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Understanding nanoindentation unloading curves
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Experiments have shown that nanoindentation unloading curves obtained with
Berkovich triangular pyramidal indenters are usually well-described by the power-law
relation P � �(h − hf)

m, where hf is the final depth after complete unloading and �
and m are material constants. However, the power-law exponent is not fixed at an
integral value, as would be the case for elastic contact by a conical indenter (m � 2)
or a flat circular punch (m � 1), but varies from material to material in the range
m � 1.2–1.6. A simple model is developed based on observations from finite element
simulations of indentation of elastic–plastic materials by a rigid cone that provides a
physical explanation for the behavior. The model, which is based on the concept of an
indenter with an “effective shape” whose geometry is determined by the shape of the
plastic hardness impression formed during indentation, provides a means by which
the material constants in the power law relation can be related to more fundamental
material properties such as the elastic modulus and hardness. Simple arguments are
presented from which the effective indenter shape can be derived from the pressure
distribution under the indenter.

I. INTRODUCTION

Load and depth-sensing indentation, also referred to as
nanoindentation, has been developed over the past two
decades as a technologically important tool for measur-
ing the mechanical properties of materials, especially at
small scales.1–7 The technique relies on high-resolution
instruments that continuously monitor the loads and dis-
placements of an indenter as it is pushed into and with-
drawn from a material. The load–displacement data
obtained during one or more cycles of loading and un-
loading can be analyzed to derive a variety of mechanical
properties, most commonly, the hardness and elastic
modulus.3,4 Such analyses are frequently based on solu-
tions to the problem of indentation of an elastic half-
space by a rigid, axially symmetric punch.8,9

Accurate measurement of mechanical properties by
nanoindentation methods requires a detailed understand-
ing of the information contained in the indentation
loading and unloading curves.4,9 Obtaining such an un-
derstanding is not an easy task due to the complex elastic
and plastic deformation processes that occur during in-
dentation, as well as the nonuniformity of the stress
and deformation fields in the vicinity of the contact. For

this reason, many methods for measuring properties by
nanoindentation rely heavily on empirical observations
that do not have solid theoretical underpinnings.3,4,7

In this work, a conceptual framework is developed to
explain the experimentally observed mathematical form
of nanoindentation unloading curves obtained with sharp,
geometrically self-similar indenters like pyramids and
cones. A typical set of nanoindentation data is presented
in Fig. 1. The data were obtained by indenting fused
silica with a Berkovich diamond indenter, a triangular
pyramid with an area-to-depth relationship identical to
that of the four-sided Vickers pyramid used commonly in
microhardness testing. Because of the geometric self-
similarity of pyramidal indenters, it is often convenient to
model their behavior by that of a cone with a half-
included angle that gives the same area-to-depth relation-
ship. For the Berkovich and Vickers pyramids, the
equivalent cone angle is 70.3°, and the area-to-depth re-
lationship, also known as the area function, is given by

A � 24.56d2 , (1)

where A is the cross-sectional area of the indenter at a
distance d back from its tip.

Experiments have shown that indentation loading
curves obtained with Berkovich indenters are usually
well-described by the relation

P � �h2 , (2)
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where P is the indentation load, h is the measured depth,
and � is a material constant related to the elastic and
plastic properties of the material.4 The simple quadratic
form of this relation is a natural consequence of the geo-
metric self-similarity of the indenter; since the load
scales with the projected contact area and the indenter
area scales with the square of the depth, the simple P–h
relation of Eq. (2) results. A recent paper by Hainsworth
et al. provides a rationale for this relation and relates the
constant � to the elastic modulus and hardness of
the material.10 Deviations from the behavior of Eq. (2)
are sometimes observed at small depths due to rounding
of the indenter tip, which destroys the geometric simi-
larity,5,7 or to the indentation size effect.11–14 However,
such deviations are significant only at small depths (typi-
cally less than a micrometer for tip rounding and of the
order of a micrometer for the indentation size effect). For
larger depths, the quadratic form of Eq. (2) is generally
well-obeyed.

The form of the unloading curve is quite different.
Experiments conducted on a wide variety of materials
including fused silica, soda-lime glass, and single crys-
tals of aluminum, tungsten, and sapphire have revealed
that unloading data are usually well-described by the
power-law relation:

P � �(h − hf)
m , (3)

where hf is the final displacement after complete unload-
ing and � and m are material constants.4 Typical values
of � and m determined from regression analyses of ex-
perimental data are included in Table I, along with cor-
relation coefficients for the curve fits.4 The table shows
not only that Eq. (3) provides a good description of the
unloading data (correlation coefficients R > 0.9999) but
also that the power-law exponents, m, while slightly

material dependent, generally fall in the range 1.2–1.6.
These exponents are consistent with neither the flat
punch indenter geometry, for which m � 1,8 nor the
conical geometry, for which m � 2.8 The flat punch
geometry is important because it is sometimes invoked to
model unloading behavior based on the assumption that
the contact area remains constant, at least during the
initial stages of unloading.3 The conical geometry is im-
portant because it most closely approximates the self-
similar geometry of the Berkovich indenter used to
obtain the data. Curiously, an indenter with the geometry
of a parabola of revolution, for which m � 1.5,8 comes
closest to predicting the experimental observations.
However, exactly how a Berkovich indenter approxi-
mates to a parabola of revolution, which is neither sharp
at its tip nor properly describes the relationship between
the depth and the contact area, is not evident.

In this paper, results of finite element simulations are
presented that reproduce the experimentally observed un-
loading behavior and from which an understanding of the
origin of the power law exponents for the unloading
curves is obtained. The understanding is based on the
concept of an “effective indenter,” the geometry of which
is determined by the shape of the plastic hardness im-
pression formed during loading. Simple arguments are
presented from which the shape of the effective indenter
can be derived on the basis of the way that plasticity
influences the pressure distribution under the indenter.

II. FINITE ELEMENT SIMULATION

Elastic–plastic indentation was simulated using the
axisymmetric capabilities of the ABAQUS (Hibbitt,
Karlsson, & Sorensen, Inc., Pawtucket, RI) finite element
code. As detailed elsewhere,15,16 the indenter was mod-
eled as a rigid cone with a half-included angle of 70.3°,
the angle that gives the same area-to-depth ratio as the
Berkovich triangular pyramid used commonly in nanoin-
dentation experiments. The specimen was modeled as a
large cylinder 100,000 nm in height and 100,000 nm in
radius represented by approximately 3000 four-node axi-
symmetric elements. Most simulations were performed
to a depth of 500 nm, for which the specimen dimensions
were found to be large enough to approximate the

FIG. 1. Nanoindentation load–displacement data for fused silica ob-
tained with a Berkovich indenter.4

TABLE I. Values of parameters characterizing unloading curves as
observed in nanoindentation experiments with a Berkovich indenter.
Data are from Ref. 4.

Material
�

(mN/nmm) m
Correlation

coefficient, R

Aluminum 0.265 1.38 0.999938
Soda-lime glass 0.0279 1.37 0.999997
Sapphire 0.0435 1.47 0.999998
Fused silica 0.0500 1.25 0.999997
Tungsten 0.141 1.51 0.999986
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behavior of a semi-infinite half-space as evidenced by an
insensitivity of results to increases in specimen size.
Roller boundary conditions were applied along the cen-
terline and bottom (no interfacial friction or displace-
ments normal to the boundary), a free surface was
modeled at the outside of the cylinder, and the interface
between the indenter and the specimen was assumed
to be frictionless.

In the region of contact, very fine elements 20 nm in
width were used to achieve accurate determination of the
contact profiles. Away from the contact, a progressively
coarser mesh was employed both at the surface and in the
interior of the specimen. Plasticity was modeled using
the large strain formulation of ABAQUS with the mate-
rial behaving as a von Mises solid. The output of the
finite element simulations included indentation load–
displacement curves during one or more cycles of
loading and unloading, the shapes of contact impressions
at full load and after complete unloading, and the sizes
and shapes of plastic zones.

Two different material constitutive behaviors were ex-
amined. The first was that of a real material—aluminum
alloy 8009—whose stress–strain characteristics in uni-
axial tension as well as its nanoindentation behavior have
been well-documented in experiment.17 The elastic–
plastic constitutive behavior was described by piecewise
fitting the results of a tension test. After yielding at a
stress of 353.1 MPa, the material exhibits a small amount
of work hardening before the flow stress saturates at
425.6 MPa. The strain at saturation is 2.44%. The fact
that the flow stress reaches a constant level at such a
small strain implies that the material behaves much like
an elastic–perfectly-plastic solid with a flow stress of
425.6 MPa. The elastic constants used in the simulations
were Young’s modulus E � 82.12 GPa and Poisson’s
ratio, � � 0.31. As documented elsewhere, the simulated
indentation load–displacement curves were found to
agree well with real experimental data, despite the fact
that the simulations were conducted for a conical in-
denter while the experiments were performed with a
Berkovich pyramid.15 This implies that the edges of
the pyramid do not significantly influence the load–
displacement behavior of the material. Simulation results
for aluminum alloy 8009 were used to prove and develop
the concept of an effective indenter based on the behavior
of a real material.

The second constitutive behavior modeled in the study
was that of an elastic–perfectly-plastic solid. For these
simulations, the yield strength, �y, was varied systemati-
cally from 0.114 GPa to 5.32 GPa, while the modu-
lus and Poisson’s ratio were held constant at E � 70 GPa
and � � 0.25. This produced modulus-to-yield strength
ratios in the range 13.2 � E/�y � 614, corresponding to
modulus-to-hardness ratios in the range 7.13 � E/H �
237 (the E/H values were computed using hardnesses

deduced from the finite element results). These simula-
tions were used to examine the behavior of a wide variety
of materials, albeit materials that do not work harden.
The E/H range spans a wide variety of metals and
ceramics.16

III. SIMULATION RESULTS: ALUMINUM
ALLOY 8009

The unloading curve generated by elastic–plastic finite
element simulation of aluminum alloy 8009 is shown as
the solid line in Fig. 2. Of the 500 nm of total displace-
ment at peak load, only 35 nm is recovered during un-
loading, giving an unloaded final depth hf � 465 nm.
Note that the unloading data are distinctly curved, im-
plying that unloading behavior cannot be adequately de-
scribed by indentation with a flat punch, for which the
behavior would be linear.

An important issue in understanding the form of the
unloading curve is the extent to which it is elastic, that is,
whether any of the recovered displacement is due to re-
verse plasticity. To explore this, a simulation was under-
taken in which the indenter was completely loaded and
unloaded five times while plasticity in the vicinity of the
indentation and the evolution of the plastic zone were
closely monitored. Figure 3, which shows the plastic
zone both at full load and after the first unloading, dem-
onstrates that the initial unloading results in a small ex-
tension of the plastic zone at the contact edge near the
surface. Thus, some plasticity does indeed occur during
unloading, even though the simple constitutive relation
used in the simulation does not account for kinematic
hardening. In subsequent cycles, further changes in the
shape and size of the plastic zone also occur but to pro-
gressively smaller extents. However, the unloading
plasticity has essentially no influence on the load–
displacement behavior. This may be seen in Fig. 2, which

FIG. 2. Unloading curves for aluminum alloy 8009 generated by
elastic–plastic finite element simulation.
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includes the first and fifth unloading curves from the
elastic–plastic simulation, as well as the results of a
simulation in which the contact impression generated
during the first loading cycle was reloaded using an
elastic-only constitutive law. The fact that all three
curves are virtually indistinguishable indicates that plas-
tic deformation has a negligible influence on the load–
displacement behavior after the contact impression first
forms. Another significant observation is that all of the
unloading curves are well described by the power-law
relation of Eq. (3) with a power law exponent m � 1.32
(correlation coefficient R � 0.99941). This exponent,
which is in excellent agreement with the value m � 1.36
measured in experiments with a Berkovich indenter,17

corroborates the experimental observations that there is
something fundamental about a power-law exponent in
the range 1.2–1.6.

IV. CONCEPT OF THE EFFECTIVE
INDENTER SHAPE

An explanation for why indentation unloading curves
behave as they do can be achieved by careful examina-
tion of the shape of the contact impression after unload-
ing. As shown schematically in Fig. 4, when a conical

indenter is first pressed into a material, both elastic and
plastic processes occur, with the contact impression con-
forming perfectly to the shape of the cone [Fig. 4(a)].
However, during the first unloading, elastic recovery
causes the shape of the contact impression to change.
Careful examination of the finite element results for alloy
8009 showed that the unloaded impression is not exactly
conical in shape; rather, there is a small but important
curvature to its surface. For alloy 8009 and similar ma-
terials with relatively large E/H ratios, e.g., soft metals,
the curvature is virtually imperceptible in a scaled profile
of the contact, giving one the impression that the un-
loaded contact impression is also conical [the curvature
in Fig. 4(b) is grossly exaggerated for the sake of illus-
tration]. The curvature becomes more pronounced and
easier to observe in materials with smaller E/H ratios
such as hard metals, ceramics, and glasses.

The importance of the curvature follows by consider-
ing what happens when the contact impression is re-
loaded. From the geometries in Figs. 4(b) and 4(c), it is
apparent that elastic reloading must occur with continu-
ous increases in contact area until full contact is achieved
at maximum load. However, because the unloading and
reloading processes are elastic, what happens during re-
loading must be exactly the reverse of what happens
during unloading. Thus, the unloading process must be
characterized by a continuous decrease in contact area as
the contact impression “peels away” from the indenter.
Moreover, since the elastic contact stiffness, S, is related
to the contact area through

S =
2

��
Eeff �A , (4)

where Eeff is the effective modulus given by

1

Eeff
=

1 − �2

E
+

1 − �1
2

Ei
, (5)

(E and � are Young’s modulus and Poisson’s ratio for
the specimen; Ei and �i are the same quantities for the
indenter),9 the slope of the unloading curve must

FIG. 3. Contact profiles and plastic zones observed in finite element
simulation of aluminum alloy 8009.

FIG. 4. Schematic representation of deformation processes during loading and unloading of a conical indenter.
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continuously decrease as the load is reduced, in agree-
ment with both experimental and finite element observa-
tions (see Figs. 1 and 2).

The exact shape and mathematical form of the unload-
ing curve can be understood by introducing the concept
of an “effective indenter shape.” As illustrated in Fig. 5,
the concept accounts for the fact that the unloading proc-
ess is not properly described by elastic contact between
a rigid cone and a flat elastic half-space but rather by a
half-space whose surface has been locally distorted by
plastic deformation during the formation of the hardness
impression. The basic idea is to account for the surface
distortion by transforming the contact geometry into one
for which elastic half-space solutions can be applied. As
shown in Fig. 5, this is accomplished by changing the
geometry of the indenter to an “effective shape” defined
such that when pressed into a flat surface, it gives the
same normal surface displacements that would be pro-
duced by the conical indenter pressed into the plastically
deformed surface of the hardness impression. The prob-
lem of elastic indentation of a nonflat surface with com-
plex shape by a geometrically simple indenter is thus
replaced by the problem of indentation of a geometrically
flat surface by an indenter with complex shape. An
analysis developed by Sneddon for indentation of a flat
elastic half-space by an axisymmetric indenter of general
shape (taken to be the effective shape) can then be used
to model the load–displacement behavior.8 Note that the
effective shape concept cannot be applied if reverse plas-
ticity during unloading is large enough to cause the un-
loading curve to deviate significantly from purely elastic
behavior. Such behavior has been observed, for example,
in soda-lime silicate glass.4

As shown in Fig. 5, the shape of the effective indenter
is described by a function z � u(r), where u(r) is the
vertical distance between the cone and the unloaded, per-
manently deformed surface of the hardness impression
and r is the radial distance from the center of the contact.
Since all finite element simulations conducted in this
work showed that contact is last broken at the tip of
the indenter, the function is determined with the tip of the
cone just touching the surface of the contact impression

at its center. Provided the shape of the deformed surface
is known, the function u(r) can be determined and the
effective indenter can be constructed. From an analytical
standpoint, the effective indenter is expected to give a
reasonable approximation of the load–displacement be-
havior when the surface of the plastic hardness im-
pression is not greatly displaced from the initially flat
surface, i.e., for indenters with relatively large in-
cluded angles.

The profile of an unloaded hardness impression made
to a depth of 500 nm in alloy 8009 by a rigid 70.3° cone
as determined in finite element simulation was carefully
analyzed to establish the function z � u(r). The resulting
effective indenter shape is shown in Fig. 6. The shape is
terminated at a radius of 1576 nm corresponding to the
position of the contact edge at full load. Three features of
the effective indenter are worthy of special consideration.
First, at the contact edge (r � 1576 nm), the vertical
separation between the flat surface and the indenter is
only 12 nm, thus indicating how subtle the curvature re-
ally is. On a scaled plot of the profile of the hardness
impression, this curvature would be imperceptible, and
the impression would appear to match perfectly the shape
of the 70.3° cone. Second, in sharp contrast to the case of
a cone indenting a flat half-space, the effective indenter
has a smooth, rounded profile at its tip. The reason for
this is that the slope of the deformed hardness impression
at its center exactly matches the slope of the conical
indenter; i.e., the two surfaces perfectly conform at the
tip of the indenter. Thus, the plastic deformation that
produces the hardness impression has the interesting ef-
fect of removing the elastic singularity at the tip of the
effective indenter. Third, as shown as the solid line
through the data in Fig. 6, the shape of the effective
indenter can be conveniently approximated by the simple
power-law relation

z � Br n , (6)

where the best power-law fitting constants have the val-
ues B � 4.34 × 10−8 nm−1.63 and n � 2.63. The effective
indenter is thus not at all conical in shape but similar to

FIG. 5. Concepts used to define the effective indenter shape.
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a parabola of revolution with a slightly higher power law
exponent (n � 2.63 rather than n � 2).

That the elastic deformation of a flat surface by the
effective indenter closely approximates the elastic de-
formation of the deformed hardness impression by the
conical indenter is shown in Fig. 7, which compares
load–displacement curves generated in several ways. The
upper solid line is the first unloading curve determined in
the full elastic–plastic finite element analysis for the
70.3° conical indenter (i.e., the same curve as in Fig. 2).
This is to be compared to load–displacement curves
for the effective indenter determined in three different

ways. The first two were generated by elastic finite ele-
ment simulation (no plasticity) of the deformation of a
flat elastic half-space by the effective indenter; in one,
the exact effective indenter shape was used, and in the
other, the indenter was constructed from the power law
approximation of the effective indenter shape [Eq. (6)].
The similarity of these two curves to that for the full
elastic–plastic analysis shows that the effective shape
concept does indeed closely model the unloading behav-
ior. The third curve for the effective indenter was com-
puted using an analytical approach based on Sneddon’s
analysis for the deformation of an elastic half-space by
a rigid indenter of arbitrary axisymmetric shape.8 For an
indenter with shape described by the general power law
of Eq. (6) characterized by parameters B and n, Sned-
don’s method yields

P =
2Eeff

���B�1�n � n

n + 1� ���n�2 + 1�2�

��n�2 + 1� �1�n

h1+1�n ,

(7)

where h is the elastic displacement, Eeff � E/(1 − �2),
and � is the factorial (gamma) function. The curve gen-
erated from this equation, though slightly lower than
those determined in the finite element simulations, is still
in reasonably good agreement. Recent work has shown
that the analytical result of Eq. (7) slightly underesti-
mates actual behavior because it does not consider influ-
ences of radial material displacement at the surface.18

One important feature of Eq. (7) is that it directly links
the exponent n describing the effective indenter shape in
Eq. (6) to the exponent m describing the shape of the
unloading curve in Eq. (3); specifically,

m � 1 + 1/n . (8)

Since n � 2.63 for the effective indenter, Eq. (8) predicts
that m � 1.38 in good agreement with the elastic/plastic
finite element simulation (m � 1.32) and the results of
actual nanoindentation experiments in alloy 8009 (m �
1.36).17 Thus, the effective shape concept explains why
the unloading behavior is more like deformation with a
parabola of revolution (m � 1.5) than a cone (m � 2),
at least in this material.

V. UNDERSTANDING THE EFFECTIVE
INDENTER SHAPE

Further insight into the origin of the effective shape
can be gleaned by considering the pressure distribution
under the indenter, as illustrated by the simple thought
processes in Fig. 8. During loading of a conical indenter
into an elastic–plastic material [Fig. 8(a)], the distribu-
tion of pressure is determined by both elastic and plastic
processes. The exact form of the pressure distribution is
quite complex and not generally amenable to closed form

FIG. 6. Effective indenter shape for aluminum alloy 8009 indented by
a 70.3° cone.

FIG. 7. Unloading curves for aluminum alloy 8009 computed in sev-
eral different ways demonstrating that the effective indenter accurately
models the behavior.
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analysis. As the pressure is reduced during unloading
[Fig. 8(b)], the elastic component of the deformation re-
covers, but the plastic component does not, and the re-
sidual hardness impression changes its shape by elastic
processes only. Since subsequent reloading of the hard-
ness impression is also elastic [Fig. 8(c)], the pressure
distribution after reloading must exactly match that pro-
duced by the elastic–plastic processes during the initial
formation of the hardness impression. In other words,
matching the pressure distribution at peak load serves to
couple the elastic–plastic deformation during initial load-
ing to the elastic processes during unloading. As shown
in the lower portion of Fig. 8, the effective indenter shape
is then found by determining the indenter geometry that
produces this same pressure distribution by elastic defor-
mation of a flat half space. Ideas similar to these have
been used by Johnson19,20 and Hirst and Howse21 to
deduce peak load pressure distributions from the shapes
of residual contact profiles.

Figure 9 shows the peak load pressure distributions
determined by finite element analysis for a wide variety
of elastic–perfectly-plastic materials characterized by
different E/�y ratios. Each of the indentations was made
to a maximum depth, hmax, of 500 nm. The fact that the
contact radius is different for each material results from
the differing degrees of elastic and plastic deformation.
Since in a typical nanoindentation experiment one does
not necessarily know the value of E/�y, the figure also
includes values of hf /hmax, the ratio of the final depth
after unloading to the maximum depth of penetration.
Because this parameter is experimentally measurable, it
is potentially a useful indicator of the type of pressure
distribution that can be expected for an elastic–perfectly-
plastic material.

Inspection of Fig. 9 reveals that over a fairly signifi-
cant range of material behavior, the pressure under the
indenter is roughly constant and independent of radial
position. This is especially true for materials with E/�y <
100. For larger values, there is a tendency for the pres-
sure to decrease with increasing radius, but even for the
most extreme material, E/�y � 613, the reduction in
pressure from the center to the periphery of the contact is
less than 50%.

Assuming, then, that the pressure distribution at maxi-
mum load is relatively flat and characterized by a con-
stant pressure, p, one can deduce the effective shape of
the indenter from simple elastic contact theory. (The in-
fluence of an approximately linear decrease in pressure
with increasing radius will be examined later). Johnson
has shown that for a uniform pressure applied over a
circular contact region of a flat, semi-infinite elastic
half-space, the vertical surface displacements uz(r) are
given by

uz =
4�1 − �2�pa

�E
E�r�a�, �r � a� , (9)

where a is the radius of the circle and E(r/a) is the
complete elliptic integral of the second kind evaluated at
r/a.19 The maximum displacement uz � 2(1 − �2)pa/E
occurs at the center of the contact, while the dis-
placement at the edge of the contact is given by uz �
4(1 − �2)pa/(�E ). These displacements would be
produced by an indenter with a profile described by

z�r� =
4�1 − �2�pamax

�E ��

2
− E�r�amax�� . (10)

FIG. 8. Schematic representation of pressure distributions under the indenter and how they can be used to deduce the effective indenter shape.
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Note that the contact radius appearing in this expression
is not “a” but “amax,” the contact radius at maximum
load. This is because the constant pressure distribution is
achieved only when the effective indenter reaches the
maximum load.

The effective indenter shape defined by Eq. (10) is
plotted in nondimensional form in Fig. 10 where r̄ �
r/amax and z̄ � z/[4(1 − �2)pamax/(�E)]. Comparison
with Fig. 6 shows that the shape is qualitatively similar
to that predicted by the finite element simulation of
alloy 8009. Also shown in the figure is the power-law

approximation of the shape z̄ � Br̄ n. On the basis of the
regression analysis, the best fit is achieved with B �
0.548 and n � 2.61. The shape of the effective indenter
is thus described by

z�r� = 0.548
4�1 − �2�pamax

�E � r

amax
�2.61

. (11)

The power-law fit provides a reasonable description.
Note that the power-law exponent that describes the
shape, n � 2.61, is in excellent agreement with that
derived from finite element simulation of alloy 8009
(n � 2.63). Moreover, since m � 1 + 1/n, the simple
analysis suggests that the value of the exponent m de-
scribing the unloading curve in P � �(h − hf)

m should be
1.38, once again in good agreement with the finite ele-
ment results for alloy 8009 (m � 1.32) and experimental
data obtained with a Berkovich indenter (m � 1.36).
Thus, to the extent that the peak load pressure distribu-
tion is constant, there is a simple rationale for why the
effective indenter takes on the shape that it does and why
indentation unloading curves obtained with conical and
Berkovich indenters can be described by a simple power-
law relations like Eq. (3) with power-law exponents near
m � 1.38. Although not explicitly addressed in this
work, the same principles could be applied to spherical
indentation. Since it is known that pressure distributions
for elastic–plastic contact with a sphere are relatively
flat,19 one might expect a similar effective indenter shape
to describe the unloading behavior.

One can use these results to derive an equation that
describes the entire unloading curve for a material in
which the peak load pressure distribution is uniform. The
relation follows directly from Eq. (7). Using B � 0.548
and n � 2.61, noting that the pressure, p, is equivalent to
the hardness, H, and noting that the contact radius at peak
load is related to the hardness through

amax = �Pmax

�H �1/2

, (12)

Eq. (7) reduces to

P = 0.858 �Pmax�0.31 � Eeff

�H
�1.38

�h − hf�
1.38 .

(13)

This equation can also be expressed in the convenient
nondimensional form:

P

Pmax
= 0.858 � Eeff

�PmaxH
�h − hf��1.38

. (14)

FIG. 9. Peak load pressure distributions for a wide variety of materials
determined by finite element simulation.

FIG. 10. Effective indenter shape that produces a constant distribution
of pressure at peak load.
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How well Eq. (13) works in describing real nanoin-
dentation unloading curves is illustrated in Fig. 11, where
the predictions of Eq. (13) are compared with experimen-
tal data obtained with a Berkovich indenter.4 The predic-
tions of the equation are based on known values of E, �,
H, and Pmax given in Table II. Given the approximate
nature of the derivation, the agreement between theory
and experiment is relatively good.

VI. EXTENSION TO OTHER MATERIALS

To further explore and expand on the utility of the
effective indenter shape concept, the results of finite el-
ement simulations for a wide variety of elastic–perfectly-
plastic materials were analyzed using the concepts
developed in the previous sections. The findings are sum-
marized in Table III. The first column gives the ratio of
the elastic modulus to yield strength, E/�y, which can be
used to assess the type of material behavior. Very soft
metals have E/�y near the high end of the range, while
the low end is characterized by hard glassy materials with
relatively low elastic moduli such as fused silica. Most
metals and ceramics fall in between. The other columns

in the table are quantities derived from the load–
displacement data and/or contact profiles generated in
the finite element simulations.

Figure 12 shows for several values of E/�y the effec-
tive indenter shape deduced from the shape of the un-
loaded hardness impression using the same procedures as
those for alloy 8009 in Sec. IV. Also included in the
figure are curve fits for the effective shape according to
the power law relation of Eq. (6). As for the case of alloy
8009, the power law provides a good description of the
effective shape. As shown in Table III, the power-law
exponents derived from the fits vary over the range
2.10 � n � 5.28. The corresponding unloading curve
exponents computed from Eq. (8) fall in the range 1.16 �
m � 1.48. On the basis of these results, it can thus
be concluded that unloading curve exponents should be
slightly material dependent through the way the relative
elastic and plastic properties influence the pressure dis-
tribution. Significantly, however, all the values of m fall
in the range 1.16–1.48, in close agreement with the ex-
perimental observations in Table I.

In Fig. 13, the unloading curve exponents are plotted
as a function of the ratio of the final depth of penetration
to the maximum depth, hf /hmax. This experimentally

TABLE II. Material properties and experimental parameters used to
predict unloading curves using Eq. (13). Values for the effective
modulus Eeff were computed from Eq. (5) using Ei � 1141 GPa and
� � 0.07 for the diamond indenter.4

Material
Pmax

(mN)
E

(GPa) � Eeff

H
(GPa)

Aluminum 118.32 70.4 0.347 74.8 0.21
Soda-lime glass 118.37 70.0 0.23 69.4 5.9
Sapphire 118.50 403 0.234 310.8 26.9
Fused silica 118.43 72.0 0.17 69.6 8.4
Tungsten 118.43 409.8 0.28 320.4 3.8

TABLE III. Results of finite element simulation for a variety of
elastic–perfectly-elastic materials.

E/�y E/H hf /hmax n m � 1 + 1/n

613 237 0.973 2.10 1.48
306 118 0.949 2.28 1.44
167 63.7 0.915 2.70 1.37

83.3 32.6 0.854 3.81 1.26
48.3 19.3 0.786 5.11 1.20
34.9 14.5 0.730 5.78 1.17
26.3 12.0 0.682 6.40 1.16
13.2 7.31 0.515 5.28 1.19

FIG. 11. Comparison of theoretical predictions for unloading curves
with experimental data obtained in nanoindentation experiments with
a Berkovich indenter. Experimental data are from Ref. 4.

FIG. 12. Effective indenter shape for several elastic–perfectly-plastic
materials with different values of E/�y.
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measurable parameter provides a useful gauge of the
relative contributions of elasticity and plasticity to
the indentation displacements. When hf /hmax � 0, the
displacement is entirely recovered during unloading,
implying a perfectly elastic contact, whereas when
hf /hmax � 1, none of the displacement is recovered and
the material is rigid–plastic. Intermediate values of
hf /hmax represent the continuum of elastic–perfectly-
plastic behavior. The two limiting values for hf /hmax are
shown as the extremes of the abscissa in Fig. 13.

The data in Fig. 13 suggest that there may be a sys-
tematic relationship between m and hf /hmax, with m go-
ing through a minimum near hf /hmax � 0.7. From a
theoretical perspective, the value of m should rise to 2 at
hf /hmax � 0, since this exponent is what is expected for
purely elastic contact by a rigid cone.8 This being the
case, one might expect a minimum in the curve and thus
a lower limit on m. The behavior of real materials is
probably somewhat more complex due to influences of
work-hardening that have not been taken into account in
the finite element simulations. Note that in the rigid–
plastic limit, hf /hmax � 1, the value of m should theo-
retically tend to 1, but there is no evidence for this in the
finite element simulations. The decrease must there-
fore occur for material parameters outside the range
examined here.

VII. OTHER PRESSURE DISTRIBUTIONS

The finite element results presented in Fig. 9 suggest
that although the pressure distribution for many elastic–
perfectly-plastic materials is approximately constant,
there are some materials, particularly those with high
E/�y values, for which the pressure decreases with in-
creasing distance from the center of the contact. To ex-
plore the effect this may have on the results and

conclusions, an analysis was undertaken to determine the
effective indenter shape for a pressure distribution p(r)
that decreases linearly with the radial distance, r, from
the center of the contact circle according to the relation

p�r� = p0 − 	p
r

a
. (15)

In this expression, p0 is the maximum pressure at the
center of the contact and 	p is the reduction in pressure
at the contact edge relative to the maximum value.

Using a methodology outlined in the Appendix, the
effective indenter shape for this pressure distribution is

z�r� =
4�1 − �2)p0amax

�E ��1 −
1

2

	p

p0
�

��

2
− E�r�amax�� +

r2

4amax
2

	p

p0
�

0

��2
sin2 


ln �1 + �1 − �r�amax�2 sin2 


1 − �1 − �r�amax�2 sin2

� d
� .

(16)

Note that the for a constant pressure distribution, p0 � p,
	p � 0, and Eq. (16) reduces to the simple closed-form
of Eq. (10). For the more general case, numerical evalu-
ation of the integral on the right hand side of Eq. (16) is
required.

To explore the implications of this result, the pressure
distribution in Fig. 9 determined by finite element simu-
lation for the material with E/�y � 613 was fitted ac-
cording to Eq. (15) to establish appropriate values for p0

and 	p. This material was chosen because it exhibits the
largest decrease in pressure and also because the decrease
is very nearly linear. Numerical integration of Eq. (16)
gave the effective shape, which once again was found to
be well-described by the power-law relation of Eq. (6)
with n � 1.89. The corresponding value of the unloading
curve exponent computed from Eq. (8) is m � 1.53. This
value is considerably larger than the value m � 1.38
derived in Sec. V for the effective indenter that produces
a constant pressure distribution, thereby indicating that
the effect of a linearly decreasing pressure distribution is
to increase the value of m (and decrease the value of n).
This is consistent with the results in Table III and Fig. 9
that show that materials with higher m values are gener-
ally those with the larger gradients in pressure.

VIII. IMPLICATIONS FOR
NANOINDENTATION TESTING

In addition to providing a general physically justifiable
rationale for the mathematical form of nanoindentation
unloading curves, the concepts developed here can be
used to provide a theoretical basis for an important aspect

FIG. 13. Dependence of unloading curve exponents, m, on the param-
eter, hf /hmax, as determined by finite element simulation of elastic–
perfectly-plastic materials.

G.M. Pharr et al.: Understanding nanoindentation unloading curves

J. Mater. Res., Vol. 17, No. 10, Oct 2002 2669

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 02 Jun 2014 IP address: 150.216.68.200

of nanoindentation data analysis that has heretofore been
based largely on empiricism. In particular, in the fre-
quently used method of Oliver and Pharr for measuring
hardness and elastic modulus from nanoindentation
load–displacement data,4 a simple expression is used to
compute the contact depth, hc (the depth along which
contact is made between the indenter and the specimen),
from experimentally measured quantities. The expression is

hc = hmax − �
Pmax

S
, (17)

where Pmax is the maximum load, hmax is the maximum
displacement, S � dP/dh is the unloading contact stiff-
ness, and � is a constant that depends on the geometry of
the indenter. The value of � is formally defined by the
relation

� = S
hs

Pmax
= 2Eeffamax

hs

Pmax
, (18)

where hs is the depth to which the surface sinks in at the
perimeter of the contact.4 For simple indenter geom-
etries, values of � can be computed from results given by
Sneddon;8 specifically, � � 0.72 for a conical indenter,
� � 0.75 for a parabola of revolution, and � � 1.0 for a
flat cylindrical punch.4 Given that a Berkovich indenter
is geometrically more like a cone than a parabola of
revolution or a flat punch, one might expect the value
� � 0.72 to be most applicable. However, on the basis of
a large number of experimental obser- vations, Oliver
and Pharr concluded that the best value for � is 0.75.

The effective shape concept provides a means by
which this value of � can be understood. In simple terms,
because the elastic unloading process is described by an
effective indenter shape that is more like a parabola of
revolution than a cone, the value � � 0.75 is more ap-
propriate than � � 0.72. However, a more precise esti-
mate of � may be achieved using the methods developed
here in conjunction with Sneddon’s method for determin-
ing the surface displacement at the contact perimeter for
indentation of an elastic half-space by a rigid axisym-
metric indenter of general power-law profile.8 Substitut-
ing Sneddon’s result for hs into Eq. (18) yields

� = �1 −
2��1�2 + n�2�

n����n�2�
� 1 + n

n
, (19)

which uniquely relates � to the power-law exponent n for
the shape of the effective indenter. Noting that the
power-law exponent that best describes the effective
shape in the analysis presented in Sec. V is n � 2.61,
Eq. (19) yields � � 0.761. This theoretically justifiable
value for � is in good agreement with the empirical value

established by Oliver and Pharr.4 Alternatively, using
Eq. (8), Eq. (19) can be rewritten in terms of the unload-
ing curve power law exponent m as

� = m �1 −
2�� m

2�m − 1��
���� 1

2�m − 1��
�m − 1�� , (20)

which is plotted in Fig. 14. Note that over the range of
most experimental observations, i.e., 1.2 � m � 1.6, the
value of � varies mildly between 0.79 and 0.74, with 0.76
being a reasonable average. However, since it was shown
in Sec. VI that there may be some variability in the value
of m depending on the elastic and plastic behavior of the
material, a better value of � might be obtained by experi-
mentally measuring m and then using Eq. (20) to deter-
mine the corresponding value of �. This procedure could
be easily implemented in experimental methods.

IX. CONCLUSIONS

Finite element simulation of elastic/plastic indentation
of an aluminum alloy and several elastic–perfectly plas-
tic materials by a rigid conical indenter with a depth-to-
area relationship the same as the Berkovich diamond
suggests that nanoindentation unloading curves should be
well-described by the power-law relation P � �(h − hf)

m.
The value of the unloading curve exponent m derived
from the simulations is consistent with experimental
findings that m varies over the range 1.2–1.6. Although
Sneddon’s analysis for the deformation of a flat elastic
half-space by a rigid conical indenter predicts m � 2, the
smaller values of m observed in experiment and finite
element simulation are explained by the distortion of
the surface from a flat plane configuration caused by the

FIG. 14. Relation between � and m predicted by Eq. (20).
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formation of the permanent hardness impression. The sur-
face distortions can be accounted for by defining an
effective indenter with a shape such that when pressed
into a flat elastic half space, the resulting normal surface
displacements are the same as those produced by a coni-
cal indenter pressed into the plastically deformed surface
of the hardness impression. Simple arguments based on
the assumption of a constant pressure distribution under the
indenter show that the shape of the effective indenter is
well-described by the relation in Eq. (11) (see Sect. V),
where p is the pressure, amax is the contact radius at peak
load, E is Young’s modulus, and � is Poisson’s ratio. The
exponent describing the unloading curve consistent with
this shape is m � 1.38. Slightly larger values of m are
expected if the pressure under the indenter decreases with
distance from the center of the contact, as is the case for
soft metals. The same arguments show that indentation
unloading curves (P � load; h � displacement) can be
quantitatively approximated by the relation in Eq. (14)
(see Sect. V), where Pmax is the maximum load, H is the
hardness, and hf is the final depth after full unloading.
The analysis also reveals that the parameter � used in the
Oliver–Pharr method for analyzing nanoindentation data
to obtain hardness and elastic modulus should have a
value close to 0.76.

ACKNOWLEDGMENT

Research through the Oak Ridge National Laboratory
SHaRE User Program was sponsored by the Division of
Materials Sciences and Engineering, United States De-
partment of Energy, under Contract DE-AC05-
00OR22725 with UT-Battelle, LLC.

REFERENCES

1. J.B. Pethica, R. Hutchings, and W.C. Oliver, Philos. Mag. A 48,
593 (1983).

2. J.L. Loubet, J.M. Georges, O. Marchesini, and G. Meille, J. Tribol.
106, 43 (1984).

3. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).
4. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).
5. G.M. Pharr and W.C. Oliver, MRS Bull. 17, 28 (1992).
6. G.M. Pharr, Mater. Sci. Eng. A 253, 151 (1998).
7. J.L. Hay and G.M. Pharr, in ASM Handbook Volume 8: Mechani-

cal Testing and Evaluation, 10th ed., edited by H. Kuhn and
D. Medlin (ASM International, Materials Park, OH, 2000),
pp. 232–243.

8. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).
9. G.M. Pharr, W.C. Oliver, and F.R. Brotzen, J. Mater. Res. 7,

613–617 (1992).
10. S.V. Hainsworth, H.W. Chandler, and T.F. Page, J. Mater. Res.

11, 1987 (1996).
11. K.W. McElhaney, J.J. Vlassak, and W.D. Nix, J. Mater. Res. 13,

1300 (1998).
12. N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Y.V. Milman,

Acta Metall. 41, 2855 (1993).
13. Q. Ma and D.R. Clark, J. Mater. Res. 10, 853 (1995).

14. W.D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).
15. A. Bolshakov, W.C. Oliver, and G.M. Pharr, J. Mater. Res. 11,

760 (1996).
16. A. Bolshakov and G.M. Pharr, J. Mater. Res. 13, 1049 (1998).
17. T.Y. Tsui, W.C. Oliver, and G.M. Pharr, J. Mater. Res. 11, 752

(1996).
18. J.C. Hay, A. Bolshakov, and G.M. Pharr, J. Mater. Res. 14, 2296

(1999).
19. K.L. Johnson, Contact Mechanics (Cambridge University Press,

Cambridge, U.K., 1985).
20. K.L. Johnson, in Engineering Plasticity, edited by Heyman and

Leckie (Cambridge University Press, Cambridge, U.K., 1968).
21. W. Hirst and M.G.J.W. Howse, Proc. R. Soc. A 311, 429 (1969).

APPENDIX: EFFECTIVE INDENTER SHAPE
FOR A LINEARLY DECREASING
PRESSURE DISTRIBUTION

The effective indenter shape for a pressure distribu-
tion, p(r), that decreases linearly with distance from the
center of the contact, r, can be derived using a method
outlined by Johnson.19 The pressure distribution is as-
sumed to be of the form

p�r� = p0 − 	p
r

a
, (A1)

where p0 is the maximum pressure at the center of the
contact, 	p is the reduction in pressure at the contact
edge relative to the peak value, and a is the radius of the
contact circle. Following Johnson,19 the position of each
point in the contact circle can be defined by a set of
coordinates (s, 
), for which the linear distribution of
pressure can be expressed as

p�s, 
� = p0 − 	p�r2 + s2 + 2rs cos 
 . (A2)

The vertical displacements of the surface are then given by

w�r� =
1 − v2

�E �
0

��
s1

s2
p�s, 
� ds d
 , (A3)

where the limits of integration are

s1,2 = −r cos�
� � �r2 cos2 
 + �a2 − r2��1�2 .
(A4)

Substitution of (A1) and (A2) into (A3) and evaluating
the displacement at the center of contact circle yields for
the effective indenter shape

z�r� =
4�1 − v2�poamax

�E ��1 −
1

2

	p

po
� ��

2
− E�r�amax��

+
r2

4amax
2

	p

po
�

0

��2
sin2 


ln�1 + �1 − �r�amax�2 sin2 


1 − �1 − �r�amax�2 sin2 

� d
� .

(A5)
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