
Role of Codeinone in the Biosynthesis of Morphine Alkaloids

By A. R. BATTERSBY,* E. BROCHMANN-HANSSEN, and (in part) J. A. MARTIN

(The Robert Robinson Laboratories, University of Liverpool, and Department of Pharmaceutical Chemistry, University of California, San Francisco)

It is established¹ that the terminal steps in the biosynthesis of morphine involve conversion of thebaine (I) *via* codeine (III) into morphine (IV). Codeinone (II) has been considered on chemical grounds to be a probable intermediate² and we now report experiments with specifically-labelled materials which show codeinone to act as a precursor of codeine and morphine.

 $[2-^{3}H]$ Morphine (IV) was prepared by basecatalysed exchange³ and converted by standard methods⁴ into $[2-^{3}H]$ codeine (III) and $[2-^{3}H]$ codeinone (II), the latter being shown by dilution analysis to contain < 0.036% of $[2-^{3}H]$ codeine. Reduction⁵ of radio-inactive codeinone with sodium borotritiide gave $[6-^{3}H]$ codeine which was mixed in known proportion with $[2-^{3}H]$ codeine to give $[2, 6-^{3}H_{2}]$ codeine. This and $[2-^{3}H]$ codeinone were fed separately to *Papaver somniferum* plants and after two weeks, these were worked for alkaloids by a method shown not to cause exchange from $[2-^{3}H]$ morphine. The incorporation of $[2-^{3}H]$ codeinone into codeine was $4\cdot8\%$ and into morphine $18\cdot4\%$. Treatment

of the isolated morphine with aqueous base removed 98% of its ³H-activity proving specific labelling at C-2 as in the precursor.

[2,6-3H2]Codeine was converted efficiently by the plants into morphine (34%) and part was recovered (5.8%). If reversal of the reduction of codeinone to codeine occurs to a significant extent in the living system, then [2,6-3H]codeine will lose tritium from C-6 and this will be evident in the morphine formed from it. Base-catalysed exchange of the isolated morphine allowed the labelling at C-2 to be determined and the material after exchange was converted by O-methylation and oxidation into codeinone. The ketone carried <1% of the original activity. In this way the ratio of the 2-label: 6-label in the morphine was found to be 1.12:1 (cf. 1.13:1 in [2,6-3H]codeine fed). Similarly, the ratio in the recovered codeine was shown to be 1.15:1. There is thus no significant reversal of the reductive step in the poppy plants used.

The foregoing data give strong support for the sequence thebaine (I) \rightarrow codeinone (II) \rightarrow codeine (III) \rightarrow morphine (IV).

Rapoport and co-workers⁶ have published work during the preparation of our paper which gives evidence from ¹⁴CO₂ exposures and feeding experiments (generally labelled) that codeinone is an intermediate on the pathway. Our work and theirs interlock.

(Received, April 3rd, 1967; Com. 321.)

¹ H. Rapoport, F. R. Stermitz, and D. R. Baker, *J. Amer. Chem. Soc.*, 1960, 82, 2765; F. R. Stermitz and H. Rapoport, *ibid.*, 1961, 83, 4045; A. R. Battersby and B. J. T. Harper, *Tetrahedron Letters*, 1960, 21. ² D. H. R. Barton and T. Cohen, "Festschrift A. Stoll," Birkhauser, Basle, 1957, p. 117; D. H. R. Barton, G. W. Kirby, W. Steglich, G. M. Thomas, A. R. Battersby, T. A. Dobson, and H. Ramuz, *J. Chem. Soc.*, 1965, 2423.

 ³ G. W. Kirby and L. Ogunkoya, J. Chem. Soc., 1965, 6914.
⁴ V. M. Rodinov, Bull. Soc. chim. France, 1926, 39, 305; R. J. Highet and W. C. Wildman, J. Amer. Chem. Soc., 1955, 77, 4399.

⁵ M. Gates, J. Amer. Chem. Soc., 1953, 75, 4340.

⁶G. Blaschke, H. I. Parker, and H. Rapoport, J. Amer. Chem. Soc., 1967, 89, 1540.