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Abstract—The preparation of a urea-bridged �-cyclodextrin dimer and of a 6-monodeoxy-6-mono[3-(�-D-glucopyranos-2-
yl)ureido]-�-cyclodextrin has been developed, using triphosgene as the isocyanation agent in an aqueous two-phase system.
Per-O-acetylated �-D-gluco and mannopyranosylamines and 2-amino-2-deoxy-�- and �-D-glucose were also transformed into the
corresponding isocyanates and converted in situ into ureas by coupling with aromatic and aliphatic amines.
© 2003 Elsevier Ltd. All rights reserved.

Compounds containing the urea functionality are of
biological interest as antimycobacterial1 and anti-try-
panosomal agents,2 and as inhibitors of HIV protease.3

These compounds are also used as plant growth regula-
tors and agrochemicals.4 The urea moiety is also found
in artificial receptors useful in supramolecular
chemistry.5

In the carbohydrate field, a series of glycosylureas have
been shown to be �-glucosidase inhibitors6 and N-acyl-
N �-�-D-glucopyranosyl ureas exhibit strong inhibition
against glycogen phosphorylase,7 and can be useful as
antidiabetic agents.8

Cyclodextrins have been extensively used in different
applications, such as drug delivery, enzyme mimics and
chiral chromatography.9 Much effort has been devoted
to the synthesis of cyclodextrin dimers,10 using a variety
of functional tethers11 including the urea bridge,12 in
order to improve the binding properties of the parent
cyclodextrin.

For the preparation of sugar ureas, one of the most
widely used methods involves the treatment of glycosyl-
amines or amino sugars with alkyl or aryl iso-
cyanates.13 The formation of sugar-derived ureas using
alkyl isocyanates has been reported to fail14 in aqueous
solvents due to the hydrolysis of the isocyanate and the
subsequent formation of the N,N �-dialkyl urea as the

major by-product. Another approach involves the
preparation of sugar isocyanates from O-protected
amino sugars and phosgene under anhydrous
conditions.15

We now report a novel access to the urea-linked-�-
cyclodextrin dimer 416 (Scheme 1) by the transforma-
tion of the peracetylated 6A-amino-6A-deoxy-�-D-
cyclodextrin 2 into the isocyanate 3, which reacts with
another equivalent of 2 to yield 4. The method devel-
oped by us consists of an unprecedented procedure for
the synthesis of sugar-derived ureas in which the two
steps (isocyanation of an amine and coupling with the
same or a different amine) are carried out in a one-pot
fashion in a vigorously stirred CH2Cl2-saturated
aqueous NaHCO3 mixture using triphosgene,17 as an
easily handled and stable substitute for phosgene, as the
isocyanation agent. It is remarkable that both the iso-
cyanates and triphosgene can be used in the presence of
water despite the expectation that they would hydrolyse
rapidly.17

The amine 2 was prepared by hydrogenation of the
azido derivative 1,18 and used without further purifica-
tion for the isocyanation reaction. The overall yield for
the synthesis of the dimer 4 from 1 was 49%, which is
comparable with the recently described procedure19

using a polymer-bound triphenylphosphine, carbon
dioxide and azide 1.

We have also extended our method to the synthesis of
the hitherto unknown per-O-acetylated 6-monodeoxy-
6-mono[3-�-D-glucopyranos-2-yl)ureido]-�-cyclodextrin
15, starting from peracetylated 2-amino-2-deoxy-�-
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Scheme 2.
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Scheme 3.

D-glucopyranose hydrochloride 620 (Scheme 2). Com-
pound 6 was treated with triphosgene21 as described
above for amine 2, to give isocyanate 8 which was in
situ coupled with amine 2 (1.0 equiv.); this gave urea
1522 in 46% yield, calculated from azide 1.

The preparation of the 2-ureido-�- and �-D-glucopyran-
oses 9, 10, 12 and 13, and symmetrical pseudodisaccha-
rides 11 and 14 (Scheme 2) was also achieved starting
from per-O-acetylated 2-amino-2-deoxy-�-D-glucopyr-
anose hydrohalide 523 and its �-isomer 6 in good yields
(63–86%).

Furthermore, per-O-acetylated glucopyranosylamine
hydrobromide 18 could be transformed into symmetri-
cal and unsymmetrical glucopyranosyl ureas 22–24 (63–
99% yield) via the transient glycosyl isocyanate 20
(Scheme 3). Crystalline hydrobromide 18 was
synthesised24 from the readily available �-D-
glucopyranosylamine25 by removal of the enamino
group of 16 with bromine in moist dichloromethane.

Finally, as hydrohalide 19 could not be obtained as a
crystalline product, the mannopyranosylureas 25–27
were obtained from enamine 1726 by adding aliquots of
a saturated solution of Cl2 in CH2Cl2 at 0°C until
disappearance of the starting material by TLC. After

concentration, the residue was directly used for the next
two steps (Scheme 1). This gave ureas 25–2727 in 58–
71% overall yields for the three steps, showing that the
by-products from the chlorolysis do not interfere with
the isocyanation reaction. No anomerisation under the
reaction conditions was observed by 1H NMR analysis
for ureas 25–27, in contrast with the reported behaviour
for the analogous mannopyranosyl thioureas.26

In conclusion, we have developed a novel one-pot,
two-step method to prepare urea-bridged cyclodextrin
derivatives including dimer 4 and 6-monodeoxy-6-
mono[3-(�-D-glucopyranos-2-yl)ureido]-�-cyclodextrin
15 via transient sugar isocyanates. Other unsymmetrical
N,N �-disubstituted sugar-derived ureas and symmetrical
pseudodisaccharides containing a (1�1) or (2�2) urea
tether starting from O-protected glycopyranosyl amines
and D-glucosamine were also obtained by this method.
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