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Abstract: An efficient and convergent route was developed for the
synthesis of a novel class of urea-based macrocyclic kinase inhibi-
tors. The synthesis is featured with an efficient urea formation by
using a key carbamate intermediate and with a smooth ring-closure
olefin metathesis. Furthermore, the hydrogenations of the resulting
olefins were investigated in this complex macrocyclic ring system.
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Small-molecule kinase inhibitors have great potential as
novel therapeutics in the treatment of cancer and inflam-
mation. With the success of Gleevec and Iressa as revolu-
tionary anticancer drugs, currently there is overwhelming
interest in the design and development of new kinase
inhibitors.1 Due to their unique binding mode and kinase
inhibition profile, urea-based protein kinase inhibitors
have been a major focus of medicinal chemists.2 We have
been interested in a class of diaryl ureas as checkpoint
kinase 1 (Chk1) inhibitors, exemplified by 1.3 The Chk1
inhibitors have been demonstrated to significantly poten-
tiate the cytotoxicity of DNA-damaging agents in cancer
cells, and they are believed to be a new generation of ad-
juvant therapeutics that may greatly improve the efficacy
and selectivity of DNA-damaging agents in the clinic.4

Based on the X-ray crystallographic analysis and molecu-
lar modeling of 1 complexed with Chk1, we designed
macrocyclic ureas 1a as a new class of kinase inhibitors
by connecting R2 group at the 2-position of the phenyl
ring and R6¢ at the C6¢ position of the pyrazinyl ring
(Scheme 1). It has been well documented that restriction
of conformation through macrocylization can produce
potent inhibitors and can improve pharmacokinetic prop-
erties.5 Described herein is an efficient and convergent
route for the construction of cyanopyrazine-containing
macrocyclic urea kinase inhibitors.6

The synthesis of the various aniline intermediates 2a–c
that were used for the formation of the urea olefins is
shown in Scheme 2. The amino and hydroxyl groups at
the 4-position of these aniline intermediates would be use-
ful handles for further elaborations of the macrocyclic
urea kinase inhibitors. Fluoride was displaced from 3 by

but-3-en-1-ol in the presence of sodium hydride to afford
4 in quantitative yield. Reduction of 4 was effected by
iron powder in the presence of ammonium chloride in
aqueous ethanol to produce 2a in excellent yield. The
alkylation of phenol 5 occurred exclusively at the hydrox-
yl group to yield 2b quantitatively. The nitration of phenol
6 predominantly occurred para to the hydroxyl group to
provide 7. The hydroxyl group was then protected with a
SEM group in the presence of Hünig’s base to yield 8
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Scheme 2 Reaction conditions: (a) NaH, 3-buten-1-ol, THF, 0 °C,
97%; (b) Fe powder, NH4Cl, EtOH, H2O, 80 °C, 86%; (c) allyl
bromide, K2CO3, DMF, r.t., 90%; (d) HNO3, CCl4, 0 °C to r.t., 62%;
(e) SEMCl, DIPEA, CH2Cl2, r.t., quantitative yield; (f) allylic alcohol,
NaH, THF, r.t., 55%; (g) SnCl2, EtOH, Et3N, 70 °C, 47%.
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quantitatively. The chlorine ortho to the nitro group was
selectively displaced by anionic allylic alcohol to produce
9 in 55% yield. The nitro group was selectively reduced in
the presence of the olefin by tin chloride to give 2c in good
yield.

Scheme 3 outlines the synthesis of the advanced olefin in-
termediates. Cyanopyrazine 14 was obtained in four steps
from the commercially available methylpyrazine 10 by
following a patent literature procedure with modifica-
tions.7 Nucleophilic displacement of chloride by an alco-
hol provided the aminopyrazinyl ethers 15a,b. The direct
coupling of 15a,b with phenyl isocyanates failed to pro-
duce ureas. This failure may be attributed to the deactiva-
tion of the amino group by the electron-withdrawing
cyano group on the pyrazine ring. Consequently, the ver-
satile intermediate carbamates 16a,b were synthesized by
coupling 15a,b with phenyl chloroformate.8 Carbamates
16a,b are stable, easily stored colorless solids that have
greatly facilitated the synthesis of ureas. The coupling of
16a,b to anilines 2a–c went smoothly in DMF or toluene
(less favorable) under heating, and the pure urea products
17a–e were simply obtained by trituration in most cases.9

Since the Grubbs olefin metathesis ring-closure reaction
was first applied to the synthesis of macrocyclic peptides,
it has been a very powerful macrocyclization methodolo-
gy for the construction of synthetically challenging natu-
ral products and medicinally significant molecules.10

X-ray crystallographic analysis indicates that diaryl urea
1 has an intramolecular hydrogen bond (shown as a dotted
line between an urea NH and N1 of pyrazine of 1. This H
bond is also indicated in the general scaffold (17a–e in
Scheme 4) which potentially could facilitate a favorable
conformation for the metathesis ring closure. The ureas
17a–e were therefore cyclized by olefin metathesis in the
presence of Grubbs catalysts to provide the desired prod-
ucts 19a–f in moderate to excellent yield (Scheme 4).11

Although systematic and careful optimization of the reac-

tion conditions was not undertaken, several phenomena
were observed. First, for a specific substrate 17a–e, the
catalysts (Figure 1) exhibited activity in the order of
Hoveyda–Grubbs catalyst > Grubbs II catalyst > Grubbs I
catalyst. Second, although the Grubbs olefin metathesis
has been reported to be incompatible with cyano groups in
some cases, the cyano group in our substrates (17a–e) was
very stable under our reaction conditions and did not show
any adverse effect on the ring-closure reaction. Third, the
length of the carbon spacers of the olefin side chains in
17a–c did not show significant effects on the ring-closure
yield. However, it did affect the conformation of the cy-
clized product. For example, 17a and 17b predominantly
produced cis-conformation products 19a and 19b, respec-
tively, and only trace of their trans counterparts were de-
tected by LC-MS. In contrast, substrate 17c produced a
4:1 mixture of cis/trans isomers, indicating that the longer
chain length allows for the formation of a trans double
bond whereas the shorter alkene moieties would result in
ring sizes that disallow a trans double bond due to geo-
metrically strain. Fourth, although the unprotected amino
group has been reported troublesome in Grubbs cycliza-
tions, olefin 17e bearing an amino group at the 4-position
was cyclized in the presence of Grubbs II catalyst in good
yield although the unprotected amine did make it more
difficult to remove the green color that presumably origi-
nated from the Grubbs catalysts.12 Finally, the substrate
17d with a SEM protecting group was macrocyclized in
excellent yield. This high efficiency may be due to its
good solubility in dichloromethane.

With the unsaturated macrocycles 19a–e in hand, we per-
formed the hydrogenation of the olefin in the presence of
platinum or palladium catalysts (Scheme 4).13 We found
that the 5-Cl substituent of phenyl ring and the 5¢-CN  sub-
stituent of the pyrazinyl ring were both stable to our reac-
tion conditions (Pt/C or Pd/C as catalyst). The ring size of
19a–e significantly affected the hydrogenation. Com-

Scheme 3 Reaction conditions: (a) Cl2, AcOH, 110 °C, 25%; (b) NH2OH–HCl, NaOH, H2O, EtOH, pH 7.5, 95 °C, 29%; (c) 1 N NaOH, Ac2O,
20 °C, 82%; (d) o-xylene, 160 °C, 75%; (e) but-3-en-1-ol (or allyl alcohol), NaH, dioxane, 100 °C, 80–90%; (f) phenyl chloroformate, pyridine,
CH2Cl2, 0 °C to r.t., 80–90%; (g) 2a–c, DMF (or toluene), 90 °C; (h) iron powder, NH4Cl, EtOH, H2O, 80 °C, 71%.
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pounds 19a and 19b were reduced with hydrogen using
Pt/C or Pd/C as catalyst in minutes in moderate yield, and
longer reaction time resulted in extensive side reactions
with the formation of a major uncharacterized side prod-
uct. In contrast, the hydrogenation of 19c under the same
conditions went very well and provided the final product
20c in quantitative yield. Furthermore, the presence of
substituents on the 4-positon of the phenyl ring signifi-
cantly improved the hydrogenation. Olefins 19d and 19e
were reduced in the presence of Pd/C to give 20d (91%)
and 20e (80%), respectively.

Scheme 4 Reaction conditions: (a) Grubbs II catalyst, CH2Cl2, re-
flux; (b) H2, Pd/C (10%), MeOH–THF (3:1), r.t.

The olefins 19a–e may also be further elaborated to gain
access to compounds not explored in this account of our
research. For example, they can be readily transformed
into dihydroxyl,14 aminohydroxyl,15 and epoxides.16 Fur-
thermore, the amino group (19d, 20d) and the protected
hydroxyl group (19e, 20e) at the 4-position of the phenyl
ring provide a handle, with which a large number of ana-
logues could be quickly synthesized in parallel fashion for
biological tests.

In summary, an efficient and convergent route was devel-
oped for the synthesis of a novel class of macrocyclic urea
kinase inhibitors. The synthesis is featured with an effi-
cient urea formation by using a key carbamate intermedi-

ate and with a smooth ring-closure olefin metathesis.
Furthermore, the hydrogenation of the resulting olefin
was investigated in this complex macrocyclic ring system.
The efficient synthetic methodology developed here
should facilitate the utilization of these macrocylic com-
pounds as anticancer agents in the field of kinase
inhibitors.
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