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New spiro-piperidines as 5-HT2B receptor antagonists
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Abstract—A functional screening highlighted a series of spiro-piperidines as 5-HT2B receptor antagonists. Preliminary structure–
activity relationship has been explored driving to potent antagonists (IC50 = 1 nM) and indicating directions for further
explorations.
� 2006 Elsevier Ltd. All rights reserved.
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Serotonin (5-hydroxytryptamine, 5-HT) is a well-known
monoamine neurotransmitter, hormone, and mitogenic
factor which mediates a wide range of physiological
activities in different cells by binding to multiple recep-
tor subtypes. With the exception of the 5-HT3 which is
a ligand-gated ion channel, all of these receptors are
known to be G-protein coupled receptors (GPCRs).

The 5-HT2B receptor was first identified in rat stomach
fundus.1,2 Although originally termed 5-HT2F or
5-HT1-like receptor,3 it was reclassified as 5-HT2B to be-
come the third member of the 5-HT2 receptor family.4–7

5-HT2B receptors are widely expressed in peripheral
tissues of various species. 5-HT2B receptor mRNA or
protein immunoreactivity has been found throughout
the gastrointestinal tract including smooth muscle of
the stomach fundus, esophagus, small intestine, and
colon. The receptor has also been found in the placenta,
uterus, lung, and prostate, and 5-HT2B receptor antago-
nist activities were reported in several diseases such as
prostatic cancer,8 gastrointestinal diseases, migraine,9

CNS disorders, urinary incontinence and bladder
dysfunction,10 and pulmonary hypertension.11 Regulat-
ing 5-HT2B/5-HT interaction appears to be a promising
approach in the development of small-molecule drugs.

Among many 5-HT2B antagonists, SB204741,12,13

LY266097,14 and RS12744515 (Fig. 1) are described as
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selective antagonists at the human receptor. We present
here the identification of a new series of 5-HT2B

antagonists.

Hit identification was realized by screening a set of 1250
small molecules selected for their structural relevance.16

The functional test performed corresponds to the inhibi-
tion of calcium release after activation of 5-HT2B recep-
tor by an agonist (a-methyl-5-hydroxytryptamine) in
CHO cells.17 A series of spiro-piperidine compounds
exhibited potent antagonistic effects, 1 and 2 (Fig. 2)
showing IC50 of 95 and 30 nM, respectively.

In this study, all the spiro compounds were either
purchased commercially or prepared using a 3-step
synthesis (Scheme 1). According to the literature, the
formation of 2 0-hydroxychalcone involved the Claisen–
Schmidt condensation of a 2-hydroxybenzaldehyde I
with an acetophenone II in the presence of base as
catalyst.18,19 Subsequently, hydrazine hydrate was
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Figure 1. 5-HT2B receptor ligands.
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Table 1. Biological assay results for compounds 1–24

O

N

N

N

Ar

X

Y

Compounda Ar X Y Activityb

IC50
c (nM)

1 4-Pyridyl H H 95

2 4-Fluorophenyl Br H 30

3 4-Fluorophenyl H H <10d

4 Phenyl H H 50–100

5 Phenyl Br H 92

6 4-Chlorophenyl H H 280

7 4-Bromophenyl H H 426

8 4-Chlorophenyl Br H 100–500

9 2-Chlorophenyl H H 753

10 2-Chlorophenyl Br H 856

11 2-Methoxyphenyl Br H 5000

12 4-Methoxyphenyl Br H 5000

13 2-Difluoromethoxyphenyl Br H 427

14 4-Difluoromethoxyphenyl Br H 175

15 3,4-Dichlorophenyl Br H 542

16 3,4-Dimethoxyphenyl Br H 5000

17 3-Pyridyl H H na

18 2-Furyl Br H 5000

19 2-Thienyl Br H 5000

20 1-Naphthyl Br H >10000

21 2-Naphthyl Br H 5000

22 4-Fluorophenyl H MeO 46

23 4-Chlorophenyl H MeO 1470

24 4-Bromophenyl H MeO 1281

a Racemates were used.
b Inhibition of calcium release generated by a-methyl-5-HT (Ref. 17).
c na, not active. Average value from one experiment in duplicate.
d 90% inhibition at 10 nM.
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Scheme 1. Reagents and conditions: (a) KOH, aqueous ethanol, 16 h,

rt; (b) NH2NH2, MeOH, rt; (c) N-substituted piperidin-4-one, neat,

50 �C.
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Figure 2. Lead compounds.
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added to the chalcone III in methanol and furnished the
corresponding pyrazoline IV in good yield.19 Finally,
the spiro compound V was obtained by heating the pyr-
azoline with a N-substituted piperdin-4-one at 50 �C.

The 5-HT2B antagonist activity for compounds 1–24 is
shown in Table 1. The most potent compound is the
4-fluorophenyl 3 with an IC50 below 10 nM. Generally,
both the hydrogen (3, 4, 7, and 9) and bromine (2, 5,
8, and 10) substitutions at the position X had similar
potency on the target. On the contrary, when the hydro-
gen in position Y (3, 6, and 7) was replaced with elec-
tron-rich methoxy group (22, 23, and 24), a markedly
reduced activity was observed.

For the aromatic group (Ar), the inhibition was
decreased by using bulkier groups such as naphthyls
(20 and 21) or with heteroaryl groups such as 2-furyl
(18) and 2-thienyl (19). Interestingly, compared to the
lead compound 1, which has an IC50 = 95 nM, the
3-pyridyl analog (17) completely lost its activity. The
effect of varying the pattern on the phenyl group was
explored. Among the 4-halophenyl compounds, 4-fluoro
substitution was the preferred one (comparing 3, 6, and
7, also 22, 23, and 24 activities). In addition, shifting the
halogen from the 4-position (6 and 8) to the 2-position
(9 and 10) resulted in approximately 2-fold loss in activ-
ity. Introduction of an electron-rich methoxy group to
the 4-position of the phenyl ring led to a decrease in
potency. Compounds without any substitution (4 and
5) did not show any improvement compared to the hit
compounds. The 3,4-dichlorophenyl (15) and 3,4-
dimethoxyphenyl (16) compounds retained similar activ-
ity when compared to their mono-4-substituted analogs
(8 and 12). These results disclosed that the
3-phenyl substitution was acceptable but does not seem
to be essential. Replacing the methoxy group of 11 or 12
with a difluoromethoxy group, 13 and 14 showed a
10- to 20-fold increase in biological activity. These
results further showed the importance of the 4-fluoro
substitution pattern for 5-HT2B receptor affinity. From
all these results, both 4-fluorophenyl and 4-pyridyl
groups exhibited a high affinity with 5-HT2B receptor.

The modification of the spiro-piperidine moiety (R4 and
R5) was investigated. Replacement by groups such as
dimethyl (25), cyclohexyl (26), 4-methylcyclohexyl (27),
and tetrahydropyranyl (28) resulted in the complete loss
of activity (Table 2).

Consequently, our efforts were addressed to the
optimization of the N-substitution of the spiro-piperi-
dine scaffold (Table 3). Attachment of an electron-
withdrawing acetyl group to the nitrogen atom led
to the loss of the biological activity (29, 30, and 31).
The bulky benzyl group (comparison between 34 and
42) was also not suitable for the nitrogen substitution,
but the 2-phenylethyl substitution was tolerated
(comparison between 43 and 51). When the N-alkyl
chain evolved from methyl to ethyl and to n-propyl,
the activity was increased by 2-fold for each



Table 2. Variations at the R4 and R5 positions

O

N
N

N

R5
R4

Compounda

R5
R4 Activityb

IC50
c (nM)

25 5000

26 na

27 na

28
O

na

a Racemates were prepared by heating pyrazoline IV with corre-

sponding ketone at 50 �C.
b Inhibition of calcium release generated by a-methyl-5-HT (Ref. 17).
c na, not active. Average value from one experiment in duplicate.

Table 3. Variations at the R position

O

N

N

N

Ar

R

X

Compounda Ar X R Activityb

IC50
c (nM)

29 Phenyl Br Acetyl na

30 4-Fluorophenyl Br Acetyl na

31 4-Chlorophenyl Br Acetyl na

32 2-Chlorophenyl Br Benzyl na

33 4-Chlorophenyl H Benzyl 350

34 4-Methoxyphenyl Br Benzyl na

35 4-Pyridyl H Ethyl 42

36 4-Pyridyl H i-Butyl 21

37 Phenyl Br i-Propyl 188

38 4-Chlorophenyl H i-Propyl 133

39 4-Bromophenyl H i-Propyl >10,000

40 4-Tolyl Br n-Propyl 5000

41 4-Bromophenyl Br n-Propyl 791

42 4-Methoxyphenyl Br n-Propyl 179

43 4-Pyridyl H n-Propyl 15

44 Phenyl H n-Propyl <10d

45 4-Fluorophenyl H n-Propyl 1.8

46 4-Fluorophenyl Me n-Propyl 115

47 4-Fluorophenyl F n-Propyl 26

48 4-Fluorophenyl Cl n-Propyl 32

49 4-Fluorophenyl Br n-Propyl 29

50 2-Chlorophenyl H n-Propyl 500

51 4-Pyridyl H 2-Phenylethyl 16

a Racemates were used.
b Inhibition of calcium release generated by a-methyl-5-HT (Ref. 17).
c na, not active. Average value from one experiment in duplicate.
d 90% inhibition at 10 nM.
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Scheme 2. Reagents and conditions: (a) CAN, CH3CN-water (9:1),

16 h.
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homologation (1, 35, and 43). All the n-propyl series
generally provided the best activity (comparison
between 12–42 and 4–44). Concerning the substitution
at the X-position, the halo-substitution gave similar
activities between 47 and 49 (IC50 = 26 to 32 nM)
but the most active one was the compound without
any substitution (X = H). Therefore, 2-(4-fluorophe-
nyl)-1,10b-dihydro-benzo[e]pyrazolo[1,5-c][1,3]oxazine-
5-spiro-4 0-(1 0-propylpiperidine) (45)20 was selected for
chiral resolution (one chiral center is present in the
pyrazoline ring). From the racemate mixture, both
enantiomers were separated by chromatography using
a chiral column.21 Each enantiomer exhibited very
different activity. The enantiomer with the shorter
retention time, 45tR1, was the most active with an
IC50 = 1.0 nM, while the second one (longer retention
time, 45tR2 was inactive up to 500 nM. Therefore, the
stereochemistry of the compound was important for
the target affinity.

In order to avoid the chirality issue, pyrazole 52 was
synthesized from the pyrazoline 45. Several oxidizing
agents like MnO2, H2O2, and 2,3-dichloro-5,6-dicyano-
1,4-benzoquinone (DDQ) were attempted but failed.
Finally, the reaction was carried out successfully using
ammonium cerium (IV) nitrate (CAN) and gave 50%
yield of 52 which was found to be inactive (Scheme 2).

In summary, a novel series of 5-HT2B receptor ligand
was identified, 2-aryl-1,10b-dihydro-benzo[e]pyrazolo
[1,5-c][1,3]oxazine-5-spiro-4 0-(1 0-alkylpiperidine). We
found that variations of aromatic substitution (Ar)
and N-substitution of the piperidyl can influence the
activity and allowed to highlight potent antagonists
(IC50 < 10 nM in a functional assay). The most dra-
matic structural modification observed was the re-
quired basic nitrogen of the piperidine ring,
indicating a strong proton acceptor interaction, and
the stereospecificity on the pyrazoline ring which
seems related to a specific protein pocket for the aro-
matic group. The established S.A.R. pattern gave the
opportunity for further optimization. Further studies
are needed to find out the selectivity of 5HT receptor
sub-types for these spiro-piperidines.
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