Thr	1.06 1.00 0.89	2.5
Leu	1e	2.7	0.48	Leu Ala Thr	1.03 1.00 0.93	2.5
Phe	1f	2.2	0.48	Phe Ala Thr	0.97 1.00 0.92	20.0
des-Ala	6	7.7	0.32	Ala Thr	1.00 0.89	b
Ala ₂	8	28.0	0.40	Ala Thr	3.00 1.04	Ь

^a Substance obtained by recyclization of secophalloidin 5a.³ b Tested in doses up to 30 mg/kg.

been replaced by several amino acids. Recently, we described the recyclization of the nontoxic secophalloidin (5a) to yield phalloidin (1a) by the mixed anhydride method. The exchange of 1-alanine of the seco compound 2a was carried out by one Edman degradation step, followed by coupling of the shortened peptide 3 with the Boc derivative of the desired amino acid to provide the different Boc seco compounds 4b-f. Removal of the protecting group, hydrolytic opening of the γ -lactone in position 7 (γ , δ -dihydroxyleucine), and cyclization of the seco compounds 5b-f afforded the phalloidin analogues 1b-f.

Secophalloidin lactone⁴ (2a, 600 mg, 0.76 mmol) gave phenylthiocarbamoyl secophalloidin lactone (591 mg, 84.0%) on reaction with an excess of phenyl isothiocyanate (12.5 mL) in 50% aqueous pyridine (400 mL) at 40 °C for 1 h.5 The phenylthiocarbamoyl derivative (500 mg, 0.54 mmol) was treated with trifluoroacetic acid as described5 and chromatographed on Sephadex G-15 in 0.1 M acetic acid, to yield [des-Ala¹]-secophalloidin lactone (3, 343 mg, 88.3%). Compound 3 (200 mg, 0.28 mmol) was acylated with, for example, Boc-valine-N-hydroxysuccinimido ester (450 mg, 5.1 equiv) and N-methylmorpholine (0.3 mL) in dimethylformamide (5 mL) at 0 °C for 1 h and 20 °C for 35 h. The resulting [Boc-Val¹]-secophalloidin lactone (4d) was purified chromatographically on Sephadex LH-20 in methanol (241 mg, 83.1%) with respect to 3). The Boc group of 4d (440 mg, 0.48 mmol) was removed with trifluoroacetic acid and the deprotected γ -lactone was hydrolytically opened via chromatography on Sephadex LH-20 in 4 mM aqueous ammonia³ to afford 5d (358 mg, 88.8%). Compound 5d (300 mg, 0.36 mmol) was cyclized via its mixed anhydride with isobutyloxycarbonyl chloride in 10⁻⁴ M solution to give [Val¹]-phalloidin (1d, 7.1 mg, 2.4%) (Scheme I).

Starting from 3, a bicyclic hexapeptide, [des-Ala¹]-phalloidin (6), and a bicyclic octapeptide, [endo-Ala^{1a}]-phalloidin (8), have also been obtained. Compound 6 was synthesized by cyclization of 3 after opening of the lactone ring. Cyclization of the seco compound 7 afforded compound 8. The seco compound 7 was prepared by coupling of 2a with Boc-alanine-N-hydroxysuccinimido ester and subsequent removal of the

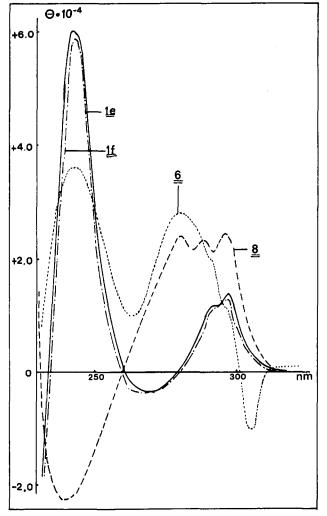


Figure 2. CD spectra of analogues 1e, 1f, 6, and 8 measured in water solution

Scheme II Leu(OH) Leu(OH)-Lac i)lactone opening ii)cyclisation (3) dem-Ala-phalloidin(6) Leu(OH)-Lac Leu(OH)-Lac Boc-Ala-ONSu N- :hr-Ala-H D-Thr-Ala-Ala-Boo (8) (2a) eu(CH)2-Ala ii)lactone opening

Boc group and opening of the lactone ring (Scheme II).

iii)cyclization

The yields of the cyclization reactions, R_f values of the analogues on TLC, amino acid analyses, and toxicities in white mice are compiled in Table I.

endo-Ale 18-phalloidin(8)

The CD spectra of the analogues 1d, 1e, and 1f are almost identical with that of 1a, whereas the curve of analogue 1c is significantly different (Figures 1 and 2). The same is true for the UV-difference spectra of the complexes with rabbit muscle actin, 2b,6 where the Gly analogue 1c shows a curve deviating from the normal one. Interestingly 1c possesses toxicity, although to a reduced extent. The hexapeptide 6 and the octapeptide 8 also show abnormal CD spectra and no binding to

actin as evidenced by the lack of difference spectra.

The present results extend our knowledge on the structure-toxicity relationships of the phallotoxins as follows. (1) In order to be toxic the bicyclic peptide must consist of seven amino acids, since the hexapeptide 6 and octapeptide 8 are nontoxic. (2) The methyl group of 1-alanine may be replaced by an isopropyl (1d) or an isobutyl group (1e) without loss of toxicity. Toxicity is reduced by substitution of the methyl group by either a hydrogen atom (1c) or benzyl group (1f). (3) Change of configuration at 1-alanine from L to D eliminates the toxic properties of the cyclic peptide. Details of the preparation of the analogues and their binding to actin will be reported in a forthcoming publication.

Acknowledgment, Ms. A. Schmitz, Ingelheim, is thanked for performing the toxicological experiments.

References and Notes

- (1) Paper 54. Communication on the Components of the Green Deathcap Toadstool Amanita phalloides. 53: E. Munekata, H. Faulstich, and T. Wieland, Justus Liebigs Ann. Chem., in press.
- (2) For reviews, see (a) T. Wieland and O. Wieland, "Microbial Toxins", Vol. 8. S. Kadis, A. Ciegler, and S. J. Aji, Ed., Academic Press, New York, N.Y., 1972, pp 249–280; (b) T. Wieland, "26. Colloquium Mosbach, 1975", L. Heilmeyer, J. C. Rüegg, and T. Wieland, Ed., Springer-Verlag, Berlin-Heidelberg, 1976, pp 203–214.
- (3) E. Munekata, H. Faulstich, and T. Wieland, Angew. Chem., 89, 274 (1977);
- Angew. Chem., Int. Ed. Engl., 16, 267 (1977).

 T. Wieland and W. Schön, Justus Liebigs Ann. Chem., 593, 157 (1955). For the purpose of preparation, phalloidin was treated overnight with 50% aqueous trifluoroacetic acid and the seco compound purified chromatographically on Sephadex G-15 in 0.1 M acetic acid.
- P. Edman, "Protein Sequence Determination", S. B. Needleman, Ed., Chapman and Hall, London, Springer-Verlag, Berlin-Heidelberg-New York, 1972, pp 211-255
- (6) T. Wieland, J. X. de Vries, A. Schäfer, and H. Faulstich, FEBS Lett., 54, 73
- (7) Research fellow of Alexander von Humboldt Foundation, 1974-1976.

Eisuke Munekata, Heinz Faulstich, Theodor Wieland*

Max-Planck-Institut für Medizinische Forschung Abteilung Naturstoff-Chemie, Jahnstrasse 29 D-6900 Heidelberg, West Germany Received June 1, 1977

Additions and Corrections

A Study on the Mechanism of the Reaction of N-(2,4-Dinitrophenyl)-3-carbamoylpyridinium Chloride with Amines and Amino Acids with Reference to Effect of Polyelectrolyte Addition [J. Am. Chem. Soc., 98, 2282 (1976)]. By S. KUNUGI, T. OKUBO, and N. ISE,* Department of Polymer Chemistry, Kyoto University, Kyoto, Japan.

On page 2285, in Table II, footnote a, "[amine] = 2.5 \times 10⁻³ M" should be deleted.

On page 2286, second column, line 46 should read: "The τ_{s1} process was . . .'

Thermally Promoted Ring Cleavage Reactions of Stereoisomeric Tetracyclo[4.3.0.0^{2,5}.0^{7,9}]non-3-enes, Pentacyclo[5.3.0.0^{2.6}0^{3,5}.0^{8,10}]decanes, and Their Epoxide Counterparts [J. Am. Chem. Soc., 98, 8175 (1976)]. By LEO A. PA-QUETTE* and MICHAEL J. CARMODY, Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210.

The lower section of Table III (p 8177) should read as follows:

	ΔH [‡] , kcal/mol	ΔS [‡] , eu	$E_{\mathbf{a}}$, kcal/mol.	Log A
	<i>a</i> 30.8	+1.05		
A	31.2	-1.63		
			30.49 ± 0.16	14.22 ± 0.09
			32.59 ± 0.17	14.01 ± 0.09

1,3-Dicarbonyl-2-ketimines. Hydrolysis of 1,3-Dimethyl-5-(p-tolylimino)barbituric Acid [J. Am. Chem. Soc., 99, 2665 (1977)]. By J. M. SAYER* and MARTHA DEPECOL, Department of Chemistry, University of Vermont, Burlington, Vermont 05401.

On p 2668, headings for the last two columns of Table I