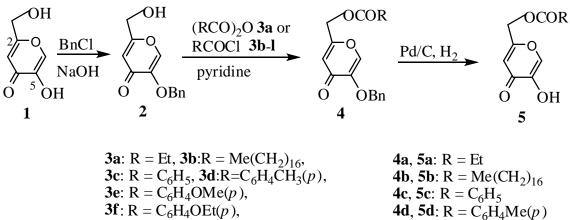
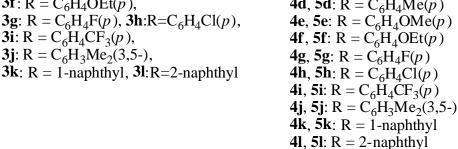
HETEROCYCLES, Vol. 87, No. 6, 2013, pp. 1349 - 1358. © 2013 The Japan Institute of Heterocyclic Chemistry Received, 9th April, 2013, Accepted, 7th May, 2013, Published online, 13th May, 2013 DOI: 10.3987/COM-13-12726

A FACILE SYNTHESIS OF (5-HYDROXY-4-OXO-4*H*-PYRAN-2-YL)METHYL CARBOXYLATES AND THEIR ANTIVIRAL ACTIVITY AGAINST HEPATITIS C VIRUS

Tetsuro Shimo,^{a,*} Yuki Taketsugu,^a Takuya Goto,^a Masaaki Toyama,^b Kohji Yoshimura,^b and Masanori Baba^b

^aDepartment of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065, Japan


^bDivision of Antiviral Chemotherapy, Center for Chromic Viral Diseases, Graduate School of Medicinal and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan


Abstract -5-Benzyloxy-2-hydroxymethyl-4*H*-pyran-4-one (2) was synthesized from kojic acid (1) and subsequently reacted with carboxylic anhydride (3a)and a series of carboxylic acid chlorides (3b-l) to give the corresponding (5-benzyloxy-4-oxo-4*H*-pyran-2-yl)methyl carboxylates (**4a**–**l**). These afford compounds were then reductively debenzylated the to (5-hydroxy-4-oxo-4*H*-pyran-2-yl)methyl carboxylates (5a-l), which were tested for their inhibitory activities against the hepatitis C virus.

Hepatitis C virus (HCV) infection is a worldwide problem. In general, HCV infection proceeds to chronic infection,¹ which often induces cirrhosis of the liver and hepatocellular carcinoma.² Liver transplantation is currently the only treatment available to patients with the severe end-stage liver disorders caused by HCV infection.³ To date, no protective vaccines have been developed for HCV,

and pegylated interferon (PEG-IFN) and the nucleoside analogue ribavirin are the standard treatments for HCV infection.⁴⁻⁶ Unfortunately, however, many patients cannot tolerate the serious side effects associated with the use of PEG-IFN and ribavirin. It is well known that kojic acid, which is otherwise known as 5-hyroxy-2-hydroxymethyl-4*H*-pyran-4-one and isolated as a fermentation product of the *Aspergillus* species, inhibits tyrosinase activity through the chelation of copper,⁷ which is essential for tyrosinase activity.⁸ Kojic acid and its derivatives have also been reported to prevent photodamage² by inhibiting nitric oxide (NO) production,¹⁰ express depigment activity,¹¹ and act as Histamine H₃ receptor ligands.¹² To the best of our knowledge, however, kojic acid and its derivatives have not been examined for their anti-HCV activity. Since kojic acid possesses a chelating moiety that enables it to form bidentate complexes with a variety of different metals, we describe herein a facile synthesis of (5-hydroxy-4-oxo-4*H*-pyran-2-yl)methyl carboxylates (**5**) possessing two such functional groups for chelating, and provide an evaluation of their anti-HCV activity.

(5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl carboxylates (**5a-1**) were synthesized in three steps from kojic acid (**1**), as shown in Scheme 1. Thus, kojic acid (**1**) was reacted with benzyl chloride under basic conditions to give 5-benzyloxy-2-hydroxymethyl-4*H*-pyran-4-one (**2**). The 2-hydroxymethyl group of **2** was then esterified with carboxylic anhydride (**3a**) and a series of carboxylic acid chlorides (**3b–1**) to give the corresponding (5-benzyloxy-4-oxo-4*H*-pyran-2-yl)methyl carboxylates (**4a–1**), which were reductively debenzylated to afford the (5-hydroxy-4-oxo-4*H*-pyran-2-yl)methyl carboxylates (**5a-1**). Compound **2** was prepared from **1** in 88% yield according to the method previously described in the literature.^{13a} The reaction of the compound **2** with propionic anhydride (**3a**) in pyridine gave (5-benzyloxy-4-oxo-4*H*-pyran-2-yl)methyl propionate **4a** in 75% yield, and the material was subsequently reductively debenzylated with hydrogen in the presence of Pd/C to give (5-hydroxy-4-oxo-4*H*-pyran-2-yl)methyl propionate **5a** in 72% yield. Similarly, the reactions of **2** with a variety of acyl chlorides (**3b-c**) and aroyl chlorides (**3d-l**) afforded the corresponding products (**4b-l**), which were also reductively debenzylated to give the corresponding products (**5b-l**). The results of these reactions are summarized in Table 1.

Scheme 1

Denterry	2	Product (yield, %)							
Entry	3 —	4	5						
1	3 a	4a (75)	5a (72)						
2	3b	4b (69)	5b (72)						
3	3c	4c (88)	5c (88)						
4	3d	4d (86)	5d (80)						
5	3e	4e (63)	5e (79)						
6	3f	4f (33)	5f (45)						
7	3g	4g (80)	5g (81)						
8	3h	4h (85)	5h (79)						
9	3i	4i (63)	5i (48)						
10	3ј	4j (80)	5j (80)						
11	3k	4k (84)	5k (81)						
12	31	41 (37)	5l (88)						

Table 1. Reaction of compound 2 with propionic anhydride (3a) and the acid chlorides (3b–l)

With our compounds in hand, we proceeded to investigate the cytotoxicity and anti-HCV activity of kojic acid (1) and its derivatives (**5a-l**) in subgenomic HCV replicon cells (LucNeo#2). The results of these experiments are shown in Table 2. Compounds **5e** and **5l**, which contained a *p*-methoxy phenyl or 2-naphthyl group as their carboxylates, respectively, showed higher anti-HCV activity than the other compounds, but were less active than the HCV NS3 protease inhibitor telaprevir. Since products **5e** and **5l**, which have hydrophobic or bulky substituent, showed higher anti-HCV activity, the structure of the acceptor may have hydrophilic substituent and relatively wide cavity.

In summary, a series of (5-hydroxy-4-oxo-4*H*-pyran-2-yl)methyl carboxylates (**5a-l**) were easily synthesized from kojic acid in relatively good yields over three steps. Given that compounds **5e** and **5l** showed the highest levels of anti-HCV activity of this particular compound series, our laboratory is currently involved in the synthesis of further kojic acid derivatives.

	_	Inhibitory activity (µM)	
Compound	R –	EC ₅₀	CC ₅₀
1(Kojic acid)		>100	>100
5a	Et	>100	>100
5b	Me(CH ₂) ₁₆	63	>100
5c	C_6H_5	23.49	>100
5d	$C_6H_4Me(p)$	5.6	>100
5e	$C_6H_4OMe(p)$	2.55±0.61	>100
5f	$C_6H_4OEt(p)$	5.13±3.44	>100
5g	$C_6H_4F(p)$	7.3	>100
5h	$C_6H_4Cl(p)$	4.15	>100
5 i	$C_6H_4CF_3(p)$	7.91±2.24	>100
5ј	C ₆ H ₃ Me ₂ (3,5-)	31	>100
5k	1-naphthyl	10.54	>100
51	2-naphthyl	2.74±0.22	>100

Table 2. Anti-HCV activity of compounds 1 and 5a-l in LucNeo#2 cells

EXPERIMENTAL

All melting points were measured on Yanagimoto Melt-temp apparatus and uncorrected. NMR spectra were measured at 400 MHz on the JNM GSX-400 (TMS as an internal standard). IR spectra were recorded with a JASCO IR Report-100 spectrometer. Mass spectra were recorded with a JEOL JMS-HX110A (FABMS) using *m*-nitrobenzyl alcohol as matrix. Elemental analysis was made using a Yanaco MT-5. PLC Silicagel 60 F_{254} (2 mm) was used for preparative TLC and Wakogel 200 was used for preparative column chromatography.

5-Benzyloxy-2-hydroxymethyl-4*H***-pyran-4-one** (**2**) A solution of kojic acid (**1**) (3.00 g, 21.1 mmol) benzyl chloride (3.85 g, 22.5 mmol) and sodium hydroxide (0.870 g, 21.8 mmol) in MeOH (40 mL) was refluxed for 5 h. After removing the solvent *in vacuo*, to the reaction mixture was added cold water (40 mL). The resulting solid was filtered and recrystallized from EtOH to give **2** (4.30 g, 88% yield).

2: mp 131 – 133 °C (lit., mp 132 °C, 13a 134 –136 °C 13b). ¹H NMR (CDCl₃) δ 2.12 (1H, s), 4.45 (2H, s), 5.08 (2H, s), 6.51 (1H, s), 7.36 (5H, m), 7.52 (1H, s). LR MS *m*/*z* 233(MH⁺). HR MS (MH⁺) calcd for C₁₃H₁₃O₃ 233.0814. Found: 233.0808.

(5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl propionate (5a)..... Propionic anhydride (3a) (252 mg, 1.94 mmol) was added to a solution of 2 (300 mg, 1.29 mmol) in pyridine (12 mL) and the solution was heated at 60 °C for 20 h. After the solution was evaporated *in vacuo*, a mixture of 1M NaHCO₃ aqueous solution (50 mL) and CHCl₃ (50 mL) was added to the residue. The separated organic layer was dried by MgSO₄ and the filtrate was evaporated *in vacuo* to give 4a (300 mg, 75% yield) which was used to the next reaction without further purification.

4a: ¹H NMR (CDCl₃) δ 1.20 (3H, t, *J* = 7.6 Hz), 2.45 (q, *J* = 7.6 Hz), 4.83 (2H, s), 5.05 (2H, s), 6.42 (1H, s), 7.33 (5H, m), 7.54 (1H, s).

A solution of **4a** (100 mg, 0.35 mmol) in MeOH (5 mL) containing 5% Pd-C (50 mg) was vigorously stirred for 1 h at room temperature under a hydrogen atmosphere. After the catalyst was removed by filtration, the filtrate was evaporated to dryness *in vacuo*. The residue was purified by the use of preparative TLC (eluent: EtOAc:hexane = 1:1) to give **5a** (50 mg, 72% yield).

5a: mp 77 – 79 °C (from EtOAc:hexane = 1:1, v/v). ¹H NMR (CDCl₃) δ 1.19 (3H, q, J = 7.6 Hz),

2.43 (2H, t, J = 7.6 Hz), 4.93 (2H, s), 6.48 (1H, s), 7.84 (1H, s). IR (KBr) 1730, 1679 cm⁻¹. LR MS m/z199 (MH⁺). HR MS calcd for C₉H₁₁O₅ 199.0603. Found: 199.0621.

(5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl stearate (5b)..... Stearoyl chloride (3b) (312 mg. 1.03 mmol) was added to a solution of 2 (200 mg, 0.86 mmol) in pyridine (12 mL) and the solution was heated at 60 °C for 24 h. After the solution was evaporated *in vacuo*, a mixture of 1M NaHCO₃ aqueous solution (50 mL) and CHCl₃ (50 mL) was added to the residue. The separated organic layer was dried by MgSO₄ and the filtrate was evaporated *in vacuo* and the resulting oily residue was chromatographed by silica gel (eluent: EtOAc/hexane = 1:1, v/v) to afford 4b (189 mg, 69% yield).

4b: δ 0.85 (3H, t, *J* = 7.6 Hz), 1.55 (28H, m), 1.66 (2H, m), 2.40 (t, *J* = 7.6 Hz), 4.84 (2H, s), 5.03 (2H, s), 6.42 (1H, s), 7.35 (5H, m), 7.54 (1H, s).

A solution of **4b** (100 mg, 0.20 mmol) in a 1:1 mixture of MeOH and CHCl₃ (6 mL) containing 5% Pd-C (50 mg) was vigorously stirred for 24 h at room temperature under a hydrogen atmosphere. After the catalyst was removed by filtration, the filtrate was evaporated to dryness *in vacuo*. The residue was purified by the use of preparative TLC (eluent: EtOAc:hexane = 1:1, v/v) to give **5b** (50 mg, 72% yield). **5b**: mp 90 – 93 °C (from EtOAc:hexane = 1:1, v/v). ¹H NMR (CDCl₃) δ 0.88 (3H, t, *J* = 7.6 Hz), 1.52 (28H, m), 1.64 (2H, m), 2.38 (2H, t, *J* = 7.6 Hz), 4.92 (2H, s), 6.48 (1H, s), 7.84 (1H, s). IR (KBr) 1732, 1655 cm⁻¹. LR MS *m*/*z* 409 (MH⁺). *Anal*. Calcd for C₂₄H₄₁O₅: C, 70.55, H, 9.87. Found: C, 70.11, H, 9.90.

(5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl benzoate (5c)..... The reaction of 2 (300 mg, 1.29 mmol) with benzoyl chloride (3c) (270 mg, 2.0 mmol) in pyridine (10 mL) was carried out, according to the similar reaction of 2 with 3b, to give 4c (380 mg, 88% yield) which was used to the next reaction without further purification.

4c: ¹H NMR (CDCl₃) δ 5.02 (2H, s), 5.18 (2H, s), 6.54 (1H, s), 7.40 (5H, m), 7.50 (2H, t, *J* = 8.5 Hz), 7.54 (1H, s), 7.62 (1H, t, *J* = 8.5 Hz), 8.05 (2H, d, *J* = 8.5 Hz).

The reduction of 4c (100 mg, 0.30 mmol) in MeOH (5 mL) with Pd-C (50 mg) under a hydrogen atmosphere was carried out, according to the same treatment of 4b, to afford 5c (65 mg, 88%).

5c: mp 180 – 182 °C (from EtOAc: hexane = 1:1, v/v) (180-181 °C).¹⁴ ¹H NMR (CDCl₃) δ 5.18 (2H, s), 6.60 (1H, s), 7.48 (2H, t, *J* = 8.5 Hz), 7.62 (1H, t, *J* = 8.5 Hz), 7.84 (1H, s), 8.07 (2H, d, *J* = 8.5 Hz).

IR (KBr) 1742, 1685 cm⁻¹. LR MS m/z 247 (MH⁺). HR MS (MH⁺) calcd for C₁₃H₁₁O₅.247.0603. Found: 247,0615.

The results of similar reactions of 2 with 3d-l and the reduction of 4d-l to afford (5-hydroxy-4-oxo-4*H*-pyran-2-yl)methyl *p*-methylbenzoate (**5d**), (5-Hydroxy-4-oxo-4H-pyran-2yl)methyl p-methoxybenzoate (5e), (5-Hydroxy-4-oxo-4H-pyran-2-yl)methyl p- ethoxybenzoate (5f), (5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl *p*-fluorobenzoate (5g),(5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl *p*-chlorobenzoate (**5h**), (5-Hydroxy-4-oxo-4Hpyran-2-yl)methyl *p*-trifluoromethylbenzoate (**5i**), (5-Hydroxy-4-oxo-4H-pyran-2-yl)methyl 3,5-methylbenzoate (5j), (5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl 1-naphthylbenzoate (5k), (5-Hydroxy-4-oxo-4H-pyran-2-yl)methyl 2-naphthylbenzoate (5l) are summarized in Table 3.

The anti-HCV activity of the test compounds was determined in LucNeo#2 cells by the previously described method with some modifications.¹⁵ Briefly, the cells $(5 \times 10^3 \text{ cells/well})$ were cultured in a 96-well plate in the absence of G418 and in the presence of various concentrations of the compounds. After incubation at 37 °C for 3 days, the culture medium was removed, and the cells were washed twice with phosphate-buffered saline (PBS). Lysis buffer was added to each well, and the lysate was transferred to the corresponding well of a non-transparent 96-well plate. The luciferase activity was measured by addition of the luciferase reagent in a luciferase assay system kit (Promega) using a luminometer with automatic injectors (Berthold Technologies).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4d4d4d $(260 \text{ mg}, 86\%)$ $(100 \text{ mg}, 0.29 \text{ mmol})$ $(260 \text{ mg}, 86\%)$ $(100 \text{ mg}, 0.29 \text{ mmol})$ 1 H NMR (CDCl ₃) δ 2.40 (3H, s), 5.05 (2H, s), 5.09 (2H, s), $6.54 (1H, s), 7.29 (2H, t, J = 8.0 \text{ Hz}), 7.38 (5H, m), 7.59$ $(1H, s), 8.05 (2H, d, J = 8.0 \text{ Hz}), 7.38 (5H, m), 7.59$ $(1H, s), 8.05 (2H, d, J = 8.0 \text{ Hz}).$ $4e$ $4e$ $4e$ $4e$ $4e$ $4e$ $4e$ $1H$ NMR (CDCl ₃) δ 3.86 (3H, s), 5.05 (2H, s), 5.10 (2H, s), $6.53 (1H, s), 6.95 (2H, d, J = 8.5 \text{ Hz}), 7.38(5H, m), 7.59$	 5d (50 mg, 80%), mp 135-136 °C (EtOAc/hexane = 1:1) ¹H NMR (CDCl₃) δ 2.43 (3H, s), 5.15 (2H, s), 6.59 (1H, s), 7.29 (2H, d, <i>J</i> = 8.0 Hz), 7.87 (1H, s), 8.03 (2H, d, <i>J</i> = 8.0 Hz), IR (KBr) 1740, 1695 cm⁻¹. LR MS <i>m/z</i> 261 (MH⁺). <i>Anal</i>. Calcd for C₁₄H₁₂O₅: C, 64.61, H, 4.65. found: C, 64.49, H, 4.64. H, 4.65. found: C, 64.49, H, 4.64. 5e (59 mg, 79%), mp 152-154 °C (EtOAc/hexane = 1:1)
$(0.86 \text{ mmol}) (1.7 \text{ mmol})$ $(1.7 \text{ mmol}) (200 \text{ mg} 3e 220 \text{ mg} \rightarrow$ $(0.86 \text{ mmol}) (1.3 \text{ mmol}) \rightarrow$ $(0.86 \text{ mmol}) (1.3 \text{ mmol}) \rightarrow$ $(0.86 \text{ mmol}) (1.5 \text{ mmol}) \rightarrow$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 ¹H NMR (CDCl₃) δ 2.43 (3H, s), 5.15 (2H, s), 6.59 (1H, s), 7.29 (2H, d, J = 8.0 Hz), 7.87 (1H, s), 8.03 (2H, d, J = 8.0 Hz), IR (KBr) 1740, 1695 cm⁻¹. LR MS m/z 261 (MH⁺). Anal. Calcd for C₁₄H₁₂O₅: C, 64.61, H, 4.65. found: C, 64.49, H, 4.64. 5e (59 mg, 79%), mp 152-154 °C (EtOAc/hexane = 1:1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(CDCl_3) \delta 2.40 (3H, s), 5.05 (2H, s), 5.09 (2H, s), , s), 7.29 (2H, t, J = 8.0 Hz), 7.38 (5H, m), 7.59 8.05 (2H, d, J = 8.0 Hz). 4e 4e 4e 53, 63% (100 mg, 0.27 mmol) (100 mg, 0.27 mmol) (CDCl_3) \delta 3.86 (3H, s), 5.05 (2H, s), 5.10 (2H, s), , s), 6.95 (2H, d, J = 8.5 Hz), 7.38(5H, m), 7.595, s), 6.95 (2H, d, J = 8.5 Hz), 7.38(5H, m), 7.59 $	<i>J</i> = 8.0 Hz), 7.87 (1H, s), 8.03 (2H, d, <i>J</i> = 8.0 Hz), IR (KBr) 1740, 1695 cm ⁻¹ . LR MS <i>m/z</i> 261 (MH ⁺). <i>Anal</i> . Calcd for C ₁₄ H ₁₂ O ₅ : C, 64.61, H, 4.65. found: C, 64.49, H, 4.64. • 5e (59 mg, 79%), mp 152-154 °C (EtOAc/hexane = 1:1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, s), 7.29 (2H, t, <i>J</i> = 8.0 Hz), 7.38 (5H, m), 7.59 8.05 (2H, d, <i>J</i> = 8.0 Hz). 4e 4e 4e 4e - 4e - 4e 3, 63%) (100 mg, 0.27 mmol) (CDCl ₃) & 3.86 (3H, s), 5.05 (2H, s), 5.10 (2H, s), , s), 6.95 (2H, d, <i>J</i> = 8.5 Hz), 7.38(5H, m), 7.59	H, 4.65. found: C, 64.49, H, 4.64.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.05 (2H, d, <i>J</i> = 8.0 Hz). 4e 4e 4e - 4e 3, 63%) (100 mg, 0.27 mmol) (CDCl ₃) 8 3.86 (3H, s), 5.05 (2H, s), 5.10 (2H, s), (SDCl ₃) 8 3.86 (3H, s), 7.38(5H, m), 7.59	• 5e (59 mg, 79%), mp 152-154 °C (EtOAc/hexane = 1:1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4e 4e 3, 63%) (100 mg, 0.27 mmol) (CDCl ₃) 8 3.86 (3H, s), 5.05 (2H, s), 5.10 (2H, s), (s), 6.95 (2H, d, J=8.5 Hz), 7.38(5H, m), 7.59	• 5e (59 mg, 79%), mp 152-154 °C (EtOAc/hexane = 1:1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 53%) (100 mg, 0.27 mmol) (CDCl₃) 8 3.86 (3H, s), 5.05 (2H, s), 5.10 (2H, s), s), 6.95 (2H, d, J=8.5 Hz), 7.38(5H, m), 7.59 	
200 mg 3f 277 mg → (0.86 mmol) (1.5 mmol) 200 mg 3g 204 mg → (0.86 mmol) (1.3 mmol)	(CDCl ₃) & 3.86 (3H, s), 5.05 (2H, s), 5.10 (2H, s), , s), 6.95 (2H, d, <i>J</i> =8.5 Hz), 7.38(5H, m), 7.59	¹ H NMR (CDCl ₃) δ 3.88 (3H, s), 5.16 (2H, s), 6.59 (1H, s), 6.95 (2H, d,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, s), 6.95 (2H, d, <i>J</i> =8.5 Hz), 7.38(5H, m), 7.59	J = 8.5 Hz), 7.87 (1H, s), 8.03 (2H, d, $J = 8.5$ Hz), IR (KBr) 1740, 1690
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		cm ⁻¹ . LR MS <i>m/z</i> 277 (MH ⁺). <i>Anal</i> . Calcd for C ₁₄ H ₁₂ O ₆ : C, 60.87, H, 4.38. Found: C, 60.57, H, 4.38.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1H, s), 8.03 (2H, d, <i>J</i> = 8.5 Hz).	
(0.86 mmol) (1.5 mmol) 200 mg $3g 204 \text{ mg}$ \rightarrow (0.86 mmol) (1.3 mmol)	4f 4f	• Sf (31 mg, 45%), mp 146-149 °C (EtOAc/hexane = 1:1)
200 mg 3g 204 mg → (0.86 mmol) (1.3 mmol)	3, 33%) (90 mg, 0.24 mmol)	¹ H NMR (CDCl ₃) δ 1.45 (3H, t, $J = 7.0$ Hz), 4.10 (2H, q, $J = 7.0$ Hz),
200 mg 3g 204 mg → (0.86 mmol) (1.3 mmol)	¹ H NMR (CDCl ₃) δ 1.46 (3H, t, <i>J</i> = 7.0 Hz), 4.10 (2H, q, <i>J</i> =	5.15 (2H, s), 6.59 (1H, s), 6.92 (1H, s), 6.94 (2H, d, <i>J</i> = 8.8 Hz), 7.87 (1H, s), 8.01 (2H, d, <i>J</i> = 8.8 Hz). IR (KBr) 1742, 1685 cm ⁻¹ . LR MS <i>m/z</i> 291
200 mg 3g 204 mg → (0.86 mmol) (1.3 mmol)	7.0 Hz), 5.08 (2H, s), 5.10 (2H, s), 6.53 (1H, s), 6.93(2H, d, J	(MH^+) . HR MS (MH^+) calcd for $C_{15}H_{15}O_6$. 291.0869. Found: 291.0871.
200 mg 3g 204 mg → (0.86 mmol) (1.3 mmol)	= 8.8 Hz), 7.35(5H, m), 7.55 (1H, s), 8.01(2H, d, <i>J</i> = 8.8 Hz).	
(1.3 mmol)	4g 4g	• 5g (60 mg, 81%), mp 130-132 °C (EtOAc/hexane = 1:1)
¹ H NMR (C	3, 80%) (100 mg, 0.28 mmol)	¹ H NMR (CDCl ₃) δ 5.18 (2H, s), 6.59 (1H, s), 7.15 (2H, m), 7.87 (1H,s),
n HC) E1 T	¹ H NMR (CDCl ₃) δ 5.07 (2H, s), 5.12 (2H, s), 6.54 (1H, s),	8.09 (2H, m). IR (KBr) 1735, 1671 cm ⁻¹ . LR MS m/z 265 (MH ⁺). HR
1	7.13 (2H, m), 7.38 (5H, m), 7.60 (1H, s), 8.11 (2H, m).	MS (MH ⁺). calcd for $C_{13}H_{10}FO_{5}$, 265.0512. Found: 265.0497.
8 200 mg 3h 220 mg \rightarrow 4	4h 4h	\rightarrow 5h (60 mg, 79%), mp 131-134 °C (EtOAc/hexane = 1:1)
(0.86 mmol) (1.3 mmol) (270 mg, 85%)	3, 85%) (100 mg, 0.27 mmol)	¹ H NMR (CDCl ₃) δ 5.18 (2H, s), 6.59 (1H, s), 7.46 (2H, d, J = 8.0 Hz),
¹ H NMR (C	¹ H NMR (CDCl ₃) & 5.08 (2H, s), 5.14 (2H, s), 6.53 (1H, s),	7.88 (1H, s), 8.02 (2H, d, <i>J</i> = 8.0 Hz). IR (KBr) 1740, 690 cm ⁻¹ . LR MS

Table 3. Reaction condition and result between 2 and 3, and reduction of 4 to give 5

		1								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		07,1	NO. 0, 20	,10						13	,	
m/z 281 (MH+). HR MS (MH ⁺) calcd for $C_{13}H_{10}CIO_{5}$. 281.0217. Found:	281.0219. <i>Anal</i> . Calcd for C ₁₃ H ₁₉ ClO ₅ : C, 55.63, H, 3.23. Found: C, 56.17, H, 3.17	\rightarrow 5i (37 mg, 48%), mp 124-127 °C (EtOAc/hexane = 3:1)	¹ H NMR (CDCl ₃) 8 5.22 (2H, s), 6.61 (1H, s), 7.74 (2H, d, <i>J</i> = 8.4 Hz),	7.89 (1H, s), 8.18 (2H, d, $J = 8.4$ Hz). IR (KBr) 1740, 1690 cm ⁻¹ . LR <i>MS</i> m/z 315 (MH ⁺). HR MS (MH ⁺) calcd for C ₁₄ H ₁₀ F ₃ O ₅ . 315.0408.	found: 315.0408.		\rightarrow 5j (59 mg, 80%), mp 171-173 °C (EtOAc/hexane = 1:1)	¹ H NMR (CDCl ₃) δ 2.38 (6H, s), 5.17 (2H, s), 6.63(1H, s), 7.25 (1H, s), 7.25 (1H, s), 7.25 (1H, s), 7.68 (2H, s), 7.89 (1H, s). R (KBr) 1740, 1690 cm ⁻¹ .	LR MS m/z 275 (MH ⁺). HR MS (MH ⁺) calcd for C ₁₅ H ₁₅ O ₅ . 275.0919.	Found: 275.0907.		\rightarrow 5k (60 mg, 81%), mp 170-173 °C (EtOAc/hexane = 1:1)	¹ H NMR (CDCl ₃) § 5.27 (2H, s), 6.66 (1H, s), 7.54 (2H, m), 7.65 (1H, m), 7.90 (1H, s), 7.91 (1H, d, <i>J</i> = 8.0 Hz), 8.09, 8.29, 8.94 (each 1H, d, <i>J</i>		8.0 Hz). IR (KBr) 1740, 1690 cm ⁻¹ . LR MS <i>m/z</i> 297 (MH ⁺). <i>Anal</i> . Calcd	for C ₁₇ H ₁₂ O ₅ : C, 68.91, H, 4.08. Found: C, 68.45, H, 4.19.		→ 51 (65 mg, 88%), mp 188-191 °C (EtOAc/hexane = 1:1) ¹ H NMR (CDCl ₅) $8.5.26$ (2H s) $6.67.0$ H s) $7.61.0$ H m) $7.90.01$ H	s), 7.92, 7.99, 8.07, 8.66 (each 1H, d, $J = 8.0$ Hz). IR (KBr) 1740, 1690 cm ⁻¹ . LR MS. <i>m</i> /2297 (MH ⁺). HR MS (MH+) calcd for C ₁₇ H ₁₇ O ₅ .	297.0763. Found: 297.0765.		
m), 7.43 (2H, d, <i>J</i> = 8.0 Hz), 7.60	= 8.0 Hz).	4i	(100 mg, 0.25 mmol)	¹ H NMR (CDCl ₃) & 5.05 (2H, s), 5.15 (2H, s), 6.56 (1H, s),	7.04 (5H, s), 7.60 (1H, s), 7.70 (2H, d, <i>J</i> = 8.4 Hz), 8.10		4j	(100 mg, 0.27 mmol)	¹ H NMR (CDCl ₃) & 2.38 (6H, s), 5.02 (2H, s), 5.10 (2H, s),	6.56 (1H, s), 7.24 (1H, s), 7.35 (5H, s), 7.60 (1H, s), 7.70		4k	(100 mg, 0.26 mmol)		¹ H NMR (CDCl ₃) δ 5.10 (2H, s), 5.20 (2H, s), 6.60 (1H, s),	7.36 (5H, m), 7.54 (2H, m), 7.60 (1H, s), 7.90 , 8.09, 8.29,	0 HZ).	41	(100 mg, 0.26 mmol)	¹ H NMR (CDCl ₃) & 5.10 (2H, s), 5.18 (2H, s), 6.61 (1H, s),	7.38 (5H, m), 7.60 (3H, m), 7.63 (1H, s), 7.99, 8.07, 8.64	
6.53 (1H, s), 7.35 (5H, m), 7.43 (2H,	(1H, s), 8.00 (2H, d, <i>J</i> = 8.0 Hz).	4i	(220 mg, 63%)	¹ H NMR (CDCl ₃) § 5.0	7.04 (5H, s), 7.60 (1H,	(2H, d, J = 8.4 Hz).	4j	(250 mg, 80%)	¹ H NMR (CDCl ₃) § 2.3	6.56 (1H, s), 7.24 (1H,	(2H, s).	4k	(280 mg, 84%)		¹ H NMR (CDCl ₃) § 5.1	7.36 (5H, m), 7.54 (2H,	8.95 (each 1H, $d, J = 8.0$ Hz).	41	(126 mg, 37%)	¹ H NMR (CDCl ₃) § 5.1	7.38 (5H, m), 7.60 (3H,	(each 1H, d, $J = 8.0$ Hz).
		î					Î					ſ						Î				
		3i 270 mg	(1.3 mmol)				3j 217 mg	(1.3 mmol)				3k 246 mg	(1.3 mmol)					3I 246 mg	(1.3 mmol)			
		200 mg	(0.86 mmol)				200 mg	(0.86 mmol)				200 mg	(0.86 mmol)					200 mg	(0.86 mmol)			
		6					10					11						12				

REFERENCES

- 1. M. Koziel and M. Peters, J. Med., VCH:Weinheim, 2007, 356, 1445.
- 2. J. H. Hoofnagl, *Hepatology*, 2002, 36, S21.
- 3. P. Sharma and A. Lok, *Semin. Liver Dis.*, 2006, 26, 285.
- 4. A. M. Di Bisceglie and J. H. Hoofnagle, *Hepatology*, 2002, 36, S121.
- M. W. Fried, M. L. Shiffman, K. R. Reddy, C. Smith, G. Marinos, F. L. Goncales Jr., D. Haussinger, M. Diago, G. Carosi, D. Dhumeaux, A. Craxi, A. Lin, J. Hoffman, and J. Yu, <u>N. Engl. J. Med.</u>, 2002, 347, 975.
- 6. A. Craxi and A. Licata, *Semin. Liver Dis.*, 2003, 23, 35.
- Y. Mishima, S. Hatta, Y. Ohyama, and M. Inazu, <u>*Pigm. Cell Res.*</u>, <u>1988</u>, <u>1</u>, <u>367</u>; H. Izumida, *Fragrance J.*, 1989, 109.
- Y. Tomita, A. Hariu, C. Kato, and M. Seiji, <u>J. Invest. Dermatol.</u>, <u>1984</u>, <u>82</u>, <u>573</u>; Y. Tomita, J. Act. Oxyg. Free Rad., 1992, <u>3</u>, 284.
- H. Mitani, I. Koshiishi, T. Sumita, and T. Imanari, *Eur. J. Pharmacol.*, 2001, **411**, 169; M. S. Kim, S. Lee, H. S. Rho, D. H. Kim, I. S. Chang, and J. H. Chung, *Clinica Chimica Acta*, 2005, **362**, 161.
- H. S. Rho, M. Goh, J. Lee, S. M. Ahn, J. Yeon, D. S. Yoo, D. H. Kim, H. G. Kim, and Y. Cho, <u>Bull.</u> <u>Korean Chem. Soc., 2011, 32, 1411</u>.
- J.-C. Cho, H. S. Rho, H. S. Baek, S. M. Ahn, B. Y. Woo, and K.-D. Suh, <u>Bioorg. Med. Chem. Lett.</u>, 2012, 22, 2004.
- 12. K. Sander, T. Kottke, L. Weizel, and H. Stark, <u>Chem. Pharm. Bull.</u>, 2010, 58, 1353.
- a) K. Kawase and K. Hayashi, <u>Nippon Nogei Kagaku Kaishi, 1972, 46, 331</u>; b) N. Kalyanam, M. A. Likhate, and H. Fuhrer, *Indian J. Chem. Sect. B*, 1991, 30B, 358.
- 14. A. Beelik and C. B. Purves, *Can. J. Chem.*, 1955, 33, 1361.
- M. T. A. Salim, H. Aoyama, K. Sugita, K. Watashi, T. Wakita, T. Hamasaki, M. Okamoto, Y. Urata, Y. Hashimoto, and M. Baba, *Biochem. Biophys. Res. Commun.*, 2011, 415, 714.