

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 61 (2005) 9058-9069

New synthetic approaches to sugar ureas. Access to ureido-β-cyclodextrins

Óscar López, Susana Maza, Inés Maya, José Fuentes and José G. Fernández-Bolaños*

Departamento Química Orgánica, Facultad Química, Universidad Sevilla, Apartado 553, E-41071 Seville, Spain

Received 14 May 2005; revised 6 July 2005; accepted 14 July 2005

Available online 3 August 2005

Abstract—An efficient method for the preparation of urea-bridged cyclodextrins using triphosgene in the isocyanation step in an aqueous two-phase system is reported. Per-O-acetylated glycopyranosylamines and 2-amino-2-deoxy- α and β -D-glucose were also transformed into the corresponding isocyanates using either an aqueous two-phase or an anhydrous dichloromethane medium, and converted in situ into ureas. An alternative method for the preparation of sugar-derived ureas consisting of desulfurization of sugar thioureas with mercury oxide is also presented.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Urea functionality is a structural feature present in many biologically active compounds, such as anti-mycobacterial¹ and anti-trypanosomal² agents, plant and insect growth regulators,^{3,4} and as antagonists of natural receptors.^{5,6} Several ureido derivatives have also proved to be anti-tumor agents,^{7–9} and to inhibit HIV protease^{10–15} and glycine transporter GlyT-2.¹⁶

In the carbohydrate field, pseudooligosaccharides incorporating a urea bridge have been found in glycocinnamoyl spermidine antibiotics.¹⁷ Synthetic *N*-nitrosoureas derived from aminosugars have shown to be useful as antitumorals¹⁸ and naturally-occuring streptozotocin,¹⁹ a *N*-nitrosourea derived from 2-amino-2-deoxy-D-glucose, is widely used to induce diabetes mellitus in experimental animals.²⁰ Furthermore, some ureido glycuronate derivatives have shown to be α -glucosidase inhibitors²¹ and *N*-acyl-*N*'- β -D-glucopyranosyl ureas exhibit strong inhibition against glycogen phosphorylase,²² and so they could act as antidiabetic agents.²³

Cyclodextrins are cyclic oligosaccharides that possess practical applications in medicinal²⁴ and supramolecular chemistry.²⁵ For instance, they are able to form complexes, improving solubilization and bioavailability of lipophilic drugs,^{26,27} and they have also been used in the design of

artificial enzymes^{28,29} and for separation of enantiomers.³⁰ Much effort has been devoted to the preparation of cyclodextrin dimers³¹ in order to improve the binding properties of the parent structure.²⁸ For this purpose, many different linkages have been introduced³² in the preparation of dimers, among which we can find the urea tether.³³

Sugar ureas have often been obtained by reaction of glycosylamines or amino sugars with alkyl or aryl isocyanates^{34,35} in anhydrous solvents. The synthesis of fully *O*-protected sugar isocyanates has also been reported by Jochims³⁶ by reaction of *O*-protected amino sugars and toxic phosgene in anhydrous toluene.

To avoid handling hazardous phosgene, other methods to afford sugar ureas have been developed. These methods involve the use of aryl carbamates derived from amino sugars,³⁷ the use of phosphinimines³⁸ or carbodiimides³⁹ as intermediates, or the oxidation of glycosyl isocyanides with pyridine *N*-oxide proposed by Ichikawa et al.⁴⁰ By the last procedure, Prosperi et al. have described the synthesis of nonsymmetrical urea-linked disaccharides in which two glycopyranoside units are bound at the $1 \rightarrow 2$, $1 \rightarrow 4$, and $1 \rightarrow 6$ positions.⁴¹

Recently, we have communicated⁴² our preliminary results on the one-pot two-phase preparation of sugar-derived ureas, including cyclodextrin derivatives. Ureas were obtained starting from sugar amines and glycopyranosylamines by using triphosgene⁴³ in the isocyanation step. Herein we report the full details of this procedure and our results of a different approach to access sugar ureas, based

Keywords: Cyclodextrin; Triphosgene; Sugar isocyanates; Ureas; Mercury oxide; Two-phase system.

^{*} Corresponding author. Tel.: +34 95 4557151; fax: +34 95 4624960; e-mail: bolanos@us.es

Scheme 1.

on desulfurization of sugar thioureas through non-isolated carbodiimides. Fischer's per-O-acetylated β -D-glucopyranosyl isocyanate **20**,⁴⁴ which we use without isolation in the synthesis of β -D-glucopyranosyl ureas, has been recently prepared as a crystalline form from the O-protected β -D-glucopyranosylamine with triphosgene under Schotten-Baumann conditions.⁴⁵

2. Results and discussion

We have carried out the synthesis of β -cyclodextrin dimer **4** starting from per-*O*-acetylated 6^A-azido-6^A-deoxy- β -cyclodextrin **1**,⁴⁶ which was prepared in three steps from β -cyclodextrin: monotosylation with 1-(*p*-toluenesulfonyl)-imidazole,⁴⁷ acetylation and displacement of the tosyloxy group with sodium azide (Scheme 1).

Compound **1** was hydrogenated in the presence of palladium over charcoal to afford monoamino derivative **2**, which was used without further purification for the isocyanation step; thus, crude **2** was dissolved in a vigorously stirred 1:1 CH₂Cl₂-saturated aqueous NaHCO₃ mixture at 0 °C, to which solid triphosgene was added. After 15 min of stirring at 0 °C, another equivalent of monoamino **2** was added to afford β -cyclodextrin dimer **4** in a 49% yield for the three steps (hydrogenation, isocyanation of the amine and coupling with the same amine). The overall yield for the preparation of **4** is comparable to a recently described procedure⁴⁸ involving a polymer-bound triphenyl-phosphine, carbon dioxide and azide **1**.

The same method was applied to the preparation of per-*O*-acetylated 6-monodeoxy-6-mono[3-(β -D-glucopyranos-2-yl)ureido]- β -cyclodextrin **15** starting from readily available hydrochloride **6**⁴⁹ (Scheme 2). Treatment of compound **6** with triphosgene under the conditions described above led to isocyanate **8** which was used in situ for coupling with amine **2** to give β -cyclodextrin-derived urea **15** in a 46% yield, calculated from azide **1**.

Similarly, 2-ureido- α and β -D-glucopyranoses 9, 10, 12 and 13 and urea-linked symmetrical pseudo-disaccharides 11 and 14 were obtained (Scheme 2) in good yields (63–86%) starting from 2-amino-2-deoxy-D-glucopyranose hydro-halides of α - and β -configurations 5⁵⁰ and 6, and using alkyl and arylamines or the same hydrohalide for the coupling reaction with the non-isolated isocyanates 7 and 8 (Table 1, Method A).

Isocyanates 7 and 8 were obtained as syrups in quantitative yields by extraction with dichloromethane after the isocyanation step. NMR spectra of crude 7 and 8 showed no impurities; however, column chromatography of these

Entry	Amines	Products	Ureas	Method		
				A ^a	B ^b	
1	CH ₃ (CH ₂) ₃ NH ₂	AcO AcO R1 HN NH	9 12	73° 86	58°	
2	H ₃ C-NH ₂	ACO ACO HN NH CH ₃ CH ₃	10 13	63 86	66 —	
3	AcO AcO NH ₂ HBr	ACO ACO HN NH OAC OAC OAC OAC OAC OAC	11	82	62	
4	AcO AcO AcO NH ₂ ·HCI	ACO OAC OAC OAC OAC OAC	14	78	_	
5	(AcO) ₆ NH ₂ (AcO) ₁₄	AcO AcO AcO NH NH (AcO) ₁₄	15	46	_	
6	CH ₃ (CH ₂) ₃ NH ₂	$\begin{array}{c} A_{CO} \\ A_{CO} \\ A_{CO} \\ A_{CO} \\ A_{CO} \\ R_1 \\ \end{array} \\ \begin{array}{c} R_2 \\ R_2 \\ R_1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	22 25	63 71	65 	
7	H ₃ C-	$\begin{array}{c} AcO \\ AcO \\ AcO \\ AcO \\ R_1 \end{array} \qquad H \\ O \\ CH_3 \end{array}$	23 26	66 58	64 —	
8	Aco NH2'HBr	Aco	24	99	54	
9	ACO OAC ACO NH ₂ ·HCI	Aco OAc OAc OAc OAc	27	69	_	

Table 1. Synthesis of ureas 9-15 and 22-27

^a Biphasic CH₂Cl₂/water reaction conditions.

^b Monophasic anhydrous CH₂Cl₂ reaction conditions.

^c Isolated yields.

isocyanates led to extensive decomposition. Resonances at 125.9 and 126.7 ppm, for compounds **7** and **8** in ¹³C NMR (Table 2), together with strong IR absortions at 2261 and 2253 cm⁻¹, respectively, confirm the presence of a –NCO moiety. These data are in agreement to those found for Fischer's isocyanate **20**,⁴⁴ studied spectroscopically by Ichikawa.⁴⁵

Following the same one-pot biphasic procedure we have also carried out the preparation of per-O-acetylated glycopyranosyl ureas of D-gluco and D-manno configuration (Scheme 3). Crystalline hydrobromide 18^{51} was prepared from compound 16 after removal of the enamino group by oxidation with bromine in moist dichloromethane. Compound 18 was treated subsequently with triphosgene and with several amines in the biphasic medium to afford ureas **22–24**, via the non-isolated isocyanate **20**, in a 63–99% yield calculated from **18** (Table 1, Method A).

As hydrohalide $19^{52,53}$ could not be obtained as a crystalline product, the enamino group of compound 17 was removed by adding aliquots of a saturated solution of Cl₂ in moist CH₂Cl₂ at 0 °C over a 2 h period, until disappearance of the starting material by TLC. After solvent removal, crude hydrohalide 19 was directly used for the next two steps (isocyanation and coupling of isocyanate 21 with amines) to afford mannopyranosyl ureas 25–27 (Scheme 3) in a 58– 71% overall yield for the three steps (Table 1, Method A). By-products formed in chlorolysis of enamine-derived 17 did not interfere with the following two steps. ¹H and ¹³C NMR spectra of crude isocyanates 20⁴⁵ and the hitherto unknown 21 (Table 2), obtained after the

	¹ H and ¹³ C NMR data ^a (δ , ppm; J, Hz)						
Compound	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b
7 8 21	6.25 5.59 4.77	3.80 3.78 5.39	5.39 5.14 5.05	5.07 5.01 5.22	4.08 3.83 3.71	4.29 4.29 4.23	4.04 4.07 4.17
	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$	$J_{5,6a}$	$J_{5,6b}$	$J_{6\mathrm{a},6\mathrm{b}}$
7 8 21	3.6 8.6 1.2	10.4 10.2 3.2	9.7 9.4 10.0	9.9 9.7 10.0	3.9 4.6 5.0	2.3 2.1 2.5	12.3 12.6 12.5
	C-1	C-2	C-3	C-4	C-5	C-6	NCO
7 8 21	89.9 92.4 81.7	55.6 56.8 69.4	71.9 73.3 70.8	67.3 67.5 65.2	69.8 72.9 74.5	61.3 61.3 62.3	125.9 126.7 129.6

Table 2. Selected data for isocyanates 7, 8 and 21

^a In CDCl₃.

isocyanation step, showed these isocyanates to be the main products.

For the preparation of ureas 9-11, and 22-24, we also carried out the two steps (isocyanation and coupling with amines) in an anhydrous monophasic system. Thus, hydrohalides 5 and 18 were dissolved in dry dichloromethane containing 4 Å molecular sieves and diisopropylethylamine, and to the corresponding solutions at rt was dropwise added a solution of triphosgene in dry dichloromethane to give isocyanates 7 and 20, respectively. These isocvanates were converted in situ into ureas 9-11 and 22-**24** by addition of the corresponding amines in a 54–66% yield (Table 1, Method B). However, this procedure proved to be sensitive to moisture, and the use of molecular sieves proved to be essential for the yield of the reaction. Furthermore, the yields obtained by using anhydrous dichloromethane were in some examples lower than those obtained by the biphasic procedure (Table 1, Method A), despite moisture sensitivity associated to triphosgene and isocyanates.54,55

Finally, we have considered a third procedure for

obtaining sugar ureas from the corresponding thioureas. They have been more extensively studied than the ureas counterparts due to easier preparation of sugar iso-thiocyanates⁵⁶ as compared to sugar isocyanates. This third procedure is based on the desulfurization of sugar thioureas by treatment with yellow mercury (II) oxide; these results contrast with the desulfurization of *O*-unprotected glucopyanosyl thioureas to afford trans-fused bicyclic isoureas.⁵⁷

Treatment of thioureas 28-30 in aqueous acetonitrile with mercury oxide at rt for 1 h led to the corresponding carbodiimides, detected by TLC as a faster-moving compound; carbodiimides reacted slowly (24 h) at rt with water to give ureas 10, 23 and 24 in a 67–74% yield (Table 3). For *N*,*N*-diethyl thiourea 31, no carbodiimide was detected by TLC and a slower transformation (40 h) of thiourea into urea 32 took place in a 72% yield.

Per-*O*-acetylated thiourea **29** was prepared starting from thiourea **33**, easily available in a one-pot fashion from β -D-glucopyranosylamine.⁵⁷ Conventional acetylation of **33** at rt led regiospecifically to the new penta acetyl derivative **34** in

		$ \begin{array}{c} S \\ I \\ N \\ V \\ I \\ H \\ R^2 \end{array} $	yellow HgO 1:1 water-MeCN rt, 24-40 h	$ \begin{array}{c} 0 \\ R^{1} \\ N^{-C} \\ N^{-R^{3}} \\ I \\ H \\ R^{2} \end{array} $		
Entry	Thiourea	R^1	\mathbb{R}^2	R ³	Urea	Yield (%)
1	28	Aco Aco Aco Aco	Н	H ₃ C	10	67
2	29	Aco O C C C C C C C C C C C C C C C C C C	Н	H ₃ C	23	74
3	30	Aco Aco Aco OAc	Н	Aco O CAc	24	68
4	31	Aco Aco Aco OAc	CH ₃ CH ₂ -	CH ₃ CH ₂ -	32	72

Table 3. Synthesis of ureas by desulfurization of thioureas 28-31

a 73% yield (Scheme 4); probably due to steric hindrance no acetylation took place on the nitrogen attached to the sugar moiety. The strong deshielding exhibited by the NH proton in ¹H NMR of **34** (12.01 ppm) indicated the presence of an intramolecular hydrogen bonding with the carbonyl group of the vicinal N-acetyl moiety. Li et al. have recently reported⁵⁸ the use of imidazole as a mild base for the selective anomeric O-deacetylation of carbohydrates; using the same procedure we have carried out the selective N-deacetylation of 34 to give tetra-O-acetylated 29 in a 86% yield (Scheme 4).

Tetra-O-acetyl thioureas 28, 31 and known 30^{51} were prepared by coupling reaction of 1,3,4,6-tetra-O-acetyl-2deoxy-2-isothiocianato-\alpha-D-glucopyranose⁵⁹ and 2,3,4,6tetra-O-acetyl-β-D-glucopyranosylisothiocyanate⁵¹ with the corresponding amines in EtOAc at rt.

In conclusion, we report a practical one-pot two-step synthesis in an aqueous two-phase system of urea-tethered cyclodextrin dimer 4 and of 6-monodeoxy-6-mono(N'glucopyranos-2-ylureido)-\beta-cyclodextrin 15 through nonisolated sugar isocyanates. This procedure was also successfully applied to the preparation of other symmetrical and unsymmetrical N, N'-disubstituted sugar ureas including pseudodisaccharides with a $(1 \rightarrow 1)$ or $(2 \rightarrow 2)$ urea linkage. An anhydrous monophasic system was also used for the two-step synthesis, although the yields were generally lower. We also report the desulfurization of O-protected sugar thioureas with yellow mercury (II) oxide in aqueous

acetonitrile as an alternative pathway for the preparation of sugar ureas.

3. Experimental

3.1. General procedures

Melting points were recorded on an Gallenkamp apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 241 MC polarimeter, and IR spectra (KBr disks) were obtained with an FT-IR Bomem MB-120 spectrophotometer. 1 H (300 and 500 MHz) and 13 C (75.5 and 125.7 MHz) NMR spectra were recorded on Bruker AMX-300 and AMX-500 spectrometers. The assignments of ¹H and ¹³C signals were confirmed by homonuclear COSY and heteronuclear 2D correlated spectra, respectively. Mass spectra (EI, CI and FAB) were recorded on Kratos MS80-RFA and Micromass AutoSpec-Q mass spectrometers with a resolution of 1000 or 60,000 (10%) valley definition). For the FAB spectra, ions were produced by a beam of xenon atoms (6–7 keV), using thioglycerol as matrix and NaI as salt. MALDI spectra were recorded with a TOFSPEC spectrometer. TLC was performed on aluminium pre-coated sheets (E. Merck Silica Gel 60 F_{254}); spots were visualized by UV light, by charring with 10% H₂SO₄ in EtOH. Column chromatography was performed using E. Merck Silica Gel 60 (40–63 μ m).

3.2. N,N'-Bis[icosa-O-acetyl- 6^{A} -deoxy- β -cyclodextrin- 6^{A} -yl]urea (4)

A solution of 6^{A} -azido- 6^{A} -deoxy- β -cyclodextrin **1** (260 mg, 0.13 mmol) in methanol (10 mL) was hydrogenated at atmospheric pressure by stirring with 10% Pd(C) catalyst for 2.5 h at rt. After filtration of the mixture through a Celite pad, the filtrate was concentrated to dryness to afford the crude amine 2 and divided into two equal portions. One portion was dissolved in an 1:1 CH₂Cl₂-saturated aqueous NaHCO₃ mixture (12 mL), cooled to 0 °C in an ice bath and treated with triphosgene (6.5 mg, 0.022 mmol). After 15 min of vigorous stirring the other portion of amine 2 was added and the stirring was maintained at rt for 15 min. Conventional work-up and column chromatography $(CH_2Cl_2 \rightarrow 40:1 CH_2Cl_2-MeOH)$ afforded cyclodextrin dimer **4** (127 mg, 49%) as a white amorphous powder, mp 172–178 °C; $[\alpha]_D^{26}$ + 117 (*c* 1.1, CH₂Cl₂); lit.³³ $[\alpha]_D^{25}$ + 121 $(c \ 1.0, \text{CHCl}_3); \text{IR } \nu_{\text{max}} 3300, 1748, 1541, 1433, 1371, 1233, 1042 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR} (500 \text{ MHz}, \text{CDCl}_3) \delta 5.32-5.25 \text{ (m}, 7\text{H}, \text{H-3}^{\text{A-G}}), 5.17 \text{ (d}, 1\text{H}, J_{1,2}=3.5 \text{ Hz}, \text{H-1}^{\text{A}}), 5.14-5.11 \text{ (m}, 1\text{H}, \text{NH}), 5.10-5.05 \text{ (m}, 6\text{H}, \text{H-1}^{\text{B-G}}), 4.87-4.71 \text{ (m}, 7\text{H}, \text{H-2}^{\text{A-G}}), 4.58-4.49 \text{ (m}, 6\text{H}, \text{H-6}a^{\text{B-G}}), 4.31-4.23 \text{ (m}, 6\text{H}, \text{H-6}b^{\text{B-G}}), 4.18-4.11 \text{ (m}, 6\text{H}, \text{H-5}^{\text{B-G}}), 3.98-3.94 \text{ (m}, 1\text{H}, \text{H-5}^{\text{A-G}})$ 5^A), 3.88–3.82 (m, 1H, H-6a^A), 3.76–3.64 (m, 7H, H-4^{A–G}), 3.46–3.41 (m, 1H, H-6b^A), 2.14–2.03 (20 s, 60H, 20Ac); ¹³C NMR (125.7 MHz, CDCl₃) δ 170.6–170.3, 169.6–169.3 (CH₃CO), 158.2 (CO urea), 96.9–96.7 (C-1), 77.8–76.5 (C- 4^{A-G}), 71.2–69.4 (C- 2^{A-G} , C- 3^{A-G} , C- 5^{A-G}), 62.9–62.4 (C- 6^{B-G}), 40.4 (C- 6^{A}), 20.8–20.6 (CH₃CO); MALDITOF-MS *m*/*z* 3980 [M+H]⁺. Anal. Calcd for C₁₆₅H₂₂₀N₂O₁₀₉ 4H₂O: C, 48.96; H, 5.68; N, 0.96, found: C, 48.72; H, 5.35; N, 0.89.

3.3. General methods for the synthesis of ureas 9–15, 22–27 and 32.

Method A. To a vigorously stirred solution of the hydrohalides 5, 6 or 18 (0.6 mmol) in an 1:1 mixture of CH₂Cl₂ and saturated aqueous NaHCO₃ (12 mL) at 0 °C in an ice bath was added triphosgene (0.22 mmol); after 10 min of stirring, butylamine, p-toluidine, or the hydrohalides 5, 6 or 18 (0.66 mmol) were added. For the preparation of D-glucosamine derived ureas 9-14 the coupling with the amines was performed at rt for 10 min; for the preparation of glycopyranosyl ureas 22-24 the coupling of the isocyanate with the amines was carried out at 0 °C for 20 min. Conventional work-up and column chromatography afforded ureas 9-14 and 22-24. For the preparation of 15, this procedure was carried out starting from hydrochloride 6 (0.13 mmol). Azide 1 (260 mg, 0.13 mmol) was hydrogenated as described in Section 3.2 to give amino cyclodextrin derivative 2, which was added to the crude isocyanate 8 and the coupling reaction took place at rt for 15 min.

In the case of ureas 25–27, to a solution of enamine 17 (0.6 mmol) in wet $\text{CH}_2\text{Cl}_2(10 \text{ mL})$ at 0 °C were added small portions of a saturated solution of Cl_2 in CH_2Cl_2 until disappearance of the starting material by TLC. Then the mixture was concentrated to dryness and the residue containing hydrochloride 19 was treated as described above to give ureas 25–27.

Method B. To a stirred mixture of hydrohalides 5 or 18 (0.6 mmol) and N,N-diisopropylethylamine (DIEA, 1.8 mmol) in CH₂Cl₂ (6 mL) containing 4 Å molecular sieves under Ar at rt was dropwise added a solution of triphosgene (0.2 mmol) in dry CH₂Cl₂ (3 mL) over 30 min. After a further 10 min of stirring a solution of butylamine or *p*-toluidine (0.6 mmol) in dry CH₂Cl₂ (3 mL) was added in one portion. In the case of adding the hydrohalides 5 or 18 (0.6 mmol), their solutions in CH₂Cl₂ (3 mL) had an extra portion of DIEA (1.2 mmol). The reaction mixture was stirred at rt for 10 min. Conventional work-up and column chromatography afforded ureas 9–11 and 22–24.

Method C. To a solution of thioureas **28–31** (0.44 mmol) in 1:1 water–acetonitrile (20 mL) was added yellow mercury (II) oxide (572 mg, 2.64 mmol). The mixture was stirred at rt in the darkness for 24–40 h and then it was filtered through a Celite pad. The filtrate was concentrated to dryness and purified by column chromatography.

3.3.1. *N*-Butyl-*N'*-(**1,3,4,6-tetra-***O*-acetyl-2-deoxy- α -D-glucopyranos-2-yl)urea (9). *Method A*. Column chromatography (CH₂Cl₂ \rightarrow 40:1 CH₂Cl₂–MeOH) gave **9**: 196 mg, 73% as a syrup.

Method B. Column chromatography gave **9**: 150 mg, 58%. $R_{\rm f}$ =0.33 (40:1 CH₂Cl₂–MeOH); $[\alpha]_{25}^{25}$ +62 (*c* 0.5, CH₂Cl₂); IR $\nu_{\rm max}$ 3322, 2920, 1750, 1642, 1561, 1370, 1221, 1125, 1007 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.47 (d, 1H, $J_{2,\rm NH}$ =9.2 Hz, NH'), 6.16 (d, 1H, $J_{1,2}$ =3.5 Hz, H-1), 5.19–5.17 (m, 2H, H-3, H-4), 4.43 (t, 1H, $J_{\rm NH,CH_2}$ = 5.5 Hz, NH), 4.31 (m, 1H, H-2), 4.22 (dd, 1H, $J_{5,\rm 6a}$ =4.2 Hz, $J_{\rm 6a,6b}$ =12.5 Hz, H-6a), 4.03 (dd, 1H, $J_{5,\rm 6b}$ =2.2 Hz, H-6b), 3.95 (m, 1H, H-5), 3.08 (m, 2H, $CH_2\alpha$), 2.14, 2.06, 2.02, 2.01 (4s, 12H, 4Ac), 1.40 (m, 2H, $CH_2\beta$), 1.29 (m, 2H, $CH_2\gamma$), 0.88 (t, 3H, J=7.4 Hz, CH_3); ¹³C NMR (125.7 MHz, CDCl₃) δ 171.8, 170.7, 169.1, 168.6 (4 CO), 156.7 (CO urea), 91.5 (C-1), 71.2 (C-3), 69.7 (C-5), 67.6 (C-4), 61.7 (C-6), 52.0 (C-2), 40.3 ($CH_2\alpha$), 32.1 ($CH_2\beta$), 20.9, 20.8, 20.7, 20.5 (4 CH_3 CO), 19.9 ($CH_2\gamma$), 13.7 (CH_3); FAB-MS *m/z* 469 ([M+Na]⁺, 100%), 915 ([2M+Na]⁺, 10%); EI-MS *m/z* 446 ([M]⁺, 1%); HREI-MS *m/z* calcd for [M]⁺C₁₉H₃₀N₂O₁₀: 446.1900, found: 446.1897.

3.3.2. *N*-(*p*-Methylphenyl)-*N'*-(1,3,4,6-tetra-*O*-acetyl-2deoxy- α -D-glucopyranos-2-yl)urea (10). *Method A*. Column chromatography (CH₂Cl₂ \rightarrow 40:1 CH₂Cl₂ \rightarrow MeOH) gave 10 as a white solid: 182 mg, 63%.

Method B. Column chromatography gave 10: 191 mg, 66%.

Method C. The mixture was stirred for 24 h and purified by column chromatography to give **10**: 128 mg, 67%; mp 184–188 °C; $R_f 0.30$ (40:1 CH₂Cl₂–MeOH); $[\alpha]_D^{23} + 103$ (*c* 1.2, CH₂Cl₂); IR ν_{max} 3345, 1753, 1659, 1603, 1533, 1514, 1370, 1223, 1132, 926 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.09 (m, 4H, Ar–H), 6.97 (s, 1H, NH), 6.23 (d, 1H, $J_{1,2}$ = 3.4 Hz, H-1), 5.19 (m, 2H, H-3, H-4), 4.41 (t, 1H, $J_{2,NH}$ = 8.1 Hz, NH'), 4.24 (m, 1H, H-2), 4.24 (dd, 1H, $J_{5,6a}$ = 4.0 Hz, $J_{6a,6b}$ = 12.4 Hz, H-6a), 4.05 (dd, 1H, $J_{5,6b}$ = 2.2 Hz, H-6b), 3.97 (m, 1H, H-5), 2.29 (s, 3H, CH₃), 2.08, 2.07, 2.03, 2.01 (4s, 12H, 4Ac); ¹³C NMR (125.7 MHz, CDCl₃) δ 171.5, 170.8, 169.1, 168.7 (4CO), 155.2 (CO urea), 135.1, 134.3, 129.8, 121.7 (Ar), 91.2 (C-1), 70.9 (C-3), 69.7 (C-5), 67.6 (C-4), 61.6 (C-6), 51.7 (C-2), 20.7, 20.7, 20.7, 20.5 (CH₃Ar, 4Ac); FAB-MS *m*/*z* 503 ([M+Na]⁺, 100%); HREI-MS *m*/*z* calcd for [M]⁺C₂₂H₂₈N₂O₁₀: 480.1744, found: 480.1740.

3.3.3. N,N'-Bis(1,3,4,6-tetra-*O*-acetyl-2-deoxy- α -D-glucopyranos-2-yl)urea (11). *Method A*. Column chromatography (CH₂Cl₂ \rightarrow 40:1 CH₂Cl₂-MeOH) gave 11 as a white solid: 177 mg, 82%.

Method B. Column chromatography gave **11**: 134 mg, 62%; mp 193–194 °C; $R_{\rm f}$ 0.12 (40:1 CH₂Cl₂–MeOH); $[\alpha]_{18}^{18}$ +115° (*c* 1.0, CH₂Cl₂); IR $\nu_{\rm max}$ 3366, 2963, 1753, 1562, 1373, 1227, 1040, 926 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.09 (d, 1H, $J_{1,2}$ = 3.6 Hz, H-1), 5.16 (t, 1H, $J_{3,4}$ = 10.0 Hz, $J_{4,5}$ = 9.8 Hz, H-4), 5.09 (t, 1H, $J_{2,3}$ = 10.5 Hz, H-3), 4.66 (d, 1H, $J_{2,\rm NH}$ = 9.4 Hz, NH), 4.28 (ddd, 1H, H-2), 4.20 (dd, 1H, $J_{5,6a}$ = 4.1 Hz, $J_{6a,6b}$ = 12.5 Hz, H-6a), 4.02 (dd, 1H, $J_{5,6b}$ = 2.1 Hz, H-6b), 3.94 (ddd, 1H, H-5), 2.14, 2.06, 2.00 (4s, 12H, 4Ac); ¹³C NMR (75.5 MHz, CDCl₃) δ 172.0, 170.7, 169.0, 168.6 (4CO), 155.5 (CO urea), 91.2 (C-1), 70.9 (C-3), 69.7 (C-5), 67.5 (C-4), 61.6 (C-6), 51.9 (C-2), 20.8, 20.7, 20.6, 20.5 (4Ac); FAB-MS *m*/z 743 ([M+Na]⁺, 100%); HRFAB-MS *m*/z calcd for [M+H]⁺C₂₉H₄₁N₂O₁₉: 721.2303, found: 721.2296. Anal. Calcd for C₂₉H₄₀N₂O: C, 48.33; H, 5.59; N, 3.89, found: C, 48.13; H, 5.54; N, 3.96

3.3.4. *N*-Butyl-*N'*-(**1**,**3**,**4**,**6**-tetra-*O*-acetyl-2-deoxy-β-Dglucopyranos-2-yl)urea (12). *Method A*. Column chromatography (CH₂Cl₂→40:1 CH₂Cl₂–MeOH) gave **12** as a syrup: 230 mg, 86%. *R*_f 0.33 (40:1 CH₂Cl₂–MeOH); $[\alpha]_D^{23}$ +33 (*c* 0.8, CH₂Cl₂); IR ν_{max} 3356, 2926, 2870, 1769, 1665, 1582, 1370, 1044, 910 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.68 (d, 1H, $J_{1,2}$ =8.5 Hz, H-1), 5.14–5.10 (m, 2H, H-3, H-4), 4.57 (d, 1H, $J_{2,NH}$ =9.5 Hz, NH'), 4.55 (t, 1H, J_{NH,CH_2} =5.5 Hz, NH), 4.27 (dd, 1H, $J_{5,6a}$ =5.0 Hz, $J_{6a,6b}$ = 12.5 Hz, H-6a), 4.12 (dd, 1H, $J_{5,6b}$ =2.0 Hz, H-6b), 4.08 (m, 1H, H-2), 3.81 (m, 1H, H-5), 3.12 (m, 2H, CH₂α), 2.12, 2.09, 2.05, 2.03 (4s, 12H, 4Ac), 1.43 (m, 2H, CH₂β), 1.31 (m, 2H, CH₂γ), 0.90 (t, 3H, J=7.1 Hz, CH₃); ¹³C NMR (125.7 MHz, CDCl₃) δ 171.3, 170.7, 169.6, 169.3 (4CO), 157.0 (CO urea), 93.3 (C-1), 73.1, 72.9 (C-3, C-5), 67.9 (C-4), 61.8 (C-6), 54.2 (C-2), 40.2 (CH₂α), 32.2 (CH₂β), 20.9, 20.7, 20.6, (4 CH₃CO), 19.9 (CH₂γ), 13.7 (CH₃); FAB-MS m/z 469 ([M+Na]⁺, 92%), 915 ([2M+Na]⁺, 10%); HRCI-MS m/z calcd for [M+H]⁺C₁₉H₃₁N₂O₁₀: 447.1978, found: 447.1981.

3.3.5. N-(p-Methylphenyl)-N'-(1,3,4,6-tetra-O-acetyl-2deoxy- β -D-glucopyranos-2-yl)urea (13). Method A. Column chromatography (CH₂Cl₂ \rightarrow 40:1 CH₂Cl₂–MeOH) gave 13: 248 mg, 86% as a white solid; mp 184-186 °C; $[\alpha]_{D}^{18} + 32 (c 1.0, CH_{2}Cl_{2}); IR \nu_{max} 3304, 2918, 1748, 1636,$ 1570, 1454, 1377, 1084, 1040, 820 cm^{-1} ; ¹H NMR (300 MHz, CDCl₃) δ 7.14–7.00 (m, 5H, Ar–H, NH), 5.78 (d, 1H, $J_{1,2}$ =8.7 Hz, H-1), 5.27 (t, 1H, $J_{2,3}$ =9.0 Hz, $J_{3,4}$ = 9.5 Hz, H-3), 5.25 (d, 1H, NH'), 5.10 (t, 1H, $J_{4,5}$ =9.6 Hz, H-4), 4.25 (dd, 1H, $J_{5,6a}$ =4.6 Hz, $J_{6a,6b}$ =12.3 Hz, H-6a), 4.10 (dd, 1H, J_{5.6b}=1.5 Hz, H-6b), 4.05 (m, 1H, H-2), 3.82 (m, 1H, H-5), 2.27 (s, 3H, Me), 2.08, 2.06, 2.02 (4s, 12H, 4Ac); ¹³C NMR (75.5 MHz, CDCl₃) δ 171.2, 170.7, 169.5, 169.4 (4CO), 155.4 (CO urea), 135.4, 133.9, 129.8, 121.4 (Ar), 92.8 (C-1), 72.7 (C-3), 72.6 (C-5), 68.1 (C-4), 61.8 (C-6), 54.0 (C-2), 20.9, 20.8, 20.6 (CH₃Ar, 4Ac); FAB-MS m/z 480 ($[M]^+$, 22%), 503 ($[M+Na]^+$, 60%), 983 ([2M+Na]⁺, 11%); HRFAB-MS m/z calcd for [M]⁺C₂₂H₂₈N₂O₁₀: 480.1744, found: 480.1739. Anal. Calcd for C₂₂H₂₈N₂O₁₀: C, 55.00; H, 5.87; N, 5.83, found: C, 55.09; H, 5.90; N, 5.93.

3.3.6. N,N'-Bis(1,3,4,6-tetra-O-acetyl-2-deoxy- β -D-glucopyranos-2-yl)urea (14). Method A. Column chromatography (CH₂Cl₂ \rightarrow 40:1 CH₂Cl₂–MeOH) gave 14 as a white solid: 169 mg, 78%. Rf 0.18 (40:1 CH₂Cl₂-MeOH); mp 218–220 °C; $[\alpha]_{D}^{22}$ +25 (c 1.0, CH₂Cl₂); IR ν_{max} 3331, 2940, 1750, 1659, 1599, 1433, 1371, 1227, 1040, 907 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.73 (d, 1H, $J_{1,2}$ =8.7 Hz, H-1), 5.22 (d, 1H, $J_{2,\text{NH}}$ = 8.9 Hz, NH), 5.18 (t, 1H, $J_{2,3}$ = 8.7 Hz, J_{3,4}=9.5 Hz, H-3), 5.10 (t, 1H, J_{4,5}=9.5 Hz, H-4), 4.26 (dd, 1H, $J_{5,6a}$ = 5.0 Hz, $J_{6a,6b}$ = 12.4 Hz, H-6a), 4.10 (q, 1H, H-2), 4.10 (dd, 1H, $J_{5.6b} = 1.5$ Hz, H-6b), 3.83 (ddd, 1H, H-5), 2.08, 2.06. 2.03 (4s, 12H, 4Ac); ¹³C NMR (75.5 MHz, CDCl₃) & 171.3, 170.6, 169.7, 169.4 (4CO), 156.2 (CO urea), 93.3 (C-1), 72.7 (C-3), 72.6 (C-5), 68.1 (C-4), 61.9 (C-6), 54.2 (C-2), 20.8, 20.7, 20.6 (4Ac); FAB-MS m/z 743 $([M+Na]^+, 100\%);$ HRFAB-MS m/z calcd for [M+H]⁺C₂₉H₄₁N₂O₁₉: 721.2303, found: 721.2286. Anal. Calcd for C₂₉H₄₀N₂O₁₉: C, 48.33; H, 5.59; N, 3.89, found: C, 48.37; H, 5.58; N, 3.93.

3.3.7. Icosa-*O*-acetyl-6^A-deoxy-6^A-[3-(1',3',4',6'-tetra-*O*-acetyl-β-D-glucopyranos-2'-yl)ureido)]-β-cyclodextrin (15). *Method A*. Column chromatography (CH₂Cl₂ \rightarrow 40:1 CH₂Cl₂–MeOH) gave 15: 140 mg, 46%, as a white solid; mp 146–152 °C; *R*_f 0.31 (40:1 CH₂Cl₂–MeOH, 2 elutions); $[\alpha]_D^{26}$ +101 (*c* 1.0, CH₂Cl₂); IR ν_{max} 3295, 1746, 1520,

1456, 1366, 1221 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.80 (d, 1H, $J_{1,2}$ =8.9 Hz, H-1'), 5.35–5.21 (m, 8H, H-3^{A–G}, H-3'), 5.14 (d, 1H, $J_{1,2}$ =3.5 Hz, H-1), 5.15–5.12 (m, 1H, NH), 5.10 (t, 1H, $J_{3',4'} = 10.0$ Hz, H-4'), 5.09–5.06 (m, 5H, H-1^{B-F}), 4.98 (d, 1H, $J_{1,2}$ = 3.0 Hz, H-1), 4.94–4.91 (m, 1H, NH-CH₂), 4.89 (dd, 1H, J_{1.2}=4.5 Hz, J_{2.3}=8.5 Hz, H-2), 4.84 (dd, 1H, $J_{1,2}$ =4.0 Hz, $J_{2,3}$ =9.7 Hz, H-2), 4.81 (dd, 1H, $J_{1,2}=3.5$ Hz, $J_{2,3}=10.0$ Hz, H-2), 4.80 (dd, 1H, $J_{1,2}=$ $3.5 \text{ Hz}, J_{2,3}=9.5 \text{ Hz}, \text{ H-2}), 4.77 \text{ (dd, 1H, } J_{1,2}=4.1 \text{ Hz},$ $J_{2.3} = 9.5$ Hz, H-2), 4.75 (dd, 1H, $J_{1,2} = 3.6$ Hz, $J_{2,3} =$ 9.5 Hz, H-2), 4.67 (dd, 1H, $J_{1,2}=3.5$ Hz, $J_{2,3}=10.0$ Hz, H-2), 4.65–4.47 (m, 6H, H-6a^{B–G}), 4.33–4.22 (m, 7H, H-6b^{B–G}, H-6a'), 4.18–4.07 (m, 8H, H-5^{B–G}, H-2', H-6b'), 4.01-3.97 (m, 1H, H-5^A), 3.94-3.89 (m, 1H, H-5'), 3.76-3.59 (m, 8H, H-4^{A-G}, H-6a^A), 3.47–3.42 (m, 1H, H-6b^A), 2.16-1.99 (24s, 72H, 24Ac); ¹³C NMR (125.7 MHz, CDCl₃) δ 171.5, 170.9–170.3, 169.6–169.3 (24CO), 157.7 (CO urea), 97.4, 97.0, 96.9, 96.9, 96.8, 96.5, 96.5 (C-1^{A-G}). 92.8 (C-1'), 78.4 (C-4^A), 77.2-76.1 (C-4^{B-G}), 72.8 (C-5'), 72.4 (C-3'), 71.5–69.0 (C- 2^{A-G} , C- 3^{A-G} , C- 5^{A-G}), 68.1 (C-4'), 63.0, 62.8, 62.8, 62.5, 62.4, 62.2 $(C-6^{B-G})$, 61.8 (C-6'), 54.0 (C-2'), 40.9 (C-6^A), 20.9–20.6 (24Ac); FAB-MS m/z 2370 ([M+Na]⁺, 29%). Anal. Calcd for $C_{97}H_{130}N_2O_{64}$ 2H₂O: C, 48.87; H, 5.67; N, 1.18, found: C, 48.50; H, 5.24; N, 1.31.

3.3.8. *N*-Butyl-*N'*-(**2,3,4,6-tetra-***O*-acetyl- β -D-glucopyranosyl)urea (**22**). *Method A*. Column chromatography (hexane \rightarrow 1:1 hexane–EtOAc) yielded **22** as a syrup: 169 mg, 63%.

Method B. Column chromatography yielded 22: 174 mg, 65%. $R_{\rm f}$ 0.24 (40:1 CH₂Cl₂–MeOH); $[\alpha]_{\rm D}^{22}$ 0 (c 0.7, CH₂Cl₂); IR v_{max} 3329, 2957, 1753, 1657, 1562, 1433, 1368, 1227, 1101, 1036, 907 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.28 (m, 2H, $J_{1,\text{NH}'}$ =9.3 Hz, $J_{2,3}$ =9.5 Hz, $J_{3,4}$ = 9.5 Hz, NH', H-3), 5.14 (t, 1H, $J_{1,2}$ =9.4 Hz, H-1), 5.04 (t, 1H, $J_{4,5}=9.7$ Hz, H-4), 4.87 (t, 1H, H-2), 4.62 (t, 1H, $J_{\text{NH,CH}_2} = 6.5 \text{ Hz}, \text{NH}$, 4.30 (dd, 1H, $J_{5,6a} = 4.3 \text{ Hz}, J_{6a,6b} =$ 12.5 Hz, H-6a), 4.06 (dd, 1H, $J_{5.6b}$ =1.8 Hz, H-6b), 3.79 (ddd, 1H, H-5), 2.05, 2.03, 2.00, 1.99 (4s, 12H, 4Ac), 3.12 (q, 2H, CH₂α), 1.43 (m, 2H, CH₂β), 1.29 (m, 2H, CH₂γ), 0.89 (t, 3H, J=7.2 Hz, CH₃); ¹³C NMR (75.5 MHz, CDCl₃) & 171.2, 170.7, 169.9, 169.6 (4 CO), 156.2 (CO urea), 80.2 (C-1), 73.1 (C-5), 72.9 (C-3), 70.6 (C-2), 68.3 (C-4), 61.8 (C-6), 40.2 (CH₂α), 32.0 (CH₂β), 20.7, 20.6 (4 CH₃CO), 19.9 (CH₂γ), 13.7 (CH₃); FAB-MS m/z 447 ([M+H]⁺, 40%), 469 ([M+Na]⁺, 100%); HRFAB-MS m/z calcd for $[M+H]^+C_{19}H_{31}N_2O_{10}$: 447.1979, found: 447.1971.

3.3.9. *N*-(*p*-Methylphenyl)-*N'*-(**2**,**3**,**4**,**6**-tetra-*O*-acetyl- β -**b**-glucopyranosyl)urea (**23**). *Method A*. Column chromatography (hexane \rightarrow 1:1 hexane–EtOAc) yielded **23** as a white solid, 190 mg, 66%.

Method B. Column yielded 23, 184 mg, 64%.

Method C. The mixture was stirred for 24 h and purified by column chromatography (hexane \rightarrow 1:1 hexane–EtOAc) to give **23**: 143 mg, 74%. *R*_f 0.22 (40:1 CH₂Cl₂–MeOH); mp 93–96 °C; $[\alpha]_{\rm D}^{18}$ – 17 (*c* 1.0, CH₂Cl₂); IR $\nu_{\rm max}$ 3189, 1746, 1645, 1575, 1393, 1092, 1034, 874 cm⁻¹; ¹H NMR

(300 MHz, CDCl₃) δ 7.14–7.06 (m, 4H, Ar–H), 6.87 (s, 1H, NH), 5.74 (d, 1H, $J_{1,NH'}$ =9.3 Hz, NH'), 5.29 (t, 1H, $J_{2,3}$ =9.6 Hz, $J_{3,4}$ =9.5 Hz, H-3), 5.21 (t, 1H, $J_{1,2}$ =9.4 Hz, H-1), 5.03 (t, 1H, $J_{4,5}$ =10.0 Hz, H-4), 4.89 (t, 1H, H-2), 4.29 (dd, 1H, $J_{5,6a}$ =4.5 Hz, $J_{6a,6b}$ =12.5 Hz, H-6a), 4.05 (dd, 1H, $J_{5,6b}$ =1.9 Hz, H-6b), 3.79 (ddd, 1H, H-5), 2.28 (s, 3H, Me), 2.05, 2.02, 2.01, 1.99 (4s, 12H, 4Ac); ¹³C NMR (75.5 MHz, CDCl₃) δ 171.0, 170.7, 169.9, 169.6 (4CO), 154.4 (CO urea), 134.8, 129.8, 121.5 (Ar), 80.0 (C-1), 73.3 (C-5), 72.9 (C-3), 70.4 (C-2), 68.3 (C-4), 61.8 (C-6), 20.8, 20.7, 20.6 (CH₃Ar, 4CH₃CO); FAB-MS *m*/*z* 481 ([M + H]⁺, 80%), 503 ([M + Na]⁺, 45%); HRFAB-MS *m*/*z* calcd for [M+H]⁺C₂₂H₂₉N₂O₁₀: 481.1822, found: 481.1813. Anal. Calcd for C₂₂H₂₈N₂O₁₀ H₂O: C, 53.01; H, 6.07; N, 5.62, found: C, 53.33; H, 5.78; N, 5.37.

3.3.10. N,N'-Bis(2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl)urea (24). *Method A*. Column chromatography (CH₂Cl₂ \rightarrow 40:1 CH₂Cl₂-MeOH) yielded 24 as a white solid: 214 mg, 99%.

Method B. Column chromatography yielded **24**: 117 mg, 54%.

Method C. The mixture was stirred for 24 h and purified by column chromatography to give 24: 197 mg, 68%. $R_{\rm f}$ 0.19 (40:1 CH₂Cl₂–MeOH); mp: 152–155 °C. $[\alpha]_D^{18}$ –5 (c 1.0, CH₂Cl₂); IR ν_{max} 3362, 1750, 1543, 1435, 1370, 1229, 1036, 909 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.77 (d, 1H, $J_{1,\text{NH}} = 9.1$ Hz, NH), 5.28 (t, 1H, $J_{1,2} = 9.4$ Hz, $J_{2,3} =$ 9.5 Hz, H-2), 5.02 (m, 2H, $J_{3,4}$ =9.5 Hz, $J_{4,5}$ =10.0 Hz, H-1, H-4), 4.85 (t, 1H, H-3), 4.29 (dd, 1H, $J_{5,6a}$ =4.5 Hz, $J_{6a,6b}$ = 12.5 Hz, H-6a), 4.07 (dd, 1H, $J_{5,6b}$ =2.0 Hz, H-6b), 3.81 (ddd, 1H, H-5), 2.05, 2.04, 2.01, 1.99 (4s, 12H, 4Ac); ¹³C NMR (75.5 MHz, CDCl₃) δ 171.1, 170.6, 169.9, 169.6 (4CO), 155.3 (CO urea), 80.0 (C-1), 73.2 (C-5), 72.8 (C-2), 70.5 (C-3), 68.2 (C-4), 61.7 (C-6), 20.7, 20.6 (4CH₃CO); CI-MS m/z 721 ([M+H]⁺, 9%); HRCI-MS m/z calcd for $[M+H]^+C_{29}H_{41}N_2O_{19}$: 721.2303, found: 721.2290. Anal. Calcd for C₂₉H₄₀N₂O₁₉ H₂O: C, 47.16; H, 5.73; N, 3.79, found: C, 47.10; H, 5.74; N, 3.55.

3.3.11. N-Butyl-N'-(2,3,4,6-tetra-O-acetyl- β -D-mannopyranosyl)urea (25). *Method A*. Column chromatography $(CH_2Cl_2 \rightarrow 40:1 CH_2Cl_2 - MeOH)$ yielded **25** as a syrup: 190 mg, 71%. $R_{\rm f}$ 0.22 (1:1 hexane–EtOAc); $[\alpha]_{\rm D}^{21}$ –19 (c 0.8, CH₂Cl₂); IR ν_{max} 3314, 2932, 1748, 1663, 1370, 1225, 1053, 964 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.41 (dd, 1H, $J_{1,2} = 1.2$ Hz, $J_{1,NH'} = 9.6$ Hz, H-1), 5.35 (dd, 1H, $J_{2,3} =$ 3.3 Hz, H-2), 5.26 (d, 1H, NH'), 5.20 (t, 1H, J_{3,4}=10.0 Hz, $J_{4,5} = 9.8$ Hz, H-4), 5.08 (dd, 1H, H-3), 4.60 (t, 1H, $J_{\text{NH,CH}_2} =$ 6.6 Hz, NH), 4.30 (dd, 1H, $J_{5,6a}$ =5.0 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 4.06 (dd, 1H, J_{5,6b}=2.3 Hz, H-6b), 3.75 (ddd, 1H, H-5), 3.15 (q, 2H, J = 6.6 Hz, CH₂ α), 2.18, 2.06, 2.02, 1.95 (4s, 12H, 4Ac), 1.44 (m, 2H, CH₂β), 1.30 (m, 2H, CH₂γ), 0.89 (t, 3H, J = 7.2 Hz, CH₃); ¹³C NMR (75.5 MHz, CDCl₃) δ 170.7, 170.4, 169.8, 169.7 (4CO), 155.9 (CO urea), 77.9 (C-1), 73.7 (C-5), 71.8 (C-3), 70.5 (C-2), 65.3 (C-4), 62.3 (C-6), 40.2 (CH₂α), 30.0 (CH₂β), 20.9, 20.8, 20.7, 20.5 (4*C*H₃CO), 19.9 (CH₂γ), 13.7 (CH₃); CI-MS *m*/*z* 447 ([M+ H]⁺, 100%); HRCI-MS m/z calcd for [M+ H] $^{+}C_{19}H_{31}N_{2}O_{10}$: 447.1979, found: 447.1980.

3.3.12. N-(p-Methylphenyl)-N'-(2,3,4,6-tetra-O-acetyl- β -**D-mannopyranosyl)urea** (26). Method A. Column chromatography (CH₂Cl₂ \rightarrow 40:1 CH₂Cl₂–MeOH) gave 26 as a white solid: 167 mg, 58%. Rf 0.25 (1:1 hexane-EtOAc); mp 80–88 °C; $[\alpha]_{\rm D}^{18}$ – 21 (*c* 1.0, CH₂Cl₂); IR $\nu_{\rm max}$ 3291, 2922, 1767, 1555, 1096, 909 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.07 (m, 4H, Ar–H), 6.89 (s, 1H, NH), 5.92 (d, 1H, $J_{1,\text{NH}'} = 9.5 \text{ Hz}, \text{NH}'$), 5.45 (dd, 1H, $J_{1,2} = 0.9 \text{ Hz}, \text{H-1}$), 5.39 (d, 1H, $J_{2,3}$ = 3.1 Hz, H-2), 5.17 (t, 1H, $J_{3,4}$ = 10.0 Hz, $J_{4,5}$ = 9.9 Hz, H-4), 5.08 (dd, 1H, H-3), 4.25 (dd, 1H, J_{5,6a}= $5.0 \text{ Hz}, J_{6a.6b} = 12.5 \text{ Hz}, \text{H-6a}, 4.01 \text{ (dd, 1H, } J_{5.6b} = 2.0 \text{ Hz},$ H6b), 3.75 (ddd, 1H, H-5), 2.27 (s, 3H, Me), 2.08, 2.01, 1.95 (4s, 12H, 4Ac); ¹³C NMR (75.5 MHz, CDCl₃) δ 170.7, 170.2, 169.8, 169.7 (4CO), 154.3 (CO urea), 134.7, 129.8, 122.0 (Ar), 77.6 (C-1), 73.8 (C-5), 71.6 (C-3), 70.3 (C-2), 64.3 (C-4), 62.3 (C-6), 20.8, 20.7, 20.6, 20.4 (CH₃Ar, 4*C*H₃CO); FAB-MS *m*/*z* 481 ([M+H]⁺, 28%), 503 ([M+ Na]⁺, 100%); HRFAB-MS m/z calcd for [M+ H]⁺ $C_{22}H_{29}N_2O_{10}$: 481.1822, found: 481.1814.

3.3.13. N,N'-Bis(2,3,4,6-tetra-O-acetyl-β-D-manopyranosyl)urea (27). Method A. Column chromatography $(CH_2Cl_2 \rightarrow 40:1 CH_2Cl_2-MeOH)$ gave 27 as a white solid: 149 mg, 69%. R_f 0.12 (1:1 hexane–EtOAc); mp 154–156 °C (from EtOH); $[\alpha]_D^{25} - 24$ (c 0.3, CH₂Cl₂); IR ν_{max} 3352, 2917, 1746, 1647, 1537, 1370, 1227, 1092, 1051, 874 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.45 (dd, 1H, $J_{1,2}$ =0.9 Hz, H-1), 5.45 (d, 1H, $J_{1,NH}$ =9.6 Hz, NH), 5.37 (dd, 1H, $J_{2,3}$ = 3.3 Hz, H-2), 5.20 (t, 1H, $J_{3,4} = 10.0$ Hz, $J_{4,5} = 10.0$ Hz, H-4), 5.11 (dd, 1H, H-3), 4.29 (dd, 1H, $J_{5,6a}$ =5.2 Hz, $J_{6a,6b} = 12.4$ Hz, H-6a), 4.05 (dd, 1H, $J_{5,6b} = 2.0$ Hz, H-6b), 3.77 (ddd, 1H, H-5), 2.21, 2.09, 2.04, 1.97 (4s, 12H, 4Ac); ¹³C NMR (125.7 MHz, CDCl₃) δ 170.8, 170.2, 169.8, 169.7 (4CO), 153.8 (CO urea), 77.4 (C-1), 73.8 (C-5), 71.6 (C-3), 70.3 (C-2), 65.1 (C-4), 62.2 (C-6), 20.9, 20.8, 20.7, 20.5 $(4CH_{3}CO)$; FAB-MS m/z 721 ($[M+H]^{+}$, 36%), 743 ([M+Na]⁺, 100%); HRFAB-MS m/z calcd for [M+ $H_{29}^{+}H_{1}N_{2}O_{19}$: 721.2304, found: 721.2294. Anal. Calcd for C₂₉H₄₀N₂O₁₉ H₂O: C, 47.16; H, 5.73; N, 3.79, found: C, 47.26; H, 5.61; N, 3.83.

3.3.14. N,N-Diethyl-N'-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)urea (32). Method C. The mixture was stirred for 40 h and purified by column chromatography $(CH_2Cl_2 \rightarrow 40:1 \ CH_2Cl_2 - MeOH)$ to give 32, as an amorphous solid: 94 mg, 72%; mp 39–42 °C; $[\alpha]_{D}^{20}$ +19 $(c \ 0.9, \ CH_2Cl_2); \ IR \ \nu_{max} \ 3320, \ 2936, \ 1753, \ 1379, \ 1225,$ 1036 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.32 (d, 1H, $J_{1,\text{NH}} = 9.3 \text{ Hz}, \text{NH}'$), 5.31 (t, 1H, $J_{2,3} = 9.5 \text{ Hz}, J_{3,4} =$ 9.4 Hz, H-3), 5.20 (t, 1H, J_{1,2}=9.3 Hz, H-1), 5.06 (t, 1H, $J_{4.5} = 9.6$ Hz, H-4), 4.93 (t, 1H, H-2), 4.33 (dd, 1H, $J_{5.6a} =$ $4.0 \text{ Hz}, J_{6a,6b} = 12.4 \text{ Hz}, \text{H-6a}, 4.07 \text{ (dd, 1H, } J_{5,6b} = 2.2 \text{ Hz},$ H-6b), 3.80 (ddd, 1H, H-5), 3.18 (m, 4H, 2CH₂), 2.07, 2.03, 2.01, 2.0 (4s, 12H, 4Ac), 1.11 (t, 6H, J_{H,H}=7.2 Hz, 2CH₃); 13 C NMR (125.7 MHz, CDCl₃) δ 171.4, 170.7, 169.98, 169.7 (4CO), 155.4 (CO urea), 80.8 (C-1), 73.2 (C-5), 73.0 (C-3), 70.8 (C-2), 68.5 (C-4), 61.8 (C-6), 41.3 (2*C*H₂), 20.8, 20.8, 20.7, 20.6 (4*C*H₃CO); 13.7 $(2CH_3)$; CI-MS m/z 447 ([M+H]⁺, 100%); HRCI-MS m/z calcd for $[M+H]^+C_{19}H_{31}N_2O_{10}$: 447.1979, found: 447.1955.

3.4. Method for the preparation of isocyanates 7 and 8

To a vigorously stirred solution of the hydrohalides **5** or **6** (0.6 mmol) in a 1:1 mixture of CH_2Cl_2 and saturated aqueous NaHCO₃ (12 mL) at 0 °C was added triphosgene (0.22 mmol) in a single portion. After 10 min of stirring, the organic layer was separated, dried (MgSO₄), filtered and concentrated to dryness to give pure **7** or **8**.

3.4.1. 1,3,4,6-Tetra-*O***-acetyl-2-deoxy-2-isocyanato-** α **-D-glucopyranose** (7). Yield: 224 mg, quantitative, as a syrup. $R_{\rm f}$ 0.32 (40:1 CH₂Cl₂–MeOH); $[\alpha]_{\rm D}^{20}$ +126 (*c* 1.3, CH₂Cl₂); IR $\nu_{\rm max}$ 2963, 2261, 1765, 1371, 1217, 1026, 936 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) Table 2 and δ 2.22, 2.11, 2.07, 2.04 (4s, 12H, 4Ac); ¹³C NMR (125.7 MHz, CDCl₃) Table 2 and δ 170.5, 170.2, 169.4, 168.6 (4CO), 20.8, 20.6, 20.5 (4CH₃CO). Anal. Calcd for C₁₅H₁₉NO₁₀·1/3H₂O: C, 47.50; H, 5.23; N, 3.69, found: C, 47.55; H, 5.30; N, 3.69.

3.4.2. 1,3,4,6-Tetra-*O***-acetyl-2-deoxy-2-isocyanato-β-D-glucopyranose** (8). Yield: 224 mg, quantitative, as a syrup. $R_{\rm f}$ 0.21 (40:1 CH₂Cl₂–MeOH); $[\alpha]_{\rm D}^{25}$ +32 (*c* 1.0, CH₂Cl₂); IR $\nu_{\rm max}$ 2959, 2253, 1765, 1371, 1215, 1090, 872 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) Table 2 and δ 2.18, 2.09, 2.07, 2.02 (4s, 12H, 4Ac); ¹³C NMR (125.7 MHz, CDCl₃) Table 2 and δ 170.5, 169.8, 169.5, 168.6 (4CO), 20.7, 20.6, 20.5 (4CH₃CO). Anal. Calcd for C₁₅H₁₉NO₁₀: C, 48.26; H, 5.13; N, 3.75, found: C, 48.17; H, 5.20; N, 3.79.

3.5. *N*-(*p*-Methylphenyl)-*N*'-(1,3,4,6-tetra-*O*-acetyl-2deoxy-α-D-glucopyranos-2-yl)thiourea (28)

A mixture of hydrobromide 18 (250 mg, 0.58 mmol), thiophosgene (0.07 mL, 0.88 mmol) and calcium carbonate (176 mg, 1.76 mmol) in 1:1 water-CH₂Cl₂ (20 mL) was vigorously stirred at rt for 2 h. Then the mixture was filtered off and the organic layer containing known 1,3,4,6-tetra-Oacetyl-2-deoxy-2-isothiocyanato- α -D-glucopyranose⁵⁹ was separated and concentrated to dryness. To a solution of crude isothiocyanate in EtOAc (10 mL) was added ptoluidine (62 mg, 0.58 mmol). The solution was kept at rt for 5 h and then it was concentrated to dryness and the residue was purified by column chromatography $(CH_2Cl_2 \rightarrow 80:1 \ CH_2Cl_2-MeOH)$ to give 28 as a white solid: 295 mg (93%). R_f 0.5 (40:1 CH₂Cl₂-MeOH); mp 140–142 °C; $[\alpha]_D^{25}$ +96 (c 1.0, CH₂Cl₂); IR ν_{max} 3332, 1750, 1532, 1370, 1223, 930 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H, NH), 7.24–6.99 (m, 4H, Ar–H), 6.31 (d, 1H, $J_{1,2}=6.3$ Hz, H-1), 5.80 (d, 1H, $J_{2,NH}=8.3$ Hz, NH'), 5.21 (m, 1H, H-4), 5.16 (m, 1H, H-3), 5.13 (m, 1H, H-2), 4.23 (dd, 1H, $J_{5,6a}$ =4.1 Hz, $J_{6a,6b}$ =12.5 Hz, H-6a), 4.03 (dd, 1H, $J_{5.6b}$ = 2.3 Hz, H-6b), 3.91 (ddd, 1H, $J_{4.5}$ = 9.5 Hz, H-5), 2.37 (s, 3H, CH₃), 2.08, 2.07, 2.00 1.94 (4s, 12H, 4Ac); ¹³C NMR (75.5 MHz, CDCl₃) δ 181.6 (CS), 171.5, 170.8, 169.1, 168.3 (4CO), 138.6, 132.7, 130.9, 126.2 (Ar), 90.5 (C-1), 70.9 (C-3), 69.9 (C-5), 67.5 (C-4), 61.6 (C-6), 56.3 (C-2), 21.2 (CH₃Ar), 20.9, 20.8, 20.7, 20.6 (4CH₃CO); CI-MS m/z 497 ([M+H]⁺, 35%); HRCI-MS m/z calcd for $[M+H]^+C_{22}H_{29}N_2O_9S$: 497.1594, found: 497.1570.

3.6. *N*-(*p*-Methylphenyl)-*N*'-(2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranosyl)thiourea (29)

To a solution of N-acetyl-N-(p-methylphenyl)-N'-(2,3,4,6tetra-O-acetyl- β -D-glucopyranosyl)thiourea 34 (22 mg, 0.04 mmol) in MeOH (10 mL) was added imidazole (2.8 mg, 0.04 mmol). The solution was heated at 40 °C for 24 h and then it was concentrated to dryness and the residue was purified by column chromatography ($CH_2Cl_2 \rightarrow 80:1$) CH₂Cl₂–MeOH) to give **29** as a syrup: 18 mg (86%). $[\alpha]_{D}^{23}$ -11 (c 1.0, CH₂Cl₂); IR ν_{max} 3329, 1751, 1535, 1370, 1229, 1040, 733 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.02 (s, 1H, NH), 7.25–7.03 (m, 4H, Ar–H), 6.52 (d, 1H, $J_{1,NH}$ = 8.7 Hz, NH'), 5.82 (t, 1H, J_{1,2}=9.0 Hz, H-1), 5.33 (t, 1H, $J_{2,3} = 9.3$ Hz, $J_{3,4} = 9.6$ Hz, H-3), 5.01 (t, 1H, $J_{4,5} = 9.9$ Hz, H-4), 4.88 (t, 1H, H-2), 4.30 (dd, 1H, $J_{5.6a}$ = 4.5 Hz, $J_{6a.6b}$ = 12.3 Hz, H-6a), 4.08 (dd, 1H, $J_{5.6b} = 2.0$ Hz, H-6b), 3.84 (ddd, 1H, H-5), 2.37 (s, 3H, Me), 2.06, 2.05, 2.01, 1.98 (4s, 12H, 4Ac); ¹³C NMR (75.5 MHz, CDCl₃) δ 182.3 (CS), 170.7, 170.6, 169.8, 169.5 (4CO), 138.3, 132.3, 130.7, 125.6 (Ar), 83.2 (C-1), 73.6 (C-5), 72.7 (C-3), 70.5 (C-2), 68.2 (C-4), 61.6 (C-6), 21.1 (CH₃Ar), 20.7, 20.6, 20.5, 20.5 (4*C*H₃CO); FAB-MS *m*/*z* 497 ([M+H]⁺, 100%); HRFAB-MS m/z calcd for $[M+H]^+C_{22}H_{29}N_2O_9S$: 497.1594, found: 497.1625. Anal. Calcd for C₂₂H₂₈N₂O₉S: C, 53.22; H, 5.68; N, 5.64; S, 6.46, found: C, 53.35; H, 5.73; N, 5.55; S, 6.07.

3.7. *N*,*N*-Diethyl-N'-(2,3,4,6-tetra-*O*-acetyl- β -D-gluco-pyranosyl)thiourea (31)

A mixture of 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl hydrobromide 18 (400 mg, 0.94 mmol), thiophosgene (0.104 mL, 1.36 mmol) and calcium carbonate (280 mg, 2.8 mmol) in 1:1 water-CH2Cl2 (20 mL) was vigorously stirred at rt for 2 h. Then the mixture was filtered off and the organic layer, containing known 2,3,4,6-tetra-O-acetyl-β-Dglucopyranosylisothiocyanate⁵¹ was separated and concentrated to dryness. Crude isothiocyanate was dissolved in EtOAc (5 mL) and to the solution was added N,Ndiethylamine (0.100 mL, 0.94 mmol). The solution was kept at rt for 1 h and then it was concentrated to dryness and the residue was purified by column chromatography $(CH_2Cl_2 \rightarrow 80:1 CH_2Cl_2 - MeOH)$ to give **31** as a white solid: 299 mg (69%); mp. 140–142 °C; $R_{\rm f}$ 0.54 (40:1 CH₂Cl₂-MeOH); $[\alpha]_{D}^{20}$ +14 (c 1.0, CH₂Cl₂); IR ν_{max} 3378, 1750, 1362, 1225, 1038 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.25 (d, 1H, $J_{1,\text{NH}}$ = 8.2 Hz, NH), 5.84 (t, 1H, $J_{1,2}=9.6$ Hz, H-1), 5.37 (t, 1H, $J_{2,3}=9.6$ Hz, $J_{3,4}=9.7$ Hz, H-3), 5.07 (t, 1H, $J_{4,5}$ =10.1 Hz, H-4), 5.01 (t, 1H, H-2), 4.33 (dd, 1H, $J_{5,6a}$ =4.5 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 4.11 $(dd, 1H, J_{5,6b} = 2.1 Hz, H-6b), 3.86 (ddd, 1H, H-5), 3.61 (m,$ 4H, 2CH₂), 2.07, 2.05, 2.02, 2.02 (4s, 12H, 4Ac), 1.20 (t, 6H, $J_{H,H}$ =7.2 Hz, 2CH₃); ¹³C NMR (75.5 MHz, CDCl₃) δ 181.1 (CS), 172.1, 170.7, 169.8, 169.7 (4CO), 83.8 (C-1), 73.3 (C-5), 72.9 (C-3), 71.2 (C-2), 68.7 (C-4), 61.8 (C-6), 45.6 (2*C*H₂), 20.8, 20.7, 20.7, 20.7 (4*C*H₃CO), 12.4 (2*C*H₃); CI-MS m/z 463 ([M+H]⁺, 68%); HRCI-MS m/z calcd for $[M+H]^+C_{19}H_{31}N_2O_9S$: 463.1750, found: 463.1769.

3.8. *N*-Acetyl-*N*-(*p*-methylphenyl)-*N*'-(2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranosyl)thiourea (34)

To a solution of N-(β -D-glucopyranosyl)-N'-(p-methylphenyl)

thiourea 33^{42} (2.22 g, 6.76 mmol) in pyridine (15 mL) at 0 °C was added acetic anhydride (15 mL). The solution was kept at rt for 24 h and then it was co-concentrated with toluene and ethanol to dryness and the residue was crystallized from ethanol to give 34: 2.66 g, 73%. Mp 140–144 °C; $[\alpha]_D^{25}$ +15 (c 1.0, CH₂Cl₂); IR ν_{max} 3318, 2922, 1753, 1682, 1370, 1225, 1044, 708 cm⁻¹; ^TH NMR (300 MHz, CDCl₃) δ 12.01 (d, 1H, $J_{1,\text{NH}'} = 8.8 \text{ Hz}$, NH'), 7.26–7.05 (m, 4H, Ar–H), 5.79 (dd, 1H, J_{1,2}=9.3 Hz, H-1), 5.34 (t, 1H, J_{2.3}=9.3 Hz, J_{3.4}=9.3 Hz, H-3), 5.21 (t, 1H, H-2), 5.11 (t, 1H, $J_{4,5}$ =10.0 Hz, H-4), 4.28 (dd, 1H, $J_{5,6a}$ = 4.6 Hz, $J_{6a,6b} = 12.4$ Hz, H-6a), 4.12 (dd, 1H, $J_{5,6b} = 2.1$ Hz, H-6b), 3.82 (ddd, 1H, H-5), 2.39 (s, 3H, Me), 2.08, 2.07, 2.02, 1.92 (4s, 15H, 5Ac); ^{13}C NMR (75.5 MHz, CDCl₃) δ 186.8 (CS), 175.1, 170.8, 170.1, 169.6 (5CO), 139.6, 139.3, 130.3, 129.2 (Ar), 83.4 (C-1), 73.8 (C-5), 73.2 (C-3), 70.5 (C-2), 68.4 (C-4), 61.7 (C-6), 28.0 (NAc), 21.4 (CH₃Ar), 20.9, 20.7, 20.7, 20.7 (4CH₃CO); FAB-MS m/z 561 ([M+ Na]⁺, 28%); HRFAB-MS m/z calcd for $[M+H]^+C_{24}H_{31}$ -N₂O₁₀S: 539.1699, found: 539.1676. Anal. Calcd for C₂₄H₃₀N₂O₁₀S: C, 53.52; H, 5.61; N, 5.20; S, 5.95, found: C, 53.76; H, 5.77; N, 4.95; S, 5.43.

Acknowledgements

We thank the Dirección General de Enseñanza Superior e Investigación Científica (Grant BQU 2001-3740) and the Junta de Andalucía (FQM134) for financial support.

References and notes

- 1. Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. J. Enzyme Inhib. 2001, 16, 425–432.
- Du, X.; Hansell, E.; Engel, J. C.; Caffrey, C. R.; Cohen, F. E.; McKerrow, J. H. *Chem. Biol.* 2000, *7*, 733–742.
- Abad, A.; Agulló, C.; Cuñat, A. C.; Jiménez, R.; Vilanova, C. J. Agric. Food Chem. 2004, 52, 4675–4683.
- 4. Lu, W.; Zhou, Q.; Liu, G. J. Agric. Food Chem. 2004, 52, 7759–7762.
- Baraldi, P. G.; Bovero, A.; Fruttarolo, F.; Romagnoli, R.; Tabrizi, M. A.; Preti, D.; Varani, K.; Borea, P. A.; Moorman, A. R. *Bioorg. Med. Chem.* 2003, *11*, 4161–4169.
- Burrows, J. N.; Cumming, J. G.; Fillery, S. M.; Hamlin, G. A.; Hudson, J. A.; Jackson, R. J.; McLaughlin, S.; Shaw, J. S. *Bioorg. Med. Chem. Lett.* 2005, 15, 25–28.
- Gurulingappa, H.; Amador, M. L.; Zhao, M.; Rudek, M. A.; Hidalgo, M.; Khan, S. R. *Bioorg. Med. Chem. Lett.* 2004, 14, 2213–2216.
- Youssef, K. M.; Al-Abdullah, E.; El-Khamees, H. Med. Chem. Res. 2003, 11, 481–503.
- Hwang, K.-J.; Park, K.-H.; Lee, C.-O.; Kim, B.-T. Arch. Pharmacol. Res. 2002, 25, 781–785.
- Garg, R.; Bhhatarai, B. Bioorg. Med. Chem. 2004, 12, 5819–5831.
- Katritzky, A. R.; Oliferenko, A.; Lomaka, A.; Karelson, M. Bioorg. Med. Chem. Lett. 2002, 12, 3453–3457.
- Kaltenbach, R. F., III; Klabe, R. M.; Cordova, B. C.; Seitz, S. P. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2259–2262.
- 13. Ala, P. J.; DeLoskey, R. J.; Huston, E. E.; Jadhav, P. K.; Lam,

P. Y.; Eyermann, C. J.; Hodge, C. N.; Schadt, M. C.; Lewandowski, F. A.; Weber, P. C.; McCabe, D. D.; Duke, J. L.; Chang, C. H. *J. Biol. Chem.* **1998**, *273*, 12325–12331.

- Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N.; Chang, C.-H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.; Erickson-Viitanen, S. *Science* **1994**, *263*, 380–384.
- Myers, A. C.; Kowalski, J. A.; Lipton, M. A. Bioorg. Med. Chem. Lett. 2004, 14, 5219–5222.
- Wolin, R. L.; Venkatesan, H.; Tang, L.; Santillán, A., Jr.; Barclay, T.; Wilson, S.; Lee, D. H.; Lovenberg, T. W. *Bioorg. Med. Chem.* 2004, *12*, 4477–4492.
- Dobashi, K.; Nagaoka, K.; Watanabe, Y.; Nishida, M.; Hamada, M.; Naganawa, H.; Takita, T.; Takeuchi, T.; Umezawa, H. J. Antibiot. 1985, 38, 1166–1170.
- (a) Monneret, C.; Rissé, S.; Ardouin, P.; Gouyette, A. *Eur. J. Med. Chem.* **2000**, *35*, 137–146. (b) Gnewuch, C. T.; Sosnovsky, G. *Chem. Rev.* **1997**, *97*, 829–1013. (c) Roger, P.; Monneret, C.; Fournier, J. P.; Choay, P.; Gagnet, R.; Gosse, C.; Letourneux, Y.; Atassi, G.; Gouyette, A. J. Med. Chem. **1989**, *32*, 16–23.
- Bolzán, A. D.; Bianchi, M. S. Mutat. Res.-Rev. Mutat. 2002, 512, 121–134.
- (a) Cheng, X.; Leung, S. W. S.; Lim, S. L.; Pang, C. C. Y. *Eur. J. Pharmacol.* 2003, *458*, 299–304. (b) Shinozaki, K.; Takeda, H.; Inazu, M.; Matsumiya, T.; Takasaki, M. *Eur. J. Pharmacol.* 2002, *456*, 133–139.
- Tewari, N.; Tiwari, V. K.; Mishra, R. C.; Tripathi, R. P.; Srivastava, A. K.; Ahmad, R.; Srivastava, R.; Srivastava, B. S. *Bioorg. Med. Chem.* 2003, 11, 2911–2922.
- Oikonomakos, N. G.; Kosmopoulou, M.; Zographos, S. E.; Leonidas, D. D.; Chrysina, E. D.; Somsák, L.; Nagy, V.; Praly, J.-P.; Docsa, T.; Tóth, B.; Gergely, P. *Eur. J. Biochem.* 2002, 269, 1684–1696.
- 23. Somsák, L.; Nagy, V.; Hadady, Z.; Docsa, T.; Gergely, P. *Curr. Pharm. Des.* **2003**, *9*, 1177–1189.
- Davis, M. E.; Brewster, M. E. Nat. Rev. Drug Discov. 2004, 3, 1023–1035.
- 25. Szejtli, J. Chem. Rev. 1998, 98, 1743-1753.
- Loftsson, T.; Másson, M.; Brewster, M. E. J. Pharm. Sci. 2004, 93, 1091–1099.
- 27. Uekama, K. Chem. Pharm. Bull. 2004, 52, 900-915.
- Ortega-Caballero, F.; Rousseau, C.; Christensen, B.; Petersen, T. E.; Bols, M. J. Am. Chem. Soc. 2005, 127, 3238–3239.
- 29. Motherwell, W. B.; Bingham, M. J.; Six, Y. *Tetrahedron* **2001**, *57*, 4663–4686.
- Shpigun, O. A.; Ananieva, I. A.; Budanova, N. Y.; Shapovalova, E. N. *Russ. Chem. Rev.* 2003, 72, 1035–1054.
- Liu, Y.; Li, L.; Zhang, H.-Y.; Liang, P.; Wang, H. *Carbohydr. Res.* 2003, *338*, 1751–1757 and references therein.
- (a) Baugh, S. D. P.; Yang, Z.; Leung, D. K.; Wilson, D. M.; Breslow, R. J. Am. Chem. Soc. 2001, 123, 12488–12494. (b) Charbonnier, F.; Marsura, A.; Pintér, I. Tetrahedron Lett. 1999, 40, 6581–6583.
- Sallas, F.; Marsura, A.; Petot, V.; Pintér, I.; Kovács, J.; Jicsinszky, L. *Helv. Chim. Acta* 1998, 81, 632–645.
- (a) Myszka, H.; Bednarczyk, D.; Najder, M.; Kaca, W. Carbohydr. Res. 2003, 338, 133–141. (b) Avalos, M.; Babiano, R.; Cintas, P.; Jiménez, J. L.; Palacios, J. C.; Valencia, C. Tetrahedron 1993, 49, 2676–2690. (c) Fernández-Bolaños Guzmán, J.; García Rodríguez, S.; Fernández-Bolaños, J.; Díanez, M. J.; López-Castro, A. Carbohydr. Res. 1991, 210,

125–143. (d) García Fernández, J. M.; Ortiz Mellet, C.; Pradera Adrián, M. A.; Fuentes Mota, J. *Carbohydr. Res.* **1991**, *216*, 21–32. (e) Plusquellec, D.; Roulleau, F.; Brown, E. *Tetrahedron Lett.* **1984**, *25*, 1901–1904. (f) Morel, C. H. *J. Helv. Chim. Acta* **1961**, *44*, 403–412. (g) Goodman, I. *Adv. Carbohydr. Chem.* **1958**, *13*, 215–236.

- 35. For a review of isocyanate chemistry, see: Ulrich, H. *Chemistry and Technology of Isocyanates*; Wiley: New York, 1997.
- 36. Jochims, J. C.; Seeliger, A. Tetrahedron 1965, 21, 2611–2616.
- (a) Ichikawa, Y.; Nishiyama, T.; Isobe, M. *Tetrahedron* 2004, 60, 2621–2627. (b) Wawer, I.; Weychert, M.; Piekarska-Bartoszewicz, B.; Temeriusz, A. *Pol. J. Chem.* 2002, 76, 1127–1136. (c) Temeriusz, A.; Piekarska-Bartoszewicz, B.; Wawer, I. *Carbohydr. Res.* 1997, 304, 335–340.
- (a) Pintér, I.; Kovács, J.; Tóth, G. Carbohydr. Res. 1995, 273, 99–108. (b) Sallas, F.; Kovács, J.; Pintér, I.; Jicsinszky, L.; Marsura, A. Tetrahedron Lett. 1996, 37, 4011–4014. (c) Zhang, L.-F.; Chen, L.; Lee, T.-C.; Ng, S.-C. Tetrahedron: Asymmetry 1999, 10, 4107–4113. (d) Ichikawa, Y.; Matsukawa, Y.; Isobe, M. Synlett 2004, 1019–1022.
- Díaz Pérez, V. M.; Ortiz Mellet, C.; Fuentes, J.; García Fernández, J. M. *Carbohydr. Res.* 2000, 326, 161–175.
- Ichikawa, Y.; Nishiyama, T.; Isobe, M. J. Org. Chem. 2001, 66, 4200–4205. Ichikawa, Y.; Nishiyama, T.; Isobe, M. Synlett 2000, 9, 1253–1256.
- Prosperi, D.; Ronchi, S.; Lay, L.; Rencurosi, A.; Russo, G. Eur. J. Org. Chem. 2004, 395–405.
- For a preliminary work, see: Maya, I.; López, O.; Maza, S.; Fernández-Bolaños, J. G.; Fuentes, J. *Tetrahedron Lett.* 2003, 44, 8539–8543.
- (a) Su, W.; Zhong, W.; Bian, G.; Shi, X.; Zhang, J. Org. Prep. Proced. Int. 2004, 36, 499–547. (b) Bigi, F.; Maggi, R.; Sartori, G. Green Chem. 2000, 2, 140–148. (c) Cotarca, L.; Delogu, P.; Nardelli, A.; Šunjić, V. Synthesis 1996, 553–576.
- 44. Fischer, E. Ber. Dtsch. Chem. Ges. 1914, 47, 1377-1381.
- 45. Ichikawa, Y.; Matsukawa, Y.; Nishiyama, T.; Isobe, M. Eur. J. Org. Chem. 2004, 586–591.
- Schaschke, N.; Musiol, H.-J.; Assfalg-Machleidt, I.; Machleidt, W.; Rudolph-Böhner, S.; Moroder, L. *FEBS Lett.* 1996, *391*, 297–301.
- 47. Byun, H.-S.; Zhong, N.; Bittman, R. Org. Synth. **1999**, 77, 225–230.
- Porwanski, S.; Kryczka, B.; Marsura, A. *Tetrahedron Lett.* 2002, 43, 8441–8443.
- 49. Bergmann, M.; Zervas, L. Ber. Dtsch. Chem. Ges. 1931, 64B, 975–980.
- Gómez-Sánchez, A.; Borrachero Moya, P.; Bellanato, J. Carbohydr. Res. 1984, 135, 101–116.
- Babiano Caballero, R.; Fuentes Mota, J.; Galbis Pérez, J. A. Carbohydr. Res. 1986, 154, 280–288.
- Gómez-Sánchez, A.; Gómez Guillén, M.; Cert Ventulá, A.; Scheidegger, U. An. Quím. 1968, 64, 579–590.
- Benito, J. M.; Ortiz Mellet, C.; Sadalapure, K.; Lindhorst, T. K.; Defaye, J.; García Fernández, J. M. *Carbohydr. Res.* 1999, 320, 37–48.
- 54. Cotarca, L.; Eckert, H. *Phosgenations—A Handbook*; Wiley: Weinheim, 2003.
- 55. Liu, Q.; Luedtke, N. W.; Tor, Y. *Tetrahedron Lett.* **2001**, *42*, 1445–1447.
- García Fernández, J. M.; Ortiz Mellet, C. Adv. Carbohydr. Chem. Biochem. 1999, 55, 35–135.

- 57. López, Ó.; Maya, I.; Fuentes, J.; Fernández-Bolaños, J. G. *Tetrahedron* **2004**, *60*, 61–72 and references therein.
- Li, Y.-W.; Li, Y.-X.; Zhang, W.; Guan, H.-S. Chin. J. Chem. 2004, 22, 117–118.
- Ávalos González, M.; Fuentes Mota, J.; Gómez Monterrey, I. M.; Jiménez Requejo, J. L.; Palacios Albarrán, J. C.; Ortiz Mellet, M. C. *Carbohydr. Res.* **1986**, *154*, 49–62.