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Summary: New C2-symmetrical diaminoferrocenyl derivatives 3 and 2-amino(sulfonamido)cyclohexanes 4 
were found to be highly active ligands for the ruthenium catalyzed asymmetric transfer hydrogenation of 
ketones. Contrary to many existing catalytic systems, the ligands 3 show a high activity at 25 °C and 
operate even at -30 °C (up to 90 % ee). On the other hand, the slightly less active ligands 4 are very easily 
prepared and are highly enantioselective at 30 °C in HCOOH/Et3N (up to 96 % ee). 
Copyright © 1996 Elsevier Science Ltd 

The catalytic enantioselective reduction of ketones has been extensively studied during the last decade. 1 A 

especially useful method is the catalytic transfer hydrogenation 2 using i-PrOH 3 or a HCOOH/Et3N mix- 

ture 4 as hydride source and a chiral ruthenium catalyst bearing ligands such as 1 or 2. In the course of our 

work on the preparation of new chiral C2-symmetrical ferrocenyl derivatives for asymmetric catalysis, 5 we 

have now discovered that the ruthenium complexes of the diaminoferrocenyl derivatives of type 3 are a new 

class of highly efficient transfer hydrogenation catalysts operating even at -30 °C with high conversion and 

good enantioselectivity. 

N(H)R 2 

Ph~INH2 Ar2P ' ~ ~ R  ~ ~ " ' N H 2  

1 2 3 N(H)R2 4 

Herein we report our preliminary results with the new chiral ligand system as well as a highly enantio- 

selective transfer hydrogenation using N-monosulfonylated 1,2-diaminocyclohexane derivatives of type 4. 

The ferrocenes 3 were prepared from ferrocene in four steps (Scheme 1). Acylation of ferrocene (RICOCI, 

CH2C12, AIC13, 0 °C to 25 °C, 4 h) provides ferrocenyldiketones (71 - 92 %) which were reduced enantio- 

selectively with an oxazaborolidine catalyst (CBS-reduction) providing 1, l'-ferrocenyl diols in 90 % - 96 % 

yield and > 99 % ee. 5 Acetylation of these diols (Ac20, pyridine, 25 ° C, 12 h) gives quantitatively the cor- 

responding diacetates 5 which undergo a substitution with an excess of primary amines (THF-H20, 25 °C, 

12 h) furnishing the diaminoferrocenes 3a-e ( 56 % - 93 %) with retention of configuration. 6 

Hydrogenolysis of 3e (H2, Pd(OH)2 cat) leads to the unprotected diaminoferrocene derivative 3f (96 

%).7Monotosylation of 3[ (TosCl (1 equiv), CH2C12, 0 °C, 1 h) affords the aminosulfonamide 3g in 36 % 

yield. 8 The aminoferrocenes 3a-d,f,g were tested in the catalytic reduction of acetophenone (6). Thus, a 

i-PrOH solution of the catalytic system prepared from the ferrocene derivatives 3a-d,f,g (2 mol %) and 
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Scheme 1 

[Ru(p-cymene)C12]2 (0.5 mol %) was treated at temperatures between -30 °C and 22 °C with a i-PrOH 

solution of acetophenone (6) in the presence of KOH (5 mol %) affording (R)-l-phenylethanol (7) with 

excellent conversions and enantioselectivities up to 80 % ee (Scheme 2 and Table 1). 9 No decrease of the 

enantioselectivity is observed with time. 
H OH O [Ru(p-cymene)CI2] 2 (0.5 moP/o) A ~"" 

~ Me Me /-PrOH, KOH, -30 or 22 "C 

.N(H)R 2 

6 , < ~ " / ~  R 1 7 
I 

Fe 3a-d,f,g (2 rnol %) 

Similarly 1-acetylnaphthalene (8) is reduced to (R)-1-naphthyl-l-ethanol (9) with an enantioselectivity up to 

90 % ee. Entries 1-6 of Table 1 compare the results of the different ligands 3a-d,f,g at 22 °C. All except the 

monosulfonamido derivative 3g are highly effective and high conversions are reached within a few minutes 

to a few hours at rt. The best enantioselectivities are obtained with 3a and 3h, both bearing an aryi 

substituent (R 1 = Ph or o-Tol) and a N-methylamino substituent. The free diaminoferrocene derivative 3f 

shows a good catalytic activity but leads to a moderate enantioselectivity (52 % ee, see entry 5). The 

increase of the size of the aryl substituent R 1 (phenyl to 1-naphthyl) doubles the catalytic activity but lowers 

the enantioselectivity (71% ee to 60 % ee, compare entries 1 and 3). Remarkably, the high activity of our 

catalytic system allows us to lower further the reaction temperature. Carrying out the acetophenone 

reduction at -14 °C with the ligand 3a increases the enantioselectivity from 71% ee to 79 % ee. Lowering 

the temperature further to -30 °C (120 h) furnishes the alcohol 7 with 80 % ee (compare entries I, 7 and 8). 

A similar temperature effect is observed with 1-acetylnaphthalene (8). By using the most selective ligands 

3a and 3b, enantioselectivities of 78 % ee and 85 % ee were obtained at rt. Lowering the reaction 
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Table 1. Enantioselective transfer hydrogenation of ketones 6 and 8 in i-PrOH in the presence of 
0.5 mol % of [Ru(p-cymene)CI2]2 and 2 mol % of the aminoferrocenes 3a-d, f, g. 

entry ketone ligand T reaction conversion ee 
(°C) time (h) (%)[a] (%)[a] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

3a  

3b 

3c 

3d 

3f 

3g 

3a 

3a 

3g 

3a 

3a 

3b 

3b 

22 

22 

22 

22 

22 

22 

-14 

-30 

30 

22 

-30 

22 

0 

0.5 

1.5 

0.25 

3 

1 

24 

41 

120 

120 

1 

120 

1 

12 

98 

97 

98 

94 

98 

97 

96 

95 

42 

99 

91 

97 

96 

71 

80 

60 

62 

52 

56 

79 

80 

83[b] 

78 

90 

85 

88 

[a] Determined by GC analysis (Chirasil-DEX CB [b] A HCOOH/Et3N mixture was used. 

Table 2. Enantioselective transfer hydrogenation of ketones 6,  8 and 12 in i-PrOH or 
HCOOH/Et3N in the presence of 0.5 mol % of [Ru(p-cymene)C12]2 and 2 mol % of the 
aminosulfonamides 4a-d. 

entry ketone ligand 

4a 

4b 

4c 

4d 

4d 

T reaction conversion 
(°C) time (h) (%)[a] 

22 (30) 

22 (30) 

22 (30) 

22 (30) 

22 (30) 

24 

24 

24 

24 

36 

ee 
(%)[a] 

97 (>99) 89 (94) 

96 (>99) 90 (89) 

97 (>99) 90 (95) 

96 (>99) 92 (96) 

99 (>99) 92 (96) 

6 12 4d 22 (30) 65 60 (54) 23 (67) 

[a] Determined by GC analysis (ChirasiI-DEX CB). Conversions and % ee in HCOOH- 

Et3N are indicated in parenthesis. 

temperature with the ligand 3a to -30 °C and for 3b to 0 °C allows to increase the enantioselectivity 

respectively to 90 % ee and 88 % ee (compare entries 10 to 13). The high catalytic activity observed using 

the ligand 3a, even allows the reduction of sterically hindered ketones. Thus t-butylphenylketone was re- 

duced with high conversion (> 93 %) within 17 h at 22 °C leading to (S)-2,2-dimethyl-l-phenyl-1-propanol 

with 38 % ee. Interestingly, the less active transfer hydrogenation ligand the monosulfonamide 3g reacts 

with high enantioselectivity by replacing the i-PrOH/KOH reaction medium by the solvent mixture 

HCOOH/Et3N (5:2). Under these conditions, a moderate conversion is obtained (42 %, 120 h) but the enan- 

tioselectivity increases from 56 % ee to 83 % ee (compare entries 6 and 9). This enantioselectivity increase 
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led us to prepare several monosulfonamides derived from the readily available (1R,2R)-I,2- 

diaminocyclohexane (10). Thus, treatment of commercially available 10 with various arylsulfonyl chlorides 

11 (1 equiv, 0 °C, CH2C12) furnishes highly enantioselective transfer hydrogenation ligands 4a-d (Scheme 

3 and Table 2). 10 

Scheme 3 

~.,,, NH2 RSO2C111 ~ N(H)SO2R 4a : R = p-Tol 
= L ~-.. 4b : R = 2,4,6-triisopropylphenyl 

4¢ : R = 2-naphthyl 
NH2 0 "C, CH2CI2 ~ '"NH2 4d : R = 1-naphthyl 

10 55-65 % 

The reduction of acetophenone (6) proceeds smoothly with the aminosulfonamides 4a-d. High enantio- 

selectivities (90-92 % ee) are obtained with 4a-d in i-PrOH. Switching to the HCOOH/Et3N solvent system 

leads to a further increase of the enantioselectivity (94-96 % ee) and to almost quantitative conversions (see 

entries 1-4 of Table 2). 11 l-Acetylnaphthalene (8) behaves as expected in the same way and furnishes the 

alcohol 9 in 96 % ee (see entry 5 of Table 2). Interestingly, the sterically hindered isopropylphenylketone 

12 is reduced in 23 % ee using the i-PrOH/KOH system, whereas an enantioselectivity of 67 % ee is 

obtained with the HCOOH/Et3N system. 

In summary, we have reported two new classes of highly active transfer hydrogenation catalysts derived 

from C2-symmetrical diaminoferrocene derivatives or readily available 2-(sulfonamido)cyclohexanes. 

Extension of this work is currently underway. 
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