An efficient aldol-type reaction of ethyl diazoacetate with aldehydes promoted by Mgl₂ etherate

Tengjiang Zhong, Tianpeng Wu and Xingxian Zhang*

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P.R. China

The first example of the preparation of α -diazo- β -hydroxy esters by the aldol-type condensation of aldehydes with ethyl diazoacetate using Et₃N as base in the presence of magnesium iodide etherate [Mgl₂.(Et₂O)_n] has been achieved in good to excellent yields at room temperature in CH₂Cl₂ in 15–30 min.

Keywords: aldehyde, ethyl diazoacetate, α -diazo- β -hydroxy esters, magnesium iodide etherate

The chemistry of a-diazocarbonyl compounds has received considerable attention because of the diverse range of synthetically useful transformations that these compounds can undergo.¹ In particular, α -diazocarbonyl compounds are considered to be a potential source of amino alcohols and acids. The application of α -diazo- β -hydroxy esters has been extensively explored because these compounds are involved in many organic transformations.²⁻⁴ Among the diverse synthetic routes available to access α -diazo- β -hydroxy esters, one attractive method is the condensation of diazoacetate to aldehydes catalysed by Lewis acids.5,6 In addition to these methods, α -diazo- β -hydroxy esters can also be obtained by reactions of diazoacetate with aldehydes through nucleophilic addition in the presence of a strong base, such as butyllithium,^{7,8} lithium diisopropylamide (LDA),9-11 sodium hydride,12 potassium hydroxide,13-15 1,8-diazabicyclo [5.4.0] undec-7ene (DBU),16 quaternary ammonium hydroxide,17 potassium t-butoxide (KO^tBu).¹⁸ Although the anionic species thus generated can efficiently add to carbonyl compounds, some of these methods clearly require strongly basic reagents and anhydrous conditions.

In a previous paper, we have demonstrated that MgI₂.(Et₂O)_n, a mild Lewis acid efficiently promoted the direct aldol addition of methyl ketones to aromatic aldehydes.¹⁹ We now report an efficient and facile method for the synthesis of α -diazo- β -hydroxy esters by the coupling of aldehydes with ethyl diazoacetate (EDA) promoted by MgI₂.(Et₂O)_n in the presence of Et₁N at room temperature under atmospheric conditions.

Results and discussion

To optimise the reaction (Scheme 1), we chose benzaldehyde (**1a** R=Ph) as a model substrate and we determined the yield of product (**3a** R=Ph) using various amounts of MgI₂.(Et₂O)_n and Et₃N and 1.2 equiv. EDA in CH₂Cl₂ at room temperature. As shown in Table 1, without MgI₂.(Et₂O)_n or Et₃N, the reaction could not be carried out (entries 1 and 2). With increasing amounts of MgI₂.(Et₂O)_n, the yield of aldol product ethyl 2-diazo-3-hydroxy-3-phenylpropanoate successively was

* Correspondent. E-mail: zhangxx@zjut.edu.cn

improved (entries 3–9). This yield was optimised to 95% by using 1.0 equiv. of $MgI_2.(Et_2O)_n$ and 2.0 equiv. of Et_3N (entry 10).

Of various untreated solvents screened, an excellent yield was obtained in non-coordinating reaction media CH_2Cl_2 . Moderate yields (83%) were provided in toluene. The reaction was very sluggish in the coordinative polar solvents such as Et_2O , MeCN and THF. The reactions did not take place in more polar solvents, such as DMF, dioxane and MeOH. To examine the halide anion effect, halogen analogues of MgI₂ etherate were compared under parallel reaction conditions (1.0 equiv. of promoters). MgCl₂ etherate was almost inactive and MgBr₂ etherate was less effective in terms of substrate conversion and yield.

With the best optimal conditions in hand, a variety of different aldehydes, including aliphatic, aromatic, and heteroaromatic aldehydes were subjected to this reaction and the results are summarised in Table 2. There was no need to exclude moisture and oxygen from the reaction system. As shown in Table 2, MgI₂ etherate-Et₃N promoted aldol coupling of ethyl diazoacetate (EDA) with aromatic aldehydes in good to excellent yields in a very short period. Moreover aromatic aldehydes bearing either electron-donating or electron-withdrawing groups in the aromatic ring reacted smoothly to afford the desired aldol adducts in very good to excellent yields (Table 2, entries 1–8).

A heteroaromatic aldehyde, 2-thiophenealdehyde, was a good substrate as well (entry 9). An α , β -unsaturated aldehyde, cinnamaldehyde, reacted with EDA to afford the aldol adduct in excellent yield without any decomposition or polymerisation

Table 1 Optimisation of the reaction conditions for formation of ethyl 2-diazo-3-hydroxy-3-phenylpropanoate **3a** (R=Ph) by reaction of benzaldehyde **1a** (R=Ph) with ethyl diazoacetate (EDA) **2** for various times and under several sets of conditions (Scheme 1)^a

Entry	Mgl ₂ .(Et ₂ 0),/ mol% ^b	Et₃N/mol%⁵	Time/h	Yield of 3a (R=Ph)/%°
1	100	0	12	0
2	0	200	12	0
3	15	200	8	40
4	30	200	8	62
5	50	150	8	60
6	50	200	3	71
7	60	200	3	78
8	70	200	2	84
9	80	200	1	90
10	100	200	0.25	95
11	100	300	0.33	94

^aReaction conditions: to a solution of benzaldehyde **1a** (R=Ph) (1 mmol) and EDA (1.2 mmol) in untreated CH_2CI_2 (5 mL) was added MgI_2 .(OEt_2)_n and Et_nN and the mixture stirred for various times.

^bRelative to benzaldehyde.

°Isolated yields after silica gel column chromatographic purification.

Table 2Yields of ethyl 2-diazo-3-hydroxy-3-aryl/alkylpropanoates**3a-I**by reaction of the corresponding aldehydes 1 with ethyl diazoacetate (EDA)2 using Et₃N as base in the presence of magnesium iodide etherate [Mgl₂. $(Et_20)_n$ for various times (Scheme 1)^a

Entry	R	t/min	Product	Yields of 3a-I /% ^b
1	C ₆ H ₅	15	3a	95
2	4-MeOC ₆ H ₄	15	3b	92
3	2-MeC ₆ H ₄	20	3c	93
4	$4-\text{CIC}_6\text{H}_4$	20	3d	94
5	$4-FC_6H_4$	20	3e	93
6	$4-NO_2C_6H_4$	25	3f	97
7	$4-CF_{3}C_{6}H_{4}$	15	3g	96
8	1-Naphthyl	15	3h	93
9	2-Thienyl	15	3 i	93
10	trans-PhCH=CH	30	3j	89
11	Cyclohexyl	15	3k	90
12	<i>t</i> -Bu	15	31	88

^aReaction conditions: To a solution of aldehyde **1** (R=various) (1 mmol) and EDA (1.2 mmol) in untreated CH_2CI_2 (5 mL) was added $MgI_2.(OEt_2)_n$ (1 mmol) and Et_3N (2 mmol) and the mixture stirred for various times. ^bIsolated yields after silica gel column chromatographic purification.

(entry 10). In addition to aromatic aldehydes, aliphatic aldehydes also reacted efficiently under the same conditions (entries 11 and 12). Note that the addition to the more sterically hindered aldehyde, *t*-butyl aldehyde, gave the product in good yield (88%). However, ketones did not react, even prolonging the reaction time.

In conclusion, we have demonstrated the unique reactivity of MgI_2 etherate in the aldol coupling of aldehydes with EDA. This magnesium-promoted aldol addition is mild, efficient and operationally simple. Further investigation on the reactivity of MgI_2 etherate in other C–C bond constructing reactions is underway.

Experimental

All reagents were obtained from commercial suppliers, and were used without further purification unless otherwise indicated. Silica gel for column chromatography was purchased from Qingdao Haiyang Chemical Co., Ltd. Melting points were determined using a Büchi B-540 capillary melting-point apparatus. ¹H NMR spectra were recorded with a Bruker Avance instrument at 500 MHz in CdCl₃ with tetramethylsilane as the internal standard.

MgI, etherate-promoted aldol reaction; general procedure

Freshly prepared MgI₂ etherate²⁰ was added to a stirred solution of aldehyde (1.0 mmol), EDA (127 mg, 1.2 mmol) and Et₃N (121 mg, 1.2 mmol) in CH₂Cl₂ (5 mL) (1.0 mmol) at room temperature. The resulting reaction mixture was stirred at room temperature for 15–30 min and quenched with saturated aqueous Na₂SO₃. Extractive workup with ether and chromatographic purification of the crude product on silica gel gave the desired aldol adduct.

Ethyl 2-diazo-3-hydroxy-3-phenylpropanoate (**3a**):¹⁷ Pale yellowish oil; $\delta_{\rm H}$ 1.31 (t, J = 7.2 Hz, 3H), 3.26 (br s, 1H), 4.29 (q, J = 7.2 Hz, 2H), 5.93 (d, J = 2.5 Hz, 1H), 7.28–7.45 (m, 5H).

Ethyl 2-diazo-3-hydroxy-3-(4-methoxyphenyl)propanoate (**3b**):¹⁷ Yellowish oil; $\delta_{\rm H}$ 1.33 (t, *J* = 7.3 Hz, 3H), 3.00 (br s, 1H), 3.83 (s, 3H), 4.29 (q, *J* = 7.3 Hz, 2H), 5.88 (s, 1H), 6.93 (d, *J* = 7.0 Hz, 2H), 7.36 (d, *J* = 7.0 Hz, 2H).

Ethyl 2-diazo-3-hydroxy-3-(o-tolyl)propanoate (**3c**):¹⁶ Pale yellowish oil; $\delta_{\rm H}$ 1.29 (t, J=7.1 Hz, 3H), 3.75 (br s, 1H), 3.84 (s, 3H), 4.25 (q, J=7.1 Hz, 2H), 5.96 (d, J=4.8 Hz, 1H), 6.91 (d, J=8.2 Hz, 1H), 7.00 (m, 1H), 7.31 (m, 1H), 7.47 (d, J=7.3 Hz, 1H).

Ethyl 3-(4-chlorophenyl)-2-diazo-3-hydroxypropanoate (3d):¹⁷ Pale yellowish oil; $\delta_{\rm H}$ 1.29 (t, J=7.1 Hz, 3H), 3.69 (br s, 1H), 4.25 (q, J=7.1 Hz, 2H), 5.87 (s, 1H), 7.34–7.38 (m, 4H). *Ethyl 2-diazo-3-(4-fluorophenyl)-3-hydroxypropanoate* (3e):¹⁷ Yellowish oil; $\delta_{\rm H}$ 1.29 (t, *J* = 7.1 Hz, 3H), 3.52 (br s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 5.89 (d, *J* = 1.25 Hz, 1H), 7.06–7.09 (m, 2H), 7.40–7.43 (m, 2H).

Ethyl 2-diazo-3-hydroxy-3-(4-nitrophenyl)propanoate (**3f**):¹⁷ Yellowish oil; δ_H 1.28 (t, J=7.1 Hz, 3H), 3.90 (br s, 1H), 4.26 (q, J=7.1 Hz, 2H), 5.99 (s, 1H), 7.63 (d, J=8.6 Hz, 2H), 8.21–8.24 (m, 2H). *Ethyl* 2-diazo-3-hydroxy-3-(4-(trifluoromethyl)phenyl)propanoate

(**3g**): Pale yellowish solid, m.p. 52.3–53.1 °C (lit.²¹ 51–53 °C). $\delta_{\rm H}$ 1.29 (t, J=7.2 Hz, 3H), 3.65 (br s, 1H), 4.27 (q, J=7.2 Hz, 2H), 5.96 (s, 1H), 7.56 (d, J=8.2 Hz, 2H), 7.65 (d, J=8.2 Hz, 2H).

Ethyl 2-diazo-3-hydroxy-3-(naphthalen-1-yl)propanoate (**3h**):²¹ Pale yellowish oil; $\delta_{\rm H}$ 1.33 (t, J = 7.2 Hz, 3H), 3.72 (br s, 1H), 4.32 (q, J = 7.2 Hz, 2H), 6.64 (s, 1H), 7.50–7.56 (m, 3H), 7.83–7.95 (m, 4H).

Ethyl 2-diazo-3-hydroxy-3-(thiophen-2-yl)propanoate (**3i**):²² Yellowish oil; $\delta_{\rm H}$ 1.31 (t, *J*=7.2 Hz, 3H), 3.39 (br s, 1H), 4.29 (q, *J*=7.2 Hz, 2H), 6.12 (s, 1H), 7.02 (d, *J*=3.9 Hz, 1H), 7.03–7.07 (m, 1H), 7.31 (d, *J*=3.9 Hz).

(*E*)-*Ethyl 2-diazo-3-hydroxy-5-phenylpent-4-enoate* (**3**):¹⁷ Yellowish oil. $\delta_{\rm H}$ 1.32 (t, J = 7.1 Hz, 3H), 2.87 (br s, 1H), 4.27 (q, J = 7.1 Hz, 2H), 5.46 (d, J = 5.3 Hz, 1H), 6.28 (dd, J = 5.6, 16.0 Hz, 1H), 6.82 (d, J = 15.6 Hz, 1H), 7.29–7.42 (m, 5H).

Ethyl 3-cyclohexyl-2-diazo-3-hydroxypropanoate (**3k**):¹⁷ Pale yellowish oil; $\delta_{\rm H}$ 0.92–1.31 (m, 8H), 1.45–1.80 (m, 5H), 2.0 (d, J=12 Hz, 1H), 3.23 (br s, 1H), 4.19 (q, J=7.02 Hz, 2H), 4.26 (d, J=9.34 Hz, 1H).

Ethyl 2-diazo-3-hydroxy-4,4-dimethylpentanoate (**31**):²¹ Pale yellowish oil. $\delta_{\rm H}$ 0.97 (s, 9H), 1.28 (t, J=7.1 Hz, 3H), 2.94 (br s, 1H), 4.19–4.23 (m, 3H).

We are grateful to the National Natural Science Foundation of China (No. 21372203 and 21272076).

Received 24 September 2014; accepted 23 October 2014 Paper 1402914 doi: 10.3184/174751914X14145853961149 Published online: 13 November 2014

References

- 1 T. Ye and M.A. McKervey, *Chem. Rev.*, 1994, **94**, 1091.
- 2 M.P. Doyle, M.A. McKervey and T. Ye, *Modern catalytic methods for organic synthesis with diazo compounds*. Wiley–Interscience, New York, 1998.
- 3 M.C. Pirrung and J.A. Werner, J. Am. Chem. Soc., 1986, 108, 6062.
- 4 D.J. Miller and C.J. Moody, *Tetrahedron*, 1995, **51**, 10811.
- 5 W. Yao and J. Wang, Org. Lett., 2003, 5, 1527.
- 6 M.E. Dudley, Md. M. Morshed, C.L. Brennan, M.S. Islam, M.S. Ahmad, M.-R. Atuu, B. Branstetter and M.M. Hossain, J. Org. Chem., 2004, 69, 7599.
- 7 U. Schçllkopf, H. Frasnelli and D. Hoppe, Angew. Chem. Int. Ed., 1970, 9, 300.
- 8 U. Schçllkopf, B. Banhidai, H. Frasnelli, R. Meyer and H. Beckhaus, *Eur. J. Org. Chem.*, 1974, 1767.
- 9 R. Pellicciari and B. Natalini, J. Chem. Soc., Perkin Trans. 1, 1977, 1882.
- R. Pellicciari, B. Natalini, B.M. Sadeghpour, M. Marinozzi, J.P. Snyder, B.L. Williamson, J.T. Kuethe and A. Padwa, J. Am. Chem. Soc., 1996, 118, 1.
- 11 C.J. Moody and R.J. Taylor, Tetrahedron Lett., 1987, 28, 5351.
- 12 N. Jiang, Z. Qu and J. Wang, Org. Lett., 2001, 3, 2989.
- 13 E. Wenkert and C.A. McPherson, J. Am. Chem. Soc., 1972, 94, 8084.
- 14 T.L. Burkoth, Tetrahedron Lett., 1969, 57, 5049.
- 15 N.F. Woolsey and M.H. Khalil, J. Org. Chem., 1972, 37, 2405.
- 16 N. Jiang and J. Wang, *Tetrahedron Lett.*, 2002, **43**, 1285.
- 17 R. Varala, R. Enugala, S. Nuvula and S.R. Adapa, *Tetrahedron Lett.*, 2006, 47, 877.
- 18 B. Sreebdhar, V. Balasubrahmanyam, C. Sridhar and M.N. Prasad, *Catal. Commun.*, 2005, 6, 517.
- 19 Y. Liu, H. Shen and X. Zhang, Main Group Met. Chem., 2012, 35, 111.
- 20 V. Arkley, J. Attenburrow, G.I. Gregory and T. Walker, J. Chem. Soc., 1962, 1260.
- 21 K. Hasegawa, S. Arai and A. Nishida, Tetrahedron, 2006, 62, 1390.
- 22 S. Kanemasa, T. Araki, T. Kanai and E. Wada, *Tetrahedron Lett.*, 1999, 40, 5059.

Copyright of Journal of Chemical Research is the property of Science Reviews 2000 Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.