View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: H. Guo, M. Xie, X. Cheng, Y. Chen, X. Wu and G. Qu, *Org. Biomol. Chem.*, 2018, DOI: 10.1039/C8OB02089B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

Journal Name

Efficient synthesis of tetrazole hemiaminal silyl ethers via threecomponent hemiaminal silylation

Received 00th January 20xx, Accepted 00th January 20xx

Ming-Sheng Xie,* Xuan Cheng, Yang-Guang Chen, Xiao-Xia Wu, Gui-Rong Qu and Hai-Ming Guo*

DOI: 10.1039/x0xx00000x

www.rsc.org/

Published on 13 September 2018. Downloaded by Kaohsiung Medical University on 9/13/2018 11:53:43 AM.

Abstract: An efficient route to construct 2,5-disubstituted tetrazole hemiaminal silyl ethers *via* one-pot three-component hemiaminal silylation of 5-substituted tetrazoles, aldehydes, and silyl triflates was developed. Diverse 2,5-disubstituted tetrazole hemiaminal silyl ethers were obtained with 37:63->99:1 regioisomeric ratios. The regioselectivities of this reaction were significantly affected by the steric hindrance and conjugation effects of substitutions on the 5-position of tetrazoles.

5-Substituted tetrazoles are valuable heterocycles in drug discovery as carboxylic acid isosteres, with similar acidities but higher lipophilicities and metabolic resistance.¹ As shown in Figure 1, losartan is a selective antagonist of the receptor for angiotensin II and has been in clinical use.² Irbesartan is also a drug for the treatment of hypertension.³ However, some tetrazoles may exist as zwitterions,^{1a,4} which can result in low permeability and consequently poor oral bioavailability. To address this issue, a prodrug approach to mask the tetrazole has been developed. The prodrug of BMS-183920, containing an esterase-sensitive hemiaminal ester moiety, exhibits improved bioavailability than 5-substituted tetrazole without hemiaminal ester moiety (Fig. 1).⁵ Compared to the wellknown prodrugs of carboxylic acids, the prodrugs of tetrazoles are less common.⁶ Silyl ethers, the most widely used protecting groups for the alcohol, have been applied in the prodrug field. Representative examples include the silyl ether prodrug of **docetaxel**⁷ and silyl ether prodrug of **gemcitabine**,⁸ which are acid labile prodrugs (Fig. 1). Therefore, developing an efficient method to synthesize silyl ether prodrugs of 5substituted tetrazoles would be highly desirable.

The substitution reaction of 5-substituted tetrazoles is the most common method for the synthesis of disubstituted tetrazoles.^{1b} In the 5-substituted tetrazoles, there are two

E-mail: xiemingsheng@htu.edu.cn; ghm@htu.edu.cn.

Fig. 1 Selected 5-substituted tetrazole drugs, tetrazole prodrug, and silyl ether prodrugs.

tautomeric states: 1*H*- and 2*H*-tautomers.⁹ The tetrazole anion is generated after deprotonation under basic conditions,^{1b} which reacts with halo hydrocarbon, usually affording a mixture of both 1,5- and 2,5-disubstituted tetrazoles (Scheme 1a).¹⁰ Thus, searching for a highly regioselective method resulting in the formation of only one disubstituted tetrazole

Scheme 1 a) The alkylation of 5-substituted tetrazoles under basic condition; b) synthetic route to disubstituted tetrazole hemiaminal silyl ethers.

J. Name., 2013, 00, 1-3 | 1

Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

Electronic Supplementary Information (ESI) available: Experimental details and analytical data of the products. CCDC 1835497 (**4an**) and 1835498 (**5aa**) . For ESI and crystallographic data in CIF or other electronic format, See DOI: 10.1039/x0xx00000x

Published on 13 September 2018. Downloaded by Kaohsiung Medical University on 9/13/2018 11:53:43 AM

isomer is currently an intensely investigated research topic.¹¹ In 2016, Piotrowski and Kamlet group reported that the hemiaminals, formed by reversible addition of tetrazoles to aldehydes, could be trapped by an acyl group in a regioselective manner with excellent enantiomeric excess.¹² Considering that the silylation of alcohols is a powerful route for the construction of ethers, herein, we now report the three-component reaction of 5-substituted tetrazoles, aldehydes, and silyl triflates for the synthesis of disubstituted tetrazoles,¹³ in which the tetrazole hemiaminals are trapped by the silyl triflates. Owing to the steric hindrance in 1,5disubstituted tetrazole hemiaminals, the three-component hemiaminal silylation may generate 2,5-disubstituted tetrazole hemiaminal silyl ethers in a regioselective manner (Scheme 1b).

Table 1 Optimization of the reaction conditions ^a							
	Ph		+ TfO ^{Si} tBu	base (x solvent,	<u>equiv)</u> RT, 2 h Ph [∽]	→Si− 1 Bu →Co +	tBu
-	1a	2a	3a			4aa	5aa
-	Entry	Base	Solvent	х	1a/2a/3a	Yield ^{^b (4aa) (%)}	4aa/5aa [°]
	1	<i>i</i> Pr ₂ EtN	THF	3	1:1.5:1.5	11	73:27
	2	<i>i</i> Pr ₂ EtN	CH₃CN	3	1:1.5:1.5	26	92:8
	3	<i>i</i> Pr ₂ EtN	CH₃OH	3	1:1.5:1.5	NR	-
	4	<i>i</i> Pr ₂ EtN	n-hexane	3	1:1.5:1.5	32	86:14
	5	<i>i</i> Pr ₂ EtN	dioxane	3	1:1.5:1.5	59	95:5
	6	<i>i</i> Pr ₂ EtN	toluene	3	1:1.5:1.5	56	72:28
	7	<i>i</i> Pr₂EtN	Et ₂ O	3	1:1.5:1.5	67	79:21
	8	<i>i</i> Pr₂EtN	CH_2CI_2	3	1:1.5:1.5	92	96:4
	9	Et₃N	CH_2CI_2	3	1:1.5:1.5	6	-
	10	Na_2CO_3	CH_2CI_2	3	1:1.5:1.5	1	-
	11	K ₂ CO ₃	CH_2CI_2	3	1:1.5:1.5	2	-
	12	Cs ₂ CO ₃	CH_2CI_2	3	1:1.5:1.5	NR	-
	13	<i>i</i> Pr ₂ EtN	CH_2CI_2	1.5	1:1.5:1.5	97	>99:1
	14	<i>i</i> Pr₂EtN	CH_2CI_2	1.2	1:1.5:1.5	24	>99:1
	15	<i>i</i> Pr₂EtN	CH_2CI_2	1.5	1:1.5:1.2	58	67:33
	16	<i>i</i> Pr₂EtN	CH_2CI_2	1.5	1:1.5:1	28	58:42
	17	<i>i</i> Pr ₂ EtN	CH ₂ Cl ₂	1.5	1:1.4:1.5	99	>99:1
	18	<i>i</i> Pr ₂ EtN	CH ₂ Cl ₂	1.5	1:1:1.5	76	99:1
			2 - 2				-

^{*a*} Reaction conditions: **1a** (0.5 mmol), base (x equiv), and solvent (5 mL) were added in a test tube. Then, **2a** and **3a** were added at RT. ^{*b*} Isolated yield of **4aa** based on **1aa**. ^{*c*} Determined by ¹H NMR of the crude reaction mixture. NR = No Reaction.

Initially, 5-phenyl tetrazole 1a, acetaldehyde 2a, and tbutyldimethylsilyl triflate (TBSOTf) 3a were selected as reactants (Table 1). When *i*Pr₂EtN was used as the base in THF, the desired disubstituted tetrazole hemiaminal silvl ethers (4aa and 5aa) were obtained, in which the 2,5-disubstituted tetrazole hemiaminal silyl ether 4aa was the major product (11% yield), along with the minor 1,5-disubstituted product 5aa (entry 1). Then, in the presence of *i*Pr₂EtN, several solvents were evaluated, and CH₂Cl₂ was found to be the best to give tetrazole hemiaminal silvl ether 4aa in 92% yield with 96:4 regioisomeric ratio (rr) (entries 2-8). Next, several bases were examined and *i*Pr₂EtN was still the better choice (entries 8-12). After that, the amount of *i*Pr₂EtN was investigated, and the use of 1.5 equiv of *i*Pr₂EtN could result in 97% yield for 4aa (entries 8, 13-14). Furthermore, the ratio of reactants was evaluated, and the use of 1.4 equiv of 2a and 1.5 equiv of 3a could afford the disubstituted hemiaminal silyl ether 4aa in 99% yield in a

/iew Article Online

Page 2 of 4

Table 2 Substrate scope of aldehydes^a

				DOI: 10.103	9/C8OB02089B
Ph NH	+ _R 1 +	TfO ^{Si} - <i>t</i> Bu	<i>I</i> Pr ₂ EtN (1.5 equiv) CH ₂ Cl ₂ , RT, 2 h		-fBu 0-Si
1a	2a-2n	3a		4aa-4an	5aa-5an
Entry	R ¹		4	Yield ^b (4) (%)	rr (4/5) ^c
1	ž		4aa	99	>99:1
2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		4ab	96	98:2
3	∕~}≮		4ac	97	99:1
4		£.	4ad	93	95:5
5	\sim	ž	4ae	91	99:1
6	- F		4af	93	95:5
7	,× ₽		4ag	92	96:4
8	, , ,		4ah	92	98:2
9	∩,≮		4ai	82	98:2
10		s.	4aj	91	94:6
11	Ph <u></u>		4ak	72	>99:1
12	Ph	ξ	4al	85	>99:1
13 ^{<i>d</i>}			4am	71	98:2
14 ^{<i>d</i>}		5	4an	48	94:6

^{*a*} Unless otherwise noted, reaction conditions were: **1a** (0.2 mmol), **2** (1.4 equiv, 0.28 mmol), **3a** (1.5 equiv, 0.3 mmol), *i*Pr₂EtN (1.5 equiv, 0.3 mmol) in CH₂Cl₂ (2 mL) at RT. ^{*b*} Isolated yield of **4** based on **1a**. ^{*c*} The regioisomeric ratios (rr = **4**:**5**) were determined by ¹H NMR of the crude reaction mixtures. ^{*d*} Reaction was performed in ClCH₂CH₂Cl at 50 °C.

regioselective manner (entries 15-18). Thus, the optimal reaction conditions were 1.5 equiv of iPr_2EtN , 1.4 equiv of aldehyde, and 1.5 equiv of TBSOTf in CH_2Cl_2 at RT (entry 17).

Under optimized reaction conditions (Table 1, entry 17), the substrate scope of the aldehydes was evaluated (Table 2). Various aliphatic aldehydes, such as straight-chain 2a-2e, branched 2f-2h, or cyclic aliphatic aldehyde 2i were demonstrated to be suitable substrates, generating 2,5disubstituted tetrazole hemiaminal silyl ethers 4aa-4ai in high yields and excellent regioselectivities (entries 1-9). In the case of pent-4-enal 2j, the 2,5-disubstituted adduct 4aj was obtained in excellent results (entry 10). Upon using 2phenylacetaldehyde 2k and 3-phenylpropanal 2l, the 2,5disubstituted tetrazoles 4ak and 4al were generated in good results (entries 11-12). When benzaldehyde 2m and 1naphthaldehyde 2n were employed, the 2,5-disubstituted tetrazole 4am-4an could be generated by improving the reaction temperature to 50 $^{\circ}$ C (entries 13 and 14). When α , β unsaturated aldehyde 20 was used, the conjugated addition product was not observed, and the desired 2,5-disubstituted tetrazole 4ao was given (Scheme 2).

Scheme 2 Silylation reaction of α , β -unsaturated aldehyde 20.

Published on 13 September 2018. Downloaded by Kaohsiung Medical University on 9/13/2018 11:53:43 AM

Journal Name

Table 3 Substrate scope of silyl triflates^a

Ph	∩H	+ R ² ^{R²} TfO ² S ¹ -R ³	<i>i</i> Pr₂EtN (1.5 equiv) CH₂Cl₂, RT , 2 h	$\mathbb{R}^{\mathbb{R}^{2}}_{\mathbb{N}^{\mathbb{N}^{2}}}$	
1a	2a	3a-3d		4	5
Entry	3	R^2/R^3	4	Yield ^b (4) (%)	rr (4:5) ^c
1	3a	Me/tBu	4aa	99	>99:1
2	3b	Me/Me	4ap	40	96:4
3	3c	Et/Et	4aq	71	93:7
4	3d	<i>i</i> Pr/ <i>i</i> Pr	4ar	92	99:1
a					

^{*a*} Reaction conditions were: **1a** (0.2 mmol), **2a** (1.4 equiv, 0.28 mmol), **3** (1.5 equiv, 0.3 mmol), iPr_2EtN (1.5 equiv, 0.3 mmol) in CH_2Cl_2 (2 mL) at RT. ^{*b*} Isolated yield of **4** based on **1a**. ^{*c*} The regioisomeric ratios (rr = **4**:**5**) were determined by ¹H NMR of the crude reaction mixtures.

Then, different silyl triflates were explored in this threecomponent hemiaminal silylation reaction (Table 3). When TMSOTf **3b** was used, high conversion of tetrazole **1a** was detected, while the 2,5-disubstituted tetrazole **4ap** was isolated only in 40% yield, which indicated that the TMS derived disubstituted tetrazole **4ap** was unstable during the purification step. As for TESOTf **3c** and TIPSOTf **3d**, the reactions proceeded well with high regioselectivities, giving 2,5-disubstituted tetrazole **4aq** (71% yield) and **4ar** (92% yield), respectively.

Subsequently, the substrate scope of 5-substituted tetrazoles was evaluated (Table 4). When 5-(*m*-tolyl)-tetrazole 1b and 5-(4-bromophenyl)-tetrazole 1c were used, the 2,5disubstituted tetrazoles 4ba and 4ca were obtained in good regioselectivities (entries 2-3). Then, a variety of tetrazoles with alkyl substitutions on the 5-position were investigated. By comparing 5-methyl tetrazole 1d, 5-cyclopropyl-tetrazole 1e, and 5-(tert-butyl)-tetrazole 1f, it was found that the steric hindrance of alkyl substitutions on the 5-position of tetrazoles significantly influenced the regioselectivity, and larger steric hindrance substitution was beneficial to the 2,5-disubstutitued tetrazole product (entries 4-6). When (E)-5-styryl-tetrazole 1g and 5-alkenyl tetrazoles 1h-1i were evaluated, the desired 2,5disubstituted tetrazole products 4ga-4ia were produced in good regioselectivities, which indicated that 5-alkenyl tetrazoles with a C=C double bond conjugated with tetrazole ring were in favor of 2,5-disubstituted hemiaminal tetrazole products remarkably (entries 7-9). When 5-benzyl tetrazole 1j was examined at RT or -40 °C, 2,5-disubstituted tetrazole 4ja and 1,5-disubstituted tetrazole 5ja were obtained in different regioisomeric ratios, which showed that the 2,5-disubstituted tetrazole 4ja might be the thermodynamic product and 1,5disubstituted tetrazole 5ja might be the kinetic product (entries 10 and 11). In addition, 5-benzhydryl-tetrazole 1k, 5-(benzylthio)-tetrazole 1I, and ethyl 2-(2H-tetrazol-5-yl)acetate 1m were also evaluated, and different 2,5-disubstituted tetrazoles 4ka-4ma could also be obtained (entries 12-14).

As shown in Figure 2, the structure of 2,5-disubstituted tetrazole hemiaminal silyl ether **4an** was determined by the single-crystal X-ray diffraction analysis. Meanwhile, the structure of 1,5-disubstituted tetrazole hemiaminal silyl ether

				DOI: 10.1039/C8OB02089B	
N-NH L, N +	∩ ⊢ ⊢ H	+ <u>iPr2</u> E TfO ^{-Si} ~ <i>t</i> Bu CH	tN (1.5 equiv) bCb, RT, 3 h		
1	2a	3a		4	F 5
Entry	1	R	4	Yield ^b (4) (%)	rr (4:5) ^c
1^{d}	1a	Ph	4aa	99	>99:1
2 ^{<i>d</i>}	1b	3-MeC ₆ H ₄	4ba	98	>99:1
3 ^{<i>d</i>}	1c	$4-BrC_6H_4$	4ca	64	81:19
4	1d	Me	4da	27	52:48
5	1e	\bigtriangledown ${\checkmark}$	4ea	35	65:35
6	1f	\geq	4fa	29	>99:1
7	1g	Ph	4ga	69	81:19
8	1h	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4ha	90	96:4
9	1 i	14/2	4ia	91	95:5
10	1j	Ph~\$	4ja	48	82:18
11 ^e	1j	Ph~\$	4ja	12	37:63
12	1k	Ph Ph	4ka	55	91:9
13	11	Ph S ^{'\'}	4la	56	66:34
14	1m	Eto	4ma	51	80:20

Table 4 Substrate scope of 5-substituted tetrazoles

COMMUNICATION

Article Online

^{*a*} Unless otherwise noted, reaction conditions were: **1** (0.2 mmol), **2a** (1.4 equiv, 0.28 mmol), **3a** (1.5 equiv, 0.3 mmol), *i*Pr₂EtN (1.5 equiv, 0.3 mmol) in CH₂Cl₂ (2 mL) at RT for 3 h. ^{*b*} Isolated yield of **4** based on **1**. ^{*c*} The rr values were determined by ¹H NMR of the crude reaction mixtures. ^{*d*} Reaction time: 2 h. ^{*e*} At -40 °C.

5aa was also confirmed by the single-crystal X-ray diffraction analysis.

To demonstrate the synthetic utility of the current methodology, the gram-scale synthesis of 2,5-disubstituted tetrazole hemiaminal silyl ether **4aa** was carried out (Scheme 3). By treatment of 10 mmol of 5-phenyl tetrazole **1a** in the presence of iPr_2EtN , the one-pot three-component hemiaminal silylation reaction of 5-phenyl tetrazole **1a**, acetaldehyde **2a**,

Accepted

and TBSOTf **3a** proceeded well at RT for 2 h, giving the desired 2,5-disubstituted tetrazole hemiaminal silyl ether **4aa** in 2.96 g without any loss of yield and regioselectivity.

Considering that silyl ether prodrugs are acid labile and release the corresponding drugs under acid conditions, the release experiment of 5-substituted tetrazole from 2,5-disubstituted tetrazole hemiaminal silyl ether was performed (Scheme 4). In the presence of 5 mol% of HCl solution in CH₃OH for 2 h, the 2,5-disubstituted tetrazole hemiaminal silyl ether **4aa** was consumed completely, affording 5-phenyl tetrazole **1a** in 99% yield.

Conclusions

We have reported an efficient route to construct 2,5disubstituted tetrazole hemiaminal silyl ethers via one-pot three-component hemiaminal silvlation reaction of 5substituted tetrazoles, aldehydes, and silyl triflates. With iPr₂EtN as the base, a variety of 2,5-disubstituted tetrazole hemiaminal silyl ethers were afforded in moderate to good yields and 37:62->99:1 regioisomeric ratios. The regioselectivities of this three-component hemiaminal silylation were significantly affected by the steric hindrance and conjugation effects of substitutions on the 5-position of tetrazoles. Furthermore, the three-component hemiaminal silvlation reaction could be performed on a gram-scale, delivering the desired disubstituted tetrazole in excellent results. In addition, the 5-phenyl tetrazole could be released totally under acid atmosphere from the 2,5-disubstituted tetrazole hemiaminal silvl ether.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (Nos. U1604283, 21472037, and 21778014), China Postdoctoral Science Foundation funded project (2016M592293 and 2018T110726), the Program for

Science & Technology Innovation Talents in Universities of the state o

Notes and references

- 1 (*a*) R. J. Herr, *Bioorg. Med. Chem.*, 2002, **10**, 3379; (*b*) J. Roh, K. Vávrová and A. Hrabálek, *Eur. J. Org. Chem.*, 2012, 6101.
- D. J. Carini, J. V. Duncia, P. E. Aldrich, A. T. Chiu, A. L. Johnson, M. E. Pierce, W. A. Price, J. B. Santella III, G. J. Wells, R. R. Wexler, P. C. Wong, S.-E. Yoo and P. B. M. W. M. Timmermans, J. Med. Chem., 1991, 34, 2525.
- 3 E. J. Lewis , L. G. Hunsicker , W. R. Clarke , T. Berl , M. A. Pohl , J. B. Lewis , E. Ritz , R. C. Atkins , R. Rohde and I. Raz, *N. Engl. J. Med.*, 2001, **345**, 851.
- 4 (a) W. R. Schoen, J. M. Pisano, K. Prendergast, M. J. Wyvratt, M. H. Fisher, K. Cheng, W. W.-S. Chan, B. Butler, R. G. Smith and R. G. Ball, J. Med. Chem., 1994, **37**, 897; (b) Y. Uchiyama, J. S. Dolphin, R. L. Harlow, W. J. Marshall and A. J. Arduengo, III, Aust. J. Chem., 2014, **67**, 405.
- 5 (a) D. E. Ryono, J. Lloyd, M. A. Poss, J. E. Bird, J. Buote, S. Chong, T. Dejneka, K. E. J. Dickinson, Z. Gu, P. Mathers, S. Moreland, R. A. Morrison, E. W. Petrillo, J. R. Powell, T. Schaeffer, E. R. Spitzmiller and R. E. White, *Bioorg. Med. Chem. Lett.*, 1994, 4, 201; (b) M. T. Obermeier, S. Chong, S. A. Dando, A. M. Marino, D. E. Ryono, A. Starrett-Arroyo, G. C. DiDonato, B. M. Warrack, R. E. White and R. A. Morrison, J. Pharm. Sci., 1996, 85, 828.
- 6 K. M. Huttunen, H. Raunio and J. Rautio, *Pharmacol. Rev.*, 2011, **63**, 750.
- 7 K. S. Chu, M. C. Finniss, A. N. Schorzman, J. L. Kuijer, J. C. Luft, C. J. Bowerman, M. E. Napier, Z. A. Haroon, W. C. Zamboni and J. M. DeSimone, *Nano Lett.*, 2014, 14, 1472.
- M. C. Parrott, M. Finniss, J. C. Luft, A. Pandya, A. Gullapalli, M. E. Napier and J. M. DeSimone, *J. Am. Chem. Soc.*, 2012, **134**, 7978.
- 9 (a) R. N. Butler and V. C. Garvin, J. Chem. Soc., Perkin Trans. 1, 1981, 390; (b) R. N. Butler, D. P. Shelly and V. C. Garvin, J. Chem. Soc., Perkin Trans. 1, 1984, 1589.
- (a) G. I. Koldobskii and R. B. Kharbash, *Russ. J. Org. Chem.*, 2003, **39**, 453; (b) G. Ortar, M. G. Cascio, A. Schiano Moriello, M. Camalli, E. Morera, M. Nalli and V. Di Marzo, *Eur. J. Med. Chem.*, 2008, **43**, 62; (c) G. Ortar, A. Schiano Moriello, M. G. Cascio, L. De Petrocellis, A. Ligresti, E. Morera, M. Nalli and V. Di Marzo, *Bioorg. Med. Chem. Lett.*, 2008, **18**, 2820; (d) Y. A. Efimova, T. V. Artamonova and G. I. Koldobskii, *Russ. J. Org. Chem.*, 2009, **45**, 725; (e) S. Harusawa, H. Yoneyama, D. Fujisue, M. Nishiura, M. Fujitake, Y. Usami, Z.-y. Zhao, S. A. McPhee, T. J. Wilson and D. M. J. Lilley, *Tetrahedron Lett.*, 2012, **53**, 5891.
- (a) L. Wang, K. Zhu, Q. Chen and M. He, *J. Org. Chem.*, 2014, 79, 11780; (b) K.-q. Zhu, L. Wang, Q. Chen and M.-y. He, *Tetrahedron Lett*, 2015, 56, 4943; (c) I. Melnikova, J. Roh, J. Kuneš, T. Artamonova, Y. Zevatskii and L. Myznikov, *Tetrahedron Lett.*, 2017, 58, 3842.
- (a) D. W. Piotrowski, A. S. Kamlet, A.-M. R. Dechert-Schmitt, J. Yan, T. A. Brandt, J. Xiao, L. Wei and M. T. Barrila, J. Am. Chem. Soc., 2016, 138, 4818; (b) A. Kinens, M. Sejejs, A. S. Kamlet, D. W. Piotrowski, E. Vedejs and E. Suna, J. Org. Chem., 2017, 82, 869; (c) A. Akin, M. T. Barrila, T. A. Brandt, A.-M. R. Dechert-Schmitt, P. Dube, D. D. Ford, A. S. Kamlet, C. Limberakis, A. Pearsall, D. W. Piotrowski, B. Quinn, S. Rothstein, J. Salan, L. Wei and J. Xiao, Org. Process Res. Dev., 2017, 21, 1990.
- 13 M.-S. Xie, Y.-G. Chen, X.-X. Wu, G.-R. Qu and H.-M. Guo, Org. Lett., 2018, 20, 1212.