ONE CARBON UNIT TRANSFER TO ENAMINES THROUGH OXAZOLIDINES AND TETRAHYDRO-2H-1,3-OXAZINE

Harjit Singh^{*}, Rakesh Sarin, and Kamaljit Singh Department of Chemistry, Guru Nanak Dev University Amritsar-143005, India

<u>Abstract</u> - Oxazolidines and tetrahydro-2H-1,3-oxazine undergo acid catalysed transfer of C₂ carbon unit inbetween two nucleophilic carbons of stabilised enamines.

Like THF model 1-methyl-3-tosyl/acetyl imidazolidine derivatives 1 , oxazolidines and thiazolidines irrespective of the presence or absence of electron donating group at nitrogen, demonstrate carbonyl group oxidation level carbon transfer character to binucleophiles, i.e. C, N; N, N etc. 2 The N 5 , N 10 -methylenetetrahydrofolate induced reductive methylation 3 of 2'-deoxyuridylate to 2'-deoxythymidylate involves the initial transfer of $G_2(C_2)$ of imidazolidine ring, at formal dehyde level to enamine β -carbon (C_5) of uracil moiety. Consequently, for understanding the mechanistic features, the investigation of such carbon transfer reactions on enamines are significant. Here we report that oxazolidines and tetrahydro-2H-1,3-oxazine perform acid catalysed transfer of G_2 carbon unit inbetween nucleophilic carbons of two molecules of relatively stable enamines and form methylene bis-enamine adducts which may undergo further transformations.

Ethyl β -aminocrotonate, a relatively stable enamine⁶, with 2-phenyl-3,4,4-trimethyl-oxazolidine (1a) or 2-phenyl-4,4-dimethyloxazolidine (1b) in acetonitrile at room temperature in the presence of a catalytic amount of acetic acid furnish diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (2a). LikeWise, 3-phenyloxazolidine (1c) and ethyl β -aminocrotonate yield diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (2b) (Table). Ethyl β -amil inocrotonate also reacts with (1a), (1b) and (1c) to furnish corresponding dihydropyridine derivatives, 2c and 2d, respectively (Table).

Evidently, alkylidene imines, (6, R=H, Ph; R^5 =COOEt; R^3 =H, Ph; R^6 =Me), generated through β -elimination of (5), which are tautomers of the initial adducts (4) formed from protonated oxazolidines and enamines, react with a second molecule of enamine to form adducts which through cycloelimination finally yield 2a - 2d. In case of a similar reaction of oxazolidine with an enamine lacking H at nitrogen corresponding 7 is formed through cycloaddition reaction of the initial adduct (4) which cannot exist as tautomer (5). Thus the absence or presence of H at nitrogen of enamine directs the course of its reaction with an oxazolidine (Scheme).

Reagent	En amin e	Product ^a	m.p.(^O c)	Time(h)	Yield(%)
<u>1a</u>	C00C ₂ H ₅	<u>2a</u>	156	6.0 ^b	73
<u>1b</u>		<u>2a</u>	-do-	4.5 ^b	70
<u>1c</u>		<u>2b</u>	18 2, 5	3.0 ^b	80
<u>8</u>		<u>2b</u>	- do -	0.1 ^b	90
<u>la</u>	H ₃ C NHC ₆ H ₅	<u>2c</u>	155	6.0 ^b	40
<u>1</u> b		<u>2c</u>	- do-	8.0 ^b	35
<u>1c</u>		<u>2d</u>	99	2.5 ^b	70
<u>8</u>		<u>2d</u>	-do-	0.7 ^b	65
<u>1a</u>		<u>3a</u>	127	8.0°	5 3
<u>1b</u>		<u>3a</u>	-do-	18.0 d	55
<u>1c</u>		<u>3b</u>	164	12.0 ^b	55
<u>8</u>	Н	<u>3b</u>	-do-	3.0 ^d	70

a - For all the compounds satisfactory spectral data and/or comparison with authentic samples have been obtained. b - In CH_3CN/CH_3COOH at room temperature, c - In refluxing CH_3CN/CF_3COOH, d - In refluxing CH_3CN/CH_3COOH.

Indole undergoes electrophilic reactions at position 3 and has an enamine character. It reacts with 2-phenyl-3,4-trimethyloxazolidine (1a)/2-phenyl-4,4-dimethyl-oxazolidine (1b) in refluxing acetonitrile under acidic conditions to furnish 3,3'-phenylmethylene-bis(IH-indole) (3a). In a similar reaction, 3-phenyloxazolidine (1c) and indole furnish 3,3'-methylene-bis(IH-indole) (3b) (Table). These products are analogs of streptindole, a genotoxic metabolite.

The carbonyl character of saturated C_2 unit of tetrahydro-2H-1,3-oxazines and functionalization of C_2 -alkyl chain of their precursor 5,6-dihydro-2H-1,3-oxazines has been demonstrated. By the same argument as was advanced for oxazolidines tetrahydro-2H-1,3-oxazines could also act as carbon transfer agents. Thus we have found that tetrahydro-2H-1,3-oxazine (8) reacts advantageously (Table) with ethyl β -aminocrotonate, ethyl β -amilinocrotonate and indole in acetonitrile in the presence of acetic acid to furnish 2b, 2d and 3b respectively. Further synthetic utility of tetrahydro-2H-1,3-oxazines is being investigated.

ACKNOWLEDGEMENT

We are thankful to UGC and CSIR for financial assistance.

REFERENCES

- 1 H.C. Hiemstra, H. Bieraugel, M. Wijnberg and U.K. Pandit, <u>Tetrahedron</u>, 1983, 39, 3981 and references therein.
- 2 H.Singh and R.Sarin, Heterocycles, 1985, 23, 107 and unpublished results.
- 3 D.W.Young in 'Chemistry and Biology of Pteridines' ed. J.A. Blair, Walter de Gruyter and Co., Berlin, 1983, 321.
- 4 G. Lauer, W. Schäfer and A. Schweig, Tetrahedron Letters, 1975, 3939.
- P.F.C.v.d. Meij, R.D.Lohmann, E.R.D.Waard, T.B.R.A. Chen. and U.K.Pandit, J.Chem.Soc. Chem. Commun., 1985, 1229.
- 6 G.DE Stevens, H.M. Blatter and R.W.J. Carney, Angew. Chem. Int.Ed.Engl., 1966, 5, 35
- 7 H.Griengl, G. Prischl and A. Bleikolm, Liebigs Ann. Chem., 1980, 1573.
- 8 T.Osawa and M.Namiki, Tetrahedron Letters, 1983, 24, 4719.
- A. I. Meyers, A. Nabeya, H.W. Adickes, I.R. Politzer, G.R. Malone, A.C. Kovelesky, R.L. Nolen and R.C. Portnoy, J. Org. Chem., 1973, 38, 36.

Received, 30th June, 1986