Ferrocenyl-Substituted α,β-Unsaturated Ketones in Synthesis of Tetrahydropyrimidinones

E. I. Klimova, E. A. Vazquez Lopez, T. Klimova, M. Martinez Garcia, Ortega S. Hernandez, and L. Ruiz Ramirez

National Autonomous University of Mexico, Mexico City, Mexico Institute of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico

Received November 12, 2002

Abstract—Ferrocenyltetrahydropyrimidin-2-ones were prepared by reactions of linear and cyclic α , β -unsaturated ketones of the ferrocene series with urea in *i*-PrOH in the presence of *t*-BuOK. The structures of the compounds prepared were studied by ¹H and ¹³C NMR and IR spectroscopy, and also by single crystal X-ray diffraction.

Urea, thiourea, and their derivatives are used in synthesis of pyrimidine derivatives, which are components of many biologically active substances and nucleic acids [1]. In the metallocene series, the reactions of thiourea [2-6] and phenylthiourea [6] with ferrocenyl-substituted chalcones have been reported, but there is no unambiguous opinion on the structure of the products. The reactions were performed in alcohol in the presence of sodium alcoholates with refluxing [3, 4, 6] or under ultrasonic treatment [5]. The products of condensation with thiourea were identified as tetrahydropyrimidinethiones I with the C=C double bond at the 4,5 position, and the products of condensation with phenylthiourea, as tetrahydropyrimidinethiones II with the C=C double bond at the 3,4 position (Scheme 1).

Scheme 1.

 $R^1 = Fc, R^2 = H, R^3 = Ar; R^1 = Ar, R^2 = H, R^3 = Fc;$ $R^1, R^2 = FcCH=C(CH_2)_3; R^3 = Fc, Fc = C_5H_5FeC_5H_4.$ With urea and its derivatives, the related condensations were not performed. The prospects for applying the expected products, e.g., as physiologically active substances make it interesting to prepare ferrocenylsubstituted tetrahydropyrimidinones and to study in detail their structure and chemical behavior.

In this work we studied the reactions of urea with α , β -unsaturated linear and cyclic ketones containing the ferrocenyl substituent.

We found that urea reacts with chalcones **IIIa–IIId** on refluxing in absolute isopropyl alcohol in the presence of *t*-BuOK to give 1,2,3,6-tetrahydropyrimidin-2-ones **IVa–IVd**, respectively, in \sim 70–80% yields (Scheme 2).

The isolated pyrimidin-2-ones **IVa–IVd** are the only reaction products. These are finely crystalline pale yellow substances stable in storage in the solid state. In common organic solvents (CHCl₃, CH₂Cl₂, CH₃COCH₃, CH₃COOEt, C₆H₆, etc.), they rapidly decompose, but in basic solvents (pyridine, morpholine, dimethylformamide, etc.) they are stable.

Table 1. ¹H NMR data for the compounds prepared, δ , ppm (*J*, Hz)

Comp. no.	C ₅ H ₅ (s)	C ₅ H ₄ (m)	CH ₃ , CH ₂	СН	NH	Ar
IVa ^a	4.18 (5H)	4.14 (2H), 4.19 (1H), 4.23 (1H)	3.81 (3H)	4.94 d.d (1H, <i>J</i> 2.0, 4.4), 5.12 m (1H, <i>J</i> 4.4)	6.63 br.s (1H), 8.20 s (1H)	6.92 d (2H, <i>J</i> 8.7), 7.49 d (2H, <i>J</i> 8.7)
IVb ^a	4.19 (5H)	4.17 (3H), 4.23 (1H)	_	5.01 d (1H, J 0.9), 5.16 d (1H, J 0.9)	6.15 br.s (1H), 8.15 s (1H)	7.43 d (2H, <i>J</i> 8.3), 7.52 d (2H, <i>J</i> 8.3)
IVc ^a	4.18(5H), 4.21(5H)	4.14 (2H), 4.27 (2H), 4.71 (4H)	_	3.8 4.72 br.s (1H), 5.14 d (1H, J 0.9)	6.91 br.s (1H), 8.01 s (1H)	_
IVd ^a	4.17 (5H), 4.24 (5H)	4.13 (2H), 4.32 (2H), 4.69 (4H)	1.78 (3H)	4.80 br.s (1H), 5.17 s (1H)	6.99 br.s (1H) 8.20 s (1H)	_
VIa ^a	4.22 (5H)	4.12 (3H), 4.16 (1H)	2.24 t (2H, J 7.5), 2.72 d.t (2H, J 7.5, 15.0)	4.64 br.s (1H)	6.85 br.s (1H), 8.41 s (1H)	7.15 m (3H), 7.50 m (1H)
VIb ^a	4.21 (5H)	4.12 (3H), 4.16 (1H)	2.20 t (2H, J 8.1), 2.66 t (2H, J 8.1), 3.76 (3H)	4.62 d (1H, J 1.0)	6.82 br.s (1H), 8.41 s (1H)	6.91 m (1H), 7.15 m (2H)
VIc ^b	3.62 (5H)	3.50 (3H), 3.55 (1H)	2.08–2.25 m (4H), 3.14 (3H)	4.11 br.s (1H)	6.13 br.s (1H), 7.90 br.s (1H)	6.16 d (1H, <i>J</i> 8.8), 6.98 d (1H, <i>J</i> 8.8), 7.36 s (1H)
VId ^c	4.22 (5H)	4.12 (3H), 4.15 (1H)	2.21 t (2H, <i>J</i> 7.8), 2.63 q (2H, <i>J</i> 7.8), 3.73 (3H)	4.64 d (1H, J 1.2)	6.84 br.s (1H), 8.58 s (1H)	6.70 d.d (1H, J 2.1 8.4), 7.05 d (1H, J 8.4), 7.12 d (1H, J 2.1)
VIe ^{a,b}	4.19 (5H)	4.07 (2H), 4.11 (1H), 4.14 (1H)	2.14 m (2H), 2.58 m (2H), 2.17 (3H), 2.81 (3H)	4.63 br.s (1H)	6.76 br.s (1H), 8.29 s (1H)	6.81 s (1H), 7.23 s (1H)
VIIIa ^{a,c}	4.20 (5H)	4.11 (1H), 4.12 (2H), 4.13 (1H)	1.25 m (1H), 1.45 m (3H), 1.63 m (2H), 1.93–2.22 m (4H)	4.42 d (1H, J 2.4)	5.87 d (1H, <i>J</i> 2.4), 7.79 s (1H)	_
VIIIb ^{a,c}	4.12 (5H), 4.22 (5H)	4.11 (1H), 4.14 (3H), 4.26 (1H), 4.29 (2H), 4.43 (1H)	1.24 m (2H), 1.69 m (3H), 2.24 m (3H)	4.39 d (1H, J 3.0), 6.36 s (1H)	6.68 d (1H, <i>J</i> 3.0), 7.72 s (1H)	_
VIIIc ^c	4.12 (5H), 4.25 (5H)	4.14 (1H), 4.23 (2H), 4.33 (2H), 4.41 (1H), 4.51 (1H), 4.56 (1H)	1.63–2.38 m (6H)	4.98 d (1H, J 0.9), 6.07 s (1H)	6.40 br.s (1H), 7.92 s (1H)	_
VIIId ^d	4.12(5H), 4.28(5H)	4.18 (2H), 4.34 (2H), 4.46 (4H)	2.40 m (1H), 2.54 m (1H), 2.74 m (2H)	5.11 s (1H), 6.70 s (1H)	6.97 s (1H), 9.92 s (1H)	_
VIIIe ^{a,b}	4.12 (5H), 4.23 (5H)	4.10 (2H), 4.16 (2H), 4.20 (2H),	2.24 (3H), 2.71 d (2H, J 8.5), 2.86 d (2H, J	4.56 d (1H, <i>J</i> 0.8), 6.59 s (1H)	6.69 d (1H, <i>J</i> 0.8), 8.29 s (1H)	_
X ^{a,b}	4.19 (5H)	4.25 (2H) 4.07 (2H), 4.10 (1H) 4.17 (1H)	8.5) 1.40–2.00 m (8H)	2.38 m (1H), 4.63 d	6.55 d (1H, <i>J</i> 1.8), 8 30 s (1H)	_
XII ^{a,b}	3.76 (5H), 3.97 (5H)	(11), 3.77 (2H), 3.87 (2H), 3.89 (2H), 3.93 (1H), 4.10 (1H)	1.80 m (2H), 2.10 m (2H), 2.16 (3H)	3.63 m (1H), 3.70 m (1H), 4.26 br.s (1H), 6.71 s (1H)	6.83 br.s (1H), 8.32 s (1H)	_

Note: The ¹H NMR spectra were recorded in the following solvents: ^a (CD₃)₂CO, ^b DCON(CD₃)₂, ^c CDCl₃, and ^d C₅D₅N.

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 74 No. 11 2004

$ \begin{array}{c cccc} Comp.\\ no.\\ no.\\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.7
VIa ^a 68.6 $65.2, 66.1, 67.1, 92.9$ $24.4, 27.8, 54.5$ $108.9, 127.5, -54.5$ 53.4 154.2 135.5 $121.1, 12.5, 127.4, 14.5$ VIc ^b 68.2 $64.8, 66.1, 66.8, 93.1$ $24.1, 28.1, 55.3$ $121.95, 153.5$ $ 53.8$ 158.7 127.7 $106.2, 12.5, 133.5$ VId ^a 68.5 $65.2, 66.1, 67.1, 92.8$ $24.8, 26.9, 55.3$ $127.2, 127.6, -53.5$ $ 53.5$ 158.2 130.0 $107.1, 106.2, 12.5, 133.5$ VId ^a 68.5 $65.2, 66.2, 67.1, 93.1$ $19.0, 20.5, 128.2, 154.2$ $ 53.7$ 154.3 134.5 $119.9, 12.9$ VIe ^{a,b} 68.5 $65.2, 66.2, 67.1, 93.1$ $19.0, 20.5, 128.8, 130.5, 134.2$ $ 53.7$ 154.3 134.5 $119.9, 12.9$ VIIIa ^{a,c} 68.6 $66.9, 67.0, 69.2, 78.5$ $24.1, 25.4, 107.5$ $ 54.2$ $152.7, 131.6$ $-$	
VIc ^b 68.264.8, 66.1, 66.8, 67.293.124.1, 28.1, 55.3121.8, 121.9, 121.8, 121.9, 121.8, 121.9, 121.8, 121.9, 121.9, 153.5-53.8158.7127.7106.2, 121.3, 121.9, 113.6VId ^a 68.565.2, 66.1, 67.1, 67.5, 67.592.824.8, 26.9, 55.3127.2, 127.6,53.5158.2130.0107.1, 10.	26.3, 27 5
VIda68.565.2, 66.1, 67.1, 67.1, 67.592.824.8, 26.9, 55.3127.2, 127.6, 128.2, 154.2 $-$ 53.5158.2130.0107.1, 10VIea,b68.565.2, 66.2, 67.1, 67.493.119.0, 20.5, 23.4, 24.2108.2, 127.8, 134.5 $-$ 53.7154.3134.5119.9, 15VIIIaa,c68.666.9, 67.0, 69.2, 78.524.1, 25.4, 107.5 $-$ 54.2152.7131.6 $-$	10.3,
VIe ^{a,b} 68.565.2, 66.2, 67.1, 67.493.119.0, 20.5, 23.4, 24.2108.2, 127.8, 128.8, 130.5, 134.2 $-$ 53.7154.3134.5119.9, 1VIIIa ^{a,c} 68.666.9, 67.0, 69.2,78.524.1, 25.4,107.5 $-$ 54.2152.7131.6 $-$)9.3,
VIII $a^{a,c}$ 68.6 66.9, 67.0, 69.2, 78.5 24.1, 25.4, 107.5 - 54.2 152.7 131.6 -	29.9
69.6 28.4, 29.9, 30.1	
VIIIb ^{a,c} 66.5, 67.0 63.3, 64.2, 64.9, 65.5, 66.2, 66.4, 66.8 78.8, 91.3 23.8, 24.1, 27.6, 28.2 123.7, 129.5 107.9 53.9 152.0 131.9 $-$	
VIIIc ^d 68.1, 69.2 63.0–75.0 93.1 82.8, 26.5 23.7, 25.0, 26.5 107.6, 127.5 113.0 55.9 156.9 128.3 $-$	
VIIId ^d 70.1, 70.465.2–75.083.3, 92.947.4, 54.052.2, 118.4, 126.1114.555.1156.7127.4 $-$	
X ^d 69.8 64.2, 67.8 95.4 25.0–32.0 – – 52.2, 157.1 122.7, – 53.9 –	
XII ^d 68.5, 69.965.0-76.082.8, 92.632.5, 36.233.4, 36.2121.5, 125.6112.052.9, 58.9, 69.5157.5127.9	

Table 2. ¹³C NMR data for **IVb, IVc, VIa, VIc–VIe, VIIIa**, and **VIIIb** (75 MHz); **VIIIc, VIIIe, X**, and **XII** (9.0 kHz, solid state)], δ_{C} , ppm

The ¹³C NMR spectra were recorded in the following solvents: ^a (CD₃)₂SO, ^b DCON(CD₃)₂, ^c CDCl₃, and ^d neat sample, solid phase.

Table 3. IR data (KBr) for the compounds prepared

Comp. no.	v, cm ⁻¹
IVa IVb IVc VIa VIb VIc VId VIe VIIIa VIIIb	769, 800, 1027, 1180, 1246, 1295 1459, 1513, 1613, 1681, 2836, 2962, 3096, 3220, 3330, 3462 748, 816, 1005, 1149, 1297, 1467, 1561, 1620, 1684, 2923, 3091, 3230, 3423 701, 749, 813, 999, 1103, 1160, 1288, 1436, 1482, 1584, 1693, 2843, 2942, 3093, 3224, 3429 689, 759, 817, 1002, 1105, 1241,1290, 1437, 1573, 1673, 2828, 2920, 2976, 3090, 3255, 3367 723, 768, 808, 820, 1028, 1108, 1269, 1294, 1390, 1450, 1481, 1560, 1681, 2832, 2934, 3098, 3223, 3331, 3426 750, 789, 823, 1035, 1111,1218, 1263, 1295, 1344, 1432, 1468, 1577, 1680, 2835, 2934, 3090, 3230, 3428 769, 814, 1001, 1037, 1125, 1156, 1252, 1276,1378, 1426, 1467, 1592, 1647, 1680, 2835, 2933, 3091, 3223, 3433 772, 819, 1033, 1120, 1220, 1295, 1473, 1484, 1578, 1607, 1679, 2831, 2936, 3093, 3231, 3430 767, 811, 1008, 1027, 1106, 1228, 1298, 1395, 1462, 1480, 1654, 1678, 2830, 2923, 3101, 3226, 3429 763, 775, 820, 1027, 1075, 1214, 1301, 1393, 1443, 1481, 1647, 1684, 2846, 2921, 3097, 3254, 3342 672, 750, 812, 997, 1104, 1220, 1298, 1325, 1458, 1470, 1656, 1682, 2851, 2925, 3091, 3234, 3428
VIIIc VIIId VIIIe X XI	670, 769, 819, 997, 1105, 1220, 1296, 1330, 1423, 1467, 1637, 1681, 2830, 2933, 3093, 3240, 3433 679, 754, 816, 1001, 1104, 1293, 1351, 1414, 1458, 1630, 1677, 2847, 2923, 3092, 3214, 3438 689, 756, 818, 893, 1001, 1067, 1129, 1293, 1370, 1465, 1623, 1681, 2767, 2938, 3091, 3252, 3430 762, 814, 957, 1027, 1106, 1197, 1236, 1369, 1451, 1475, 1624, 1681, 2868, 2939, 3099, 3257, 3327 695, 745, 830, 1002, 1157, 1220, 1262, 1287, 1324, 1402, 1463, 1627, 1680, 2180, 2866, 2932, 3092, 3344, 3440

The compounds were characterized by IR and ¹H and ¹³C NMR spectroscopy and by elemental analysis (Tables 1–4); the data obtained confirm the suggested structures. In particular, the ¹H NMR spectrum of each of compounds **IVa–IVd** contains two NH proton signals, characteristic signals of olefinic protons at δ 5.12, 5.16, and 5.14 ppm with ³J_{H⁵H⁶} 4.4, 1.2, and 0.9 Hz for **IVa–IVc**, respectively (for **IVd**, a singlet

at 5.14 ppm), H^6 signal (compounds **IVa–IVc**), and cyclopentadienyl proton signals.

The structure of **IVd** was determined by single crystal X-ray diffraction. The required crystal was obtained by crystallization from morpholine. It was found that compound **IVd**, indeed, has the structure of 6-methyl-4,6-diferrocenyl-1,2,3,6-tetrahydropyrimi-

Comp.	Yield,		Found, %			Esmuuls	Calculated, %				
no.	%	mp, °C	С	Н	Fe	N	Formula	С	Н	Fe	N
IVa	71	233–234	64.81	5.43	14.17	7.05	$C_{21}H_{20}FeN_2O_2$	64.97	5.20	14.38	7.21
IVb	68	191–193	55.10	3.84	12.91	6.23	$C_{20}H_{17}BrFeN_2O$	54.94	3.92	12.78	6.40
IVc	75	181–182	64.78	4.92	24.12	5.83	$C_{24}^{20}H_{22}Fe_{2}N_{2}O$	64.84	4.76	23.97	6.00
IVd	80	255-256	62.61	5.09	23.20	5.71	$C_{25}H_{24}Fe_{2}N_{2}O$	62.53	5.04	23.26	5.83
VIa	92	264-265	68.54	5.39	14.68	7.41	$C_{22}H_{20}FeN_2O$	68.77	5.25	14.53	7.23
VIb	87	282–284	66.84	5.23	13.24	6.54	$C_{23}H_{22}FeN_2O_2$	66.68	5.35	13.49	6.76
VIc	91	266-267	66.73	5.49	13.70	6.44	$C_{23}H_{22}FeN_2O_2$	66.68	5.35	13.49	6.76
VId	86	313-314	66.51	5.52	13.58	6.53	$C_{23}H_{22}FeN_2O_2$	66.68	5.35	13.49	6.76
VIe	92	293-295	69.98	6.02	13.72	6.93	$C_{24}H_{25}FeN_2O$	69.74	6.10	13.51	6.78
VIIIa	91	291-293	64.97	6.45	16.08	8.12	$C_{19}H_{22}FeN_2O$	65.16	6.33	15.95	8.00
VIIIb	94	295-297	66.08	5.37	20.28	5.26	$C_{30}H_{30}Fe_{2}N_{2}O$	65.96	5.53	20.45	5.13
VIIIc	90	263-265	65.67	5.21	21.04	5.11	$C_{29}H_{28}Fe_{2}N_{2}O$	65.44	5.30	20.99	5.26
VIIId	87	278-280	64.76	4.87	21.69	5.23	$C_{28}H_{26}Fe_{2}N_{2}O$	64.90	5.06	21.55	5.40
VIIIe	88	257-259	63.79	5.23	20.27	7.80	$C_{29}H_{29}Fe_2N_3O$	63.65	5.34	20.41	7.67
Χ	89	284–286	62.97	5.74	15.28	11.72	$C_{19}H_{21}FeN_3O$	62.83	5.83	15.37	11.56
XII	85	295–297	63.83	5.94	14.71	10.92	$C_{20}H_{23}FeN_3O$	63.68	6.14	14.80	11.13
		1		1	1	1				1	1

Table 4. Yields, melting points, and elemental analyses of IVa-IVd, VIa-VIe, VIIIa-VIIIe, X, and XII

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 74 No. 11 2004

din-2-one. The general view of the molecule of **IVd** is shown in the figure; the main geometric parameters are given in Table 5 and do not require special comments.

We studied the behavior in this reaction of a series of mono- and bisferrocenalacetones of the carbo- and heterocyclic series (compounds Va–Ve, VIIa–VIIe, IX, XI) and found that, in all the cases, the reactions are fast and give polycyclic ferrocenyltetrahydropyrimidin-2-ones VIa–VIe, VIIIa–VIIIe, X, and XII, respectively, in high yields (Scheme 3).

Scheme 3.

 $\begin{array}{l} R^1 = R^2 = R^3 = H \ (\textbf{a}); \ R^1 = CH_3O, \ R^2 = R^3 = H \ (\textbf{b}); \ R^1 = \\ R^3 = H, \ R^2 = CH_3O \ (\textbf{c}); \ R^1 = R^2 = H, \ R^3 = CH_3O \ (\textbf{d}); \\ R^1 = R^3 = CH_3, \ R^2 = H \ (\textbf{e}). \end{array}$

 $\begin{array}{l} {\rm R}={\rm H}, \ {\rm X}=({\rm CH}_2)_4 \ ({\rm a}); \ {\rm R}={\rm Fc}{\rm CH}=, \ {\rm X}=({\rm CH}_2)_4 \ ({\rm b}); \ {\rm R}=\\ {\rm Fc}{\rm CH}=, \ {\rm X}=({\rm CH}_2)_3 \ ({\rm c}); \ {\rm R}={\rm Fc}{\rm CH}=, \ {\rm X}=({\rm CH}_2)_2 \ ({\rm d}); \ {\rm R}=\\ {\rm Fc}{\rm CH}=, \ {\rm X}={\rm CH}_2{\rm N}({\rm CH}_2){\rm CH}_2 \ ({\rm e}). \end{array}$

The structures of **IVa–IVe**, **VIIIa–VIIIe**, **X**, and **XII** were unambiguously proved by IR and ¹H and 13 C NMR spectra, and also by elemental analysis

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 74 No. 11 2004

Table 5. Selected bond lengths d and bond angles ω in the molecule of **IVd**

Bond	<i>d</i> , Å	Bond angle	ω, deg
$O^1 - C^1$	1.230(4)	$O^1C^1N^1$	123.5(4)
C^1-N^1	1.354(5)	$O^1C^1N^6$	114.5(4)
C^1-N^6	1.360(4)	$C^1N^1C^3$	126.4(3)
N^1-C^3	1.474(5)	$N^1C^3C^4$	106.8(3)
$C^{11}-C^{14}$	1.519(16)	$N^1C^3C^7$	110.3(3)
$C^{3}-C^{4}$	1.512(5)	$C^{4}C^{3}C^{7}$	109.0(3)
$C^{3}-C^{7}$	1.524(5)	$C^5C^4C^3$	123.2(4)
$C^{4}-C^{5}$	1.333(5)	$C^{4}C^{5}N^{6}$	117.6(4)
$C^{5}-N^{6}$	1.407(4)	$C^1N^6C^5$	124.5(4)
$C^{5}-C^{17}$	1.469(5)	$N^{1}C^{3}C^{27}$	108.5(3)
$C^{7}-C^{8}$	1.410(5)	$C^{4}C^{3}C^{27}$	110.0(3)
$C^{17}-C^{18}$	1.414(5)	$C^{8}C^{7}C^{11}$	106.3(4)
$C^{17}-C^{21}$	1.422(5)	$C^8C^7C^3$	126.7(4)
$C^7 - C^{11}$	1.412(5)	$C^{11}C^7C^3$	126.4(4)
$C^3 - C^{27}$	1.522(5)	C ⁸ C ⁷ Fe ¹	69.7(2)
C ⁷ –Fe ¹	2.046(4)	C ⁵ C ¹⁷ Fe ³⁴	122.1(3)

(Tables 1–4). The position of the C=C double bond in the tetrahydropyrimidin-2-one ring is confirmed by the multiplicity and position of the proton signals of the substituted cyclopentadienyl ring of the Fc moiety [7]; all or some of them are shifted upfield relative to the C₅H₅ singlet, as in products **IVa–IVd**. The signals of the quaternary carbon atoms in the ¹³C NMR spectra additionally confirm the suggested structures.

The regioselectivity of formation of **VIa–VIe**, **VIIIa–VIIIe**, **X**, and **XII** is very high. All these compounds were isolated as single isomers. The content of possible alternative isomers was too low for their reliable detection and identification.

EXPERIMENTAL

The IR spectra were taken on a Specord IR-75 spectrometer in KBr. The ¹H and ¹³C NMR spectra of solutions were measured on a Varian Unity-Inova spectrometer [300 and 75 MHz, respectively; solvents $CDCl_3$, $(CD_3)_2SO$, $DCON(CD_3)_2$, and C_5D_5N ; internal reference Me₄Si]. The ¹³C NMR spectra of solid **VIIIc**, **VIIIe**, **X**, and **XII** were taken on a Bruker DMX-500 spectrometer (9.3 kHz). The ¹H and ¹³C NMR and IR data are given in Tables 1–3. For the chromatography of the starting chalcones, we used columns packed with Al₂O₃ (Brockmann grade III); the eluent was hexane–ether, 1 : 2 (by volume).

The following chemicals (Aldrich) were used: ferrocenecarbaldehyde, 99%; cyclohexanone, 99%; cycloheptanone, 99%; 1-methyl-4-piperidone, 97%;

Parameter	Value
Formula	C ₂₂ H ₂₄ Fe ₂ N ₂ O
Molecular weight, g mol ⁻¹	480.16
Temperature, K	291(2)
Crystal system	Monoclinic
Space group	C2/c
a, Å	22.3342(15)
b, Å	14.7506(10)
<i>c</i> , Å	14.6421(10)
α , deg	90.0
β, deg	123.21
γ, deg	90.0
<i>V</i> , Å ³	4035.9(5)
Ζ	8
$d_{\rm calc}, \ {\rm g \ cm^{-3}}$	1.580
Absorption coefficient, mm ⁻¹	1.458
<i>F</i> (000)	1984
Radiation	MoK_{α}
λ, Å	0.71073
Monochromator	Graphite
θ , deg	1.76–24.99
Total number of reflections	16354
Number of unique reflec-	
tions with $I > 2\sigma(I)$	3552
R_1	0.0479
WR ₂	0.0591
R _{int}	0.0755
Number of refined	272
parameters	2 2
Weight scheme	$w = 1/[\sigma^2(Fo^2) +$
	$(0.1693P)^2 + 10.77P],$
	where $P = (Fo^2 + 2Fc)/3$
Goodness of fit (full-matrix	0.908
least-squares method on F^2)	
Residual electron density,	-0.386/0.733
e A ⁻³ , ρ_{min}/ρ_{max}	

 Table 6. Crystallographic data and parameters of X-ray diffraction experiment for IVd

4-methoxybenzaldehyde, 98%; acetylferrocene, 95%; 4-bromobenzaldehyde, 99%; 3-quinuclidinone hydrochloride, 97%; tropinone, 99%; cyclopentanone, 99%; α -tetralone, 98%; 5-methoxy-1-tetralone, 97%; urea, 99%; 6-methoxy-1-tetralone, 99%; 7-methoxy-1-tetralone, 99%; 5,7-dimethyl-1-tetralone, 97%; potassium *tert*-butylate, 95%.

The unit cell parameters and reflection intensities were measured on a Bruker-Smart APEX-CCD diffractometer. The crystallographic data and parameters of the X-ray diffraction experiment and refinement are given in Table 6. The structure of **IVd** was solved by the direct method and refined by the least-squares method in the full-matrix anisotropic approximation for nonhydrogen atoms.

 α , β -Unsaturated ketones IIIa–IIId, Va–Ve, VIIc–VIIe, IX, and XI were prepared from ferrocenecarbaldehyde and the corresponding ketones in aqueous-alcoholic alkali [8]. Compounds VIIa and VIIb were prepared by condensation of cycloheptanone with ferrocenecarbaldehyde in benzene in the presence of *t*-BuOK [9].

Synthesis of 6-ferrocenyl-1,2,3,6-tetrahydropyrimidin-2-ones IVa–IVd, VIa–VIe, VIIIa–VIIIe, X, and XII. A mixture of 10 mmol of chalcone IIIa– IIId, Va–Ve, VIIc–VIIe, IX, or XI, 25 mmol of urea, 20 mmol of t-BuOK, and 150 ml of i-PrOH was refluxed with stirring for 3–5 h until the bright red color of the chalcone disappeared and a yellow solution formed. This solution was quickly poured into 200 ml of water. The precipitate was filtered off, washed with water on the filter, and vacuum-dried. The finely crystalline products obtained were virtually pure ferrocenyltetrahydropyrimidinones, yields 70–90%. For additional purification, they were recrystallized from morpholine.

ACKNOWLEDGMENTS

The study was financially supported by DGAPA-UNAM (grant no. IN203599). The authors are grateful to O.S.J. Muños for measuring the NMR spectra.

REFERENCES

- 1. Ulbricht, T.I.V., *Purines, Pyrimidines and Nucleotides,* New York: MacMillan, 1964, pp. 46–50.
- 2. Shvekhgeimer, M.-G.A., Usp. Khim., 1996, vol. 65, no. 1, p. 43.
- Postnov, V.N., Goncharov, A.V., Hocke, I., and Krut'ko, D.P., J. Organomet. Chem., 1993, vol. 456, p. 235.
- Postnov, V.N., Goncharov, A.V., Hocke, I., and Krut'ko, D.P., *Dokl. Ross. Akad. Nauk*, 1993, vol. 331, no. 1, p. 196.
- 5. Toma, S., Putala, M., and Salisova, M., Coll. Czech. Chem. Commun., 1987, vol. 52, p. 395.
- 6. Osman, A.M., Hassan, Kh.M., and El-Maghraby, M.A., Indian J. Chem. (B), 1976, vol. 14, p. 282.
- Slocum, D.W. and Ernst, C.R., Adv. Organomet. Chem., 1972, vol. 10, P. 79.
- Nesmeyanov, A.N., Postnov, V.N., Klimova, E.I., and Sazonova, V.A., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1979, no. 2, p. 239.
- Klimova, E.I., Martinez, G.M., Klimova, T., and Mendez, S.J.M., J. Organomet. Chem., 2000, vol. 602, p. 105.