ISSN 1070-4280, Russian Journal of Organic Chemistry, 2015, Vol. 51, No. 9, pp. 1217–1231. © Pleiades Publishing, Ltd., 2015. Original Russian Text © S.S. Mochalov, A.N. Fedotov, E.V. Trofimova, N.S. Zefirov, 2015, published in Zhurnal Organicheskoi Khimii, 2015, Vol. 51, No. 9, pp. 1241–1255.

Hydrochloric Acid as an Efficient Catalyst for Intermolecular Condensation of Alcohols. A Simple and Highly Efficient Synthesis of Unsymmetrical Ethers from Benzylic Alcohols and Alkanols

S. S. Mochalov, A. N. Fedotov, E. V. Trofimova, and N. S. Zefirov

Faculty of Chemistry, Moscow State University, Leninskie gory 1, Moscow, 119991 Russia e-mail: fed@org.chem.msu.ru

Received July 7, 2015

Abstract—Benzylic alcohols and diarylmethanols with electron-donating substituents in the aromatic ring reacted with aliphatic alcohols in the presence of a catalytic amount of HCl to give the corresponding alkyl arylmethyl ethers. The reactivity of diarylmethanols in the intermolecular dehydration depended on the nature of substituents in the aromatic rings and structure of aliphatic alcohol.

DOI: 10.1134/S107042801509002X

The problem of creating an ether bond in organic molecules still remains important for organic synthesis since the existing etherification methods are far from being perfect. During the past 10–15 years, a large number of publications appeared, which were concerned with both improvement of classical methods of synthesis of ethers (such as Williamson reaction, intermolecular dehydration of alcohols, and catalytic addition of alcohols to alkenes [1–4]) and development of new synthetic approaches (e.g., reductive etherification of aldehydes and ketones, nucleophilic exchange in alkoxysilyl ethers, and selective reduction of the carbonyl group in carboxylic acid esters [5–11]).

From the viewpoints of low-cost technology, atom economy, and green chemistry principles, the most promising is direct synthesis of symmetrical and unsymmetrical ethers via acid-catalyzed condensation of the corresponding alcohols, where the only by-product is environmentally safe water. However, preliminary studies of etherification of alcohols by intermolecular dehydration in the presence of mineral acids and other acid catalysts [1, 3, 12–15] showed that this reaction is often accompanied by rearrangements of alkyl groups and/or formation of alkenes. Nevertheless, as reported in [2, 4], Brønsted or Lewis acidcatalyzed intermolecular dehydration of alcohols can be accomplished with high chemoselectivity and high yield of target ethers. Among a wide variety of Brønsted acids, only those having weakly nucleophilic anions were used to catalyze intermolecular dehydration of alcohols. Therefore, it is not surprising that there are no published data on direct catalysis of etherification of alkanols by hydrohalic acids. On the other hand, it is known [16] that dilute aqueous HCl efficiently catalyzes replacement of the hemiacetal hydroxy group in cyclic sugars by methoxy under very mild conditions. The ease of this reaction is generally rationalized by the ability of that hydroxy group to take up a proton with subsequent elimination of water to produce a stable and quite reactive carbenium ion whose stability is determined by positive mesomeric effect of the neighboring oxygen atom.

Taking the above stated into account, we presumed that all arylalkanols capable of forming stable carbenium ions due to the presence of electron-donating substituents could undergo mild etherification in the presence of a catalytic amount of hydrochloric acid. Examples of stable carbenium ions resembling those derived from hemiacetals are benzyl cations generated from alkoxy-substituted benzylic alcohols as a result of acid-catalyzed elimination of the hydroxy group (Scheme 1).

In this work we succeeded in demonstrating that, in fact, benzyl alcohols having electron-donating groups in the aromatic ring can be readily etherified under

Scheme 1.

catalysis by HCl (Scheme 2, Table 1), the molar ratio benzylic alcohol–alkanol–catalyst being 1:15:0.05. The data in Table 1 clearly show different reactivities of benzyl alcohols containing alkoxy (1c, 3a–3h, 5a, 5b) and other electron-donating groups (1b, 1d, 1e, 1f) in the aromatic ring; the former are considerably more reactive. This indicates only that the oxygen atom of the alkoxy group in the *para* position of benzyl alcohol is capable of stabilizing benzyl-type carbenium ions. The reaction mixtures were kept for a long time with a view to elucidating whether benzyl alcohols can be etherified without additional energy expenditure. The formation of unsymmetrical ethers can be considerably accelerated by carrying out the reaction at elevated temperature (in boiling alkanol; run nos. 9, 11, 14, 15).

Unlike HCl-catalyzed condensation of benzyl alcohols 1c and 3a with methanol (run nos. 3, 16), the corresponding methyl ethers were formed from 1-(4-methoxyphenyl)ethanol (1c) and 1,3-benzodioxol-5-ylmethanol (an analog of 3a) in the presence of a catalytic amount of NaHSO₃ only on heating in boiling methanol for 14 h (2c) or at 110°C for 1 h, respectively, and in both cases, the yields of the target methyl ethers did not exceed 87% [4].

1, $R^1 = R^2 = R^3 = H$ (a); $R^1 = H$, $R^2 = R^3 = Me$ (b); $R^2 = H$, $R^3 = Me$; $R^1 = 4$ -MeO (c), 4-t-Bu (d), 4-(1-methylcyclopropyl) (e), 3,4-(CH₂)₄ (f); **2**, $R^1 = R^2 = R^3 = H$, Alk = Et (a); $R^1 = H$, $R^2 = R^3 = Alk = Me$ (b); $R^1 = 4$ -MeO, $R^2 = H$, $R^3 = Alk = Me$ (c); $R^1 = 4$ -MeO, $R^2 = H$, $R^3 = Me$, Alk = Et (d); $R^1 = 4$ -MeO, $R^2 = H$, $R^3 = Me$, Alk = Et (d); $R^1 = 4$ -MeO, $R^2 = H$, $R^3 = Me$, Alk = i-Pr (e); $R^1 = 4$ -t-Bu, $R^2 = H$, $R^3 = Alk = Me$ (f); $R^1 = 4$ -t-Bu, $R^2 = H$, $R^3 = Me$, Alk = Et (g); $R^1 = 4$ -t-Bu, $R^2 = H$, $R^3 = Me$, Alk = *i*-Pr (h); $R^1 = 4$ -(1-methylcyclopropyl), $R^2 = H$, $R^3 = Me$, Alk = *i*-Pr (j); $R^1 = 3$,4-(CH₂)₄, $R^2 = H$, $R^3 = Alk = Me$ (k); $R^1 = 3$,4-(CH₂)₄, $R^2 = H$, $R^3 = Me$, Alk = Et (l); $R^1 = 3$,4-(CH₂)₄, $R^2 = H$, $R^3 = Me$, Alk = Et (l); $R^1 = 3$,4-(CH₂)₄, $R^2 = H$, $R^3 = Me$, Alk = Et (l); $R^1 = 3$,4-(CH₂)₄, $R^2 = H$, $R^3 = Me$, Alk = Et (l); $R^1 = 3$,4-(CH₂)₄, $R^2 = H$, $R^3 = Me$, Alk = Et (l); $R^1 = 3$,4-(CH₂)₄, $R^2 = H$, $R^3 = Me$, Alk = Et (l); $R^1 = 3$,4-(CH₂)₄, $R^2 = H$, $R^3 = Me$, Alk = Et (l); $R^1 = 3$,4-(CH₂)₄, $R^2 = H$, $R^3 = Me$, Alk = Et (l); $R^1 = 3$,4-(CH₂)₄, $R^2 = H$, $R^3 = Me$, Alk = *i*-Pr (m); **3**, $R^1 = H$, $R^2 = Me$ (a), Et (b), Pr (c), *i*-Pr (d), Bu (e), *cyclo*-C₃H₅ (f); $R^1 = B$, $R^2 =$ *cyclo* $-C₃H₅ (g); <math>R^1 = H$, $R^2 = PhCH_2$ (h), $BrCH_2$ (i); $R^1 = O_2N$, $R^2 = Et$ (j); 4, $R^1 = H$, $R^2 = Re$, Alk = Me (a); $R^1 = H$, $R^2 = Me$, Alk = Et (b); $R^1 = H$, $R^2 = Re$, Alk = PhCH₂ (h), $R^1 = H$, $R^2 = Me$, Alk = PhCH₂ (h), $R^1 = H$, $R^2 = Me$, Alk = PhCH₂ (h); $R^1 = H$, $R^2 = Ie$, Alk = PhCH₂ (h); $R^1 = H$, $R^2 = Ie$, Alk = PhCH₂ (h); $R^1 = H$, $R^2 = Ie$, Alk = PhCH₂ (h); $R^1 = H$, $R^2 = Ie$, Alk = PhCH₂ (h); $R^1 = H$, $R^2 = Ie$, Alk = PhCH₂ (h); $R^1 = H$, $R^2 = Ie$, Alk = Et (h); $R^1 = H$, $R^2 = Ie$, Alk = Ie (n); $R^1 = H$, $R^2 = Ie$, Alk = Ie (n); $R^1 = H$, $R^2 = Ie$

Run no.	Benzyl alcohol	Alkanol	Reaction time, h	Unsymmetrical ether	Composition of the reaction mixture, ^a %	
					unsymmetrical ether	unreacted benzyl alcohol
1	1a	EtOH	500	2a	8	92
2	1b	MeOH	320	2b	100	0
3	1c	MeOH	196	2c	100	0
4	1c	EtOH	196	2d	74	26
5	1c	<i>i</i> -PrOH	196	2e	31	69
6	1d	MeOH	500	2f	89	11
7	1d	EtOH	500	2g	32	68
8	1d	i-PrOH	500	2h	13	87
9	1d	i-PrOH	5 ^b	2h	35	65
10	1e	MeOH	320	2i	100	0
11	1e	i-PrOH	5 ^b	2j	95	4
12	1f	MeOH	320	2k	93	7
13	1f	EtOH	320	21	28	72
14	1f	EtOH	5 ^b	21	95	4
15	1f	<i>i</i> -PrOH	7 ^b	2m	81	19
16	3a	MeOH	120	4 a	100	0
17	3a	EtOH	196	4b	96	4
18	3a	i-PrOH	196	4c	51	49
19	3a	BnOH	196	4 d	88	12
20	3b	MeOH	120	4e	100	0
21	3b	EtOH	196	4 f	100	0
22	3b	AmOH	120	4g	100	0
23	3c	EtOH	196	4h	100	0
24	3d	MeOH	120	4 i	100	0
25	3d	EtOH	196	4j	82	18
26	3e	MeOH	120	4k	100	0
27	3e	EtOH	196	41	100	0
28	3f	MeOH	72	4 m	100	0
29	3f	EtOH	96	4 n	100	0
30	3g	MeOH	72	40	100	0
31	3g	EtOH	120	4p	100	0
32	3g	<i>i</i> -PrOH	120	4q	95	5
33	3h	MeOH	96	4r	100	0
34	3h	EtOH	196	4s	86	14
35	3h	EtOH	320	4s	100	0
36	3h	<i>i</i> -PrOH	196	4 t	35	65
37	3h	<i>i</i> -PrOH	320	4t	61	39

Table 1. Intermolecular etherification of benzyl alcohols with alkanols, catalyzed by HCl (molar ratio benzyl alcohol–alkanol–HCl 1:15:0.05; 20°C)

Run no.	Benzyl alcohol	Alkanol	Reaction time, h	Unsymmetrical ether	Composition of the reaction mixture, ^a %	
					unsymmetrical ether	unreacted benzyl alcohol
38	5a	МеОН	120	6a	100	0
39	5b	МеОН	120	6b	100	0
40	5b	EtOH	196	6c	31	69
41	5b	EtOH	500	6с	71	28
42	5b	<i>i</i> -PrOH	196	6d	15	85
43	5b	i-PrOH	500	6d	35	65

Table 1. (Contd.)

^a According to the ¹H NMR data.

^b The reaction was carried out on heating under reflux.

It was also interesting to compare our results with those obtained in the acid-catalyzed addition of alcohols to terminal arylalkenes. Methyl and isopropyl alcohols reacted with α -methylstyrene and 4-methoxy-styrene in the presence of silica-supported KHSO₄ to afford methyl 2-phenylpropan-2-yl ether, 1-(4-methoxyphenyl)ethyl methyl ether, and isopropyl 1-(4-methoxyphenyl)ethyl ether in 26, 25, and 11% yield, respectively [11], whereas the major products were the corresponding styrene dimers. As follows from the data in Table 1 (run nos. 2, 3, 5), the synthesis of the above listed ethers by HCl-catalyzed intermolecular condensation of alcohols is much more efficient than the reactions catalyzed by solid NaHSO₃ [4] or KHSO₄/SiO₂ [11].

It was somewhat surprising that in all cases the yield of unsymmetrical ether under standard conditions tended to decrease in going from methanol to ethanol and isopropyl alcohol. However, the yields in the reactions with pentyl and benzyl alcohols approached those in the etherification with methanol (run nos. 3, 19, 22, 24, 26). Analogous tendency was observed in [4] while studying etherification of benzylic alcohol **1c** with primary and secondary alkanols. The latter ensured a lower yield. Taking into consideration that etherifica-

tion of benzyl alcohols involves intermediate formation of benzyl-type carbenium ions [4], the observed dependence of the yield on the alkanol structure can be rationalized only by steric factors.

It is important to note that the three-membered ring in cyclopropylcarbinols 3f and 3g remained intact under the etherification conditions (run nos. 28–32), although isomerization of ion A (Scheme 3) might be expected by analogy with the known transformation of carbenium ion derived from cyclopropyl(phenyl)methanol under acidic conditions [17]. Insofar as cyclopropyl(phenyl)methyl cation (analog of A) generated from cyclopropyl(phenyl)methanol by the action of trifluoroacetic acid isomerizes by more than 40% into 1-phenylbut-1-en-4-yl cation (analog of **B**), eventually yielding the corresponding trifluoroacetate [17], the presence of fused 1,4-dioxine ring in molecules 3f and 3g is likely to inhibit the isomerization $A \rightarrow B$ due to significant contribution of mesomeric structure A' to the stabilization of ion A.

It was found that benzylic alcohols like **3** having strong electron-donating groups $[3,4-(CH_2)_2O_2]$ in the benzene ring together with moderate electron-withdrawing substituents in the side chain ($R^1 = H, R^2 =$ BrCH₂) or strong electron-withdrawing substituents in

7, $R^1 = R^2 = H$, Ar = Ph (a); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = H$, Ar = Ph (b), $4-MeC_6H_4$ (c), $4-MeC_6H_4$ (d), $4-FC_6H_4$ (e), $4-CIC_6H_4$ (f), $3-NCC_6H_4$ (g), 2-thienyl (h); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = H$, $Ar = 4-FC_6H_4$ (i); $R^1 = 3,4-(CH_2)_2O_2$, Ar = Ph, $R^2 = Br$ (j), O_2N (k); $R^1 = 3,4-(CH_2)_2O_2$, $Ar = 4-MeC_6H_4$, $R^2 = cyclopropylcarbonylamino$ (l), $PhCH_2C(O)NH$ (m), $Ar = 4-CIC_6H_4$, $R^2 = thiophen-2-ylcarbonylamino$ (n); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = H$, Ar = Ph, Alk = Me (a), Et (b); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = H$, Ar = Ph, Alk = Me (c), Et (d), *i*-Pr (e); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = H$, Ar = Ph, Alk = Me (f), Et (g), *i*-Pr (h); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = H$, $Ar = 4-MeC_6H_4$, Alk = Me (f), Et (g), *i*-Pr (h); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = H$, $Ar = 4-MeC_6H_4$, Alk = Me (p), *i*-Pr (q); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = Br$, Ar = Ph, Alk = Me (r), Et (s); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = H$, Alk = Me (t); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = Br$, Ar = Ph, Alk = Me (r), Et (s); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = O_2N$, Ar = Ph, Alk = Me (t); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = Br$, Ar = Ph, Alk = Me (r), Et (s); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = O_2N$, Ar = Ph, Alk = Me (t); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = Br$, Ar = Ph, Alk = Me (r), Et (s); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = O_2N$, Ar = Ph, Alk = Me (t); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = Br$, Ar = Ph, Alk = Me (r), Et (s); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = O_2N$, Ar = Ph, Alk = Me (t); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = Br$, Ar = Ph, Alk = Me (r), Et (s); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = O_2N$, Ar = Ph, Alk = Me (t); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = C_2N$, Ar = Ph, Alk = Me (t); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = C_2N$, Ar = Ph, Alk = Me (t); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = O_2N$, Ar = Ph, Alk = Me (t); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = O_2N$, Ar = Ph, Alk = Me (t); $R^1 = 3,4-(CH_2)_2O_2$, $R^2 = C_2N$, Ar = Ph, Alk = Et

the benzene ring ($R^1 = NO_2$, $R^2 = Et$) failed to react with alkanols at 20°C under the given conditions. On the other hand, the reactivity did not change upon introduction of a bromine atom into the benzene ring (cf. **3f** and **3g**; run nos. 30–32).

Unlike cross etherification of benzylic alcohols via intermolecular dehydration, no data on analogous transformations in the series of diphenylmethanols (benzhydrols) have been reported so far. Only the synthesis of symmetrical bis(diphenylmethyl) ether by dehydration of benzhydrol in the presence of an equimolar amount of ZnI₂ [18] or ZnCl₂ [19] was described. We have found that intermolecular etherification of benzhydrols with alkanols is easy to accomplish using a catalytic amount of HCl and that the reaction occurs even more readily than in the series of α -alkylbenzyl alcohols (Scheme 4, Table 2).

As follows from the data in Table 2, unsubstituted benzhydrol (7a) is much less reactive than diarylmethanols with alkoxy groups in the benzene rings; the conversion of 7a into unsymmetrical ether was complete (or almost complete) only at elevated temperature (Table 2; run nos. 2, 4). This confirms once more the crucial role of oxygen-containing substituents in the aryl fragments in the stabilization of intermediate benzyl and diphenylmethyl cations. The substituents in the second benzene ring (not fused to 1,4-dioxine) almost did not affect the reactivity of 2,3-dihydro-1,4benzodioxin-6-yl(phenyl)methanols 7c-7g, and the yields of the corresponding unsymmetrical ethers in all cases were fairly high (run nos. 8-16, 18, 19). On the other hand, appreciable difference was observed in the behavior of benzhydrol derivatives containing halogen atoms in different aromatic fragments. The fluorine and chlorine atoms insignificantly deactivated p-halophenyl derivatives 7e, 7f, and 7i toward etherification (run nos. 14, 15, 18, 19), whereas the bromine atom in the benzodioxine fragment of 7i considerably reduced its reactivity. The methylation of 7j under standard conditions was characterized by a lower yield, while its ethylation required elevated temperature (Tabl. 2;

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 51 No. 9 2015

Scheme 5.

Run no. Di	Diarylmethanol	Alkanol	Reaction time, h	Unsymmetrical ether	Composition of the reaction mixture, ^a %	
	Diaryimethanoi				unsymmetrical ether	unreacted diarylmethanol
1	7a	MeOH	168	8a	21	79
2	7a	MeOH	5 ^b	8a	100	0
3	7a	EtOH	400	8b	12	88
4	7a	EtOH	8 ^b	8b	53	47
5	7b	MeOH	96	8c	100	0
6	7b	EtOH	120	8d	100	0
7	7b	<i>i</i> -PrOH	120	8e	85	15
8	7c	MeOH	72	8f	100	0
9	7c	EtOH	96	8g	100	0
10	7c	<i>i</i> -PrOH	120	8h	100	0
11	7d	MeOH	72	8i	100	0
12	7d	EtOH	96	8j	100	0
13	7d	<i>i</i> -PrOH	120	8k	100	0
14	7e	<i>i</i> -PrOH	168	81	89	11
15	7f	EtOH	168	8m	91	9
16	7g	EtOH	168	8n	84	16
17	7h	EtOH	168	80	100	0
18	7i	MeOH	96	8p	100	0
19	7i	<i>i</i> -PrOH	120	8q	100	0
20	7j	MeOH	120	8r	71	29
21	7j	EtOH	168	8 s	8	92
22	7j	EtOH	6 ^b	8 s	100	0
23	7k	MeOH	8 ^b	8t	7	93
24	71	EtOH	168	8u	100	0
25	7m	EtOH	168	8 v	95	5
26	7n	EtOH	168	8w	49	51
27	70	EtOH	320	8x	52	48

Table 2. Condensation of diarylmethanols with alkanols in the presence of HCl (molar ratio 7–8–HCl 1:15:0.05; 20°C)

^a According to the ¹H NMR data.

^b The reaction was carried out on heating under reflux.

run nos. 20–22). Unlike **7j** whose etherification with alkanols was still feasible despite the presence of electron-withdrawing bromine atom in the benzodioxane fragment (though under more severe conditions), nitro-substituted benzhydrol failed to react with alkanols even on prolonged heating.

It should be noted that the etherification of (2,3-dihydro-1,4-benzodioxin-6-yl)(thiophen-2-yl)methanol (**7h**) was as ready as the reaction with **7b** (run nos. 6, 17). This indicates that aryl(hetaryl)methanols can be successfully etherified with alcohols via acid-catalyzed dehydration. The yields of unsymmetrical ethers in the reactions of the examined benzhydrols with alkanols almost did not depend on the latter (Table 2; run nos. 3–9, 12, 13).

Insofar as the etherification of benzyl alcohols involves formation of benzyl type cations [4], it seemed important to examine etherification of benzhydrols containing nucleophilic substituents in the *ortho* position with a view to elucidating whether the reaction would be complicated by participation of the internal nucleophile in the stabilization of carbenium ion. It is known that benzhydrols **71–70** undergo cyclization to 1,3-benzoxazines with high yields by the action of trifluoroacetic acid [20].

Two paths of acid-catalyzed transformations of *ortho*-acylamino-substituted benzhydrols 7l-7o are theoretically possible, and both these involve carbenium ion **A** as key intermediate (Scheme 5). Our results showed that the HCl-catalyzed reaction of 7l-7o with ethanol follows only the intermolecular dehydration path (*a*) leading to the corresponding unsymmetrical ethers (Table 2; run nos. 24–27). It is very likely that under the given conditions the nucleophilicity of the oxygen atom of nonprotonated alkanol is considerably higher than the nucleophilicity of the amide oxygen atom, which prevents formation of cyclic ions **B** and hence benzoxazines (path *b*).

Thus, we have shown for the first time that chemoselective intermolecular condensation of benzyl alcohols and diarylmethanols with alkanols can be accomplished under catalysis by hydrochloric acid.

EXPERIMENTAL

The ¹H NMR spectra were recorded on a Varian VXR-400 spectrometer at 400 MHz; the chemical shifts were measured relative to the residual proton signal of the deuterated solvent. The elemental analyses were obtained on a Varian-11 CHN analyzer. The melting points were determined on an Electrothermal Digital Melting Point Apparatus (model 1A9100). The products were isolated by distillation (in large-scale syntheses) or by chromatography on Al₂O₃ (Brockmann activity grade II) or silica gel (40–100 μ m) using diethyl ether–hexane mixtures with different ratios.

Initial benzyl alcohols (except for **1a** and **1b**) and benzhydrols were synthesized by reduction of the corresponding alkyl aryl ketones and benzophenones with sodium tetrahydridoborate according to [20]. The physicochemical characteristics of **1d** [21], **1f** [22], **3a**, **3b**, **3j**, **7b** [21], **7l**, and **7o** [23] were consistent with published data.

1-[4-(1-Methylcyclopropyl)phenyl]ethanol (1e). Yield 79%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.77 m and 0.89 m (2H each, CH₂CH₂), 1.44 s (3H, CH₃), 1.51 d (3H, CHCH₃, J = 6.2 Hz), 2.19 br.s (1H, OH), 4.86 q (1H, CHCH₃, J = 6.2 Hz), 7.26 d (2H, *o*-H, J = 8.1 Hz), 7.31 d (2H, *m*-H, J = 8.1 Hz). Found, %: C 81.52, 81.63; H 9.03, 9.11. C₁₂H₁₆O. Calculated, %: C 81.77; H 9.15. **1-(2,3-Dihydro-1,4-benzodioxin-6-yl)butan-1-ol** (**3c**). Yield 81%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.92 t (3H, CH₃, J = 7.3 Hz), 1.28 m and 1.40 m (1H each, CH₂CH₂CH₃), 1.61 m and 1.73 m (1H each, CH₂CH₂CH₃), 2.20 br.s (1H, OH), 4.23 s (4H, OCH₂CH₂O), 4.53 t (1H, CHOH, J = 6.7 Hz), 6.78–6.87 m (3H, H_{arom}). Found, %: C 69.06, 69.08; H 7.61, 7.71. C₁₂H₁₆O₃. Calculated, %: C 69.21; H 7.75.

1-(2,3-Dihydro-1,4-benzodioxin-6-yl)-2-methylpropan-1-ol (3d). Yield 74%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.77 d and 0.99 d [3H each, CH(CH₃)₂, J = 6.6 Hz], 1.91 m [1H, CH(CH₃)₂], 2.08 br.s (1H, OH), 4.22 s (4H, OCH₂CH₂O), 4.31 m (1H, CHOH), 6.72–6.84 m (3H, H_{arom}). Found, %: C 69.01, 69.11; H 7.69, 7.71. C₁₂H₁₆O₃. Calculated, %: C 69.21; H 7.75.

1-(2,3-Dihydro-1,4-benzodioxin-6-yl)pentan-1-ol (**3e).** Yield 84%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.79 t (3H, CH₃, J = 6.6 Hz), 1.11 m (1H) and 1.25 m (3H, CH₂CH₂CH₂CH₂CH₃), 1.56 m and 1.68 m (1H each, CH₂CH₂CH₂CH₂CH₃), 1.96 br.s (1H, OH), 4.25 s (4H, OCH₂CH₂O), 4.51 t (1H, CHOH, J = 5.9 Hz), 6.67 d.d (1H, 7-H, ⁴J = 2.1, ³J = 8.2 Hz), 6.72 d (1H, 8-H, ³J = 8.2 Hz), 6.77 d (1H, 5-H, ⁴J = 2.1 Hz). Found, %: C 70.06, 70.11; H 8.08, 8.10. C₁₃H₁₈O₃. Calculated, %: C 70.24; H 8.16.

Cyclopropyl(2,3-dihydro-1,4-benzodioxin-6-yl)methanol (3f). Yield 69%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.37 m, 0.46 m, 0.56 m, 0.63 m, and 1.79 m (1H each, C₃H₅); 2.01 br.s (1H, OH), 3.91 d (1H, CHOH, J = 6.6 Hz), 4.27 m (4H, OCH₂CH₂O), 6.87 d (1H, 8-H, J = 8.0 Hz), 6.91 d.d (1H, 7-H, ⁴J = 2.0, ³J = 8.0 Hz), 6.97 d (1H, 5-H, ⁴J = 2.0 Hz). Found, %: C 69.67, 69.81; H 6.77, 6.78. C₁₂H₁₄O₃. Calculated, %: C 69.88; H 6.84.

(7-Bromo-2,3-dihydro-1,4-benzodioxin-6-yl)cyclopropylmethanol (3g). Yield 86%, viscous oily material. ¹H NMR spectrum (CD₂Cl₂), δ , ppm: 0.48 m (3H), 0.61 m (1H), and 1.23 m (1H) (C₃H₅); 2.22 br.s (1H, OH), 4.27 s (4H, OCH₂CH₂O), 4.51 d (1H, CHOH, *J* = 4.8 Hz), 7.07 s (1H, 5-H), 7.13 s (1H, 8-H). Found, %: C 50.34, 50.41; H 4.31, 4.41. C₁₂H₁₃BrO₃. Calculated, %: C 50.55; H 4.59.

1-(2,3-Dihydro-1,4-benzodioxin-6-yl)-2-phenylethanol (3h). Yield 82%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.19 br.s (1H, OH), 3.01 m (2H, CH₂Ph), 4.25 s (4H, OCH₂CH₂O), 4.79 t (1H, CHOH, J = 6.8 Hz), 6.83 d.d (1H, 7-H, ${}^{4}J = 1.6$, ${}^{3}J = 8.0$ Hz), 6.86 d (1H, 8-H, ${}^{3}J = 8.0$ Hz), 6.93 d (1H, 5-H, ${}^{4}J$ = 1.6 Hz), 7.23 d (2H, 2'-H, 6'-H, J = 7.8 Hz), 7.28 m (1H, 4'-H), 7.33 t (2H, 3'-H, 5'-H, ${}^{3}J$ = 8.0 Hz). Found, %: C 74.77, 74.85; H 6.11, 6.19. C₁₆H₁₆O₃. Calculated, %: C 74.98; H 6.29.

2-Bromo-1-(2,3-dihydro-1,4-benzodioxin-6-yl)ethanol (3i). Yield 76%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.79 br.s (1H, OH), 3.53 m (2H, CH₂Br), 4.25 s (4H, OCH₂CH₂O), 4.81 m (1H, CHOH), 6.85 m (2H, 7-H, 8-H), 6.91 m (1H, 5-H). Found, %: C 46.17, 46.22; H 4.11, 4.21. C₁₀H₁₁BrO₃. Calculated, %: C 46.36; H 4.28.

1-(3,4-Dihydro-2*H***-1,5-benzodioxepin-7-yl)ethanol (5a).** Yield 91%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.46 d (3H, CH₃, J = 6.5 Hz), 1.98 br.s (1H, OH), 2.19 quint (2H, OCH₂CH₂CH₂O, J = 5.6 Hz), 4.20 q (4H, OCH₂CH₂CH₂O, J = 5.6 Hz), 4.20 q (4H, OCH₂CH₂CH₂O, J = 5.6 Hz), 4.79 q (1H, CHCH₃, J =6.5 Hz), 6.92 d.d (1H, 6-H, ⁴J = 1.8, ³J = 8.2 Hz), 6.95 d (1H, 5-H, ³J = 8.2 Hz), 6.99 d (1H, 2-H, ⁴J =1.8 Hz). Found, %: C 67.88, 67.93; H 7.15, 7.21. C₁₁H₁₄O₃. Calculated, %: C 68.02; H 7.26.

1-(3,4-Dihydro-2*H***-1,5-benzodioxepin-7-yl)-2-phenylethanol (5b).** Yield 83%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.12 br.s (1H, OH), 2.20 m (2H, OCH₂CH₂CH₂O), 3.01 m (2H, CH₂Ph), 4.22 m (4H, OCH₂CH₂CH₂O), 4.81 d.d (1H, CHCH₂Ph, *J* = 5.5, 8.5 Hz), 6.93 d.d (1H, 6-H, ⁴*J* = 2.0, ³*J* = 8.0 Hz), 6.97 d (1H, 5-H, ³*J* = 8.0 Hz), 7.02 d (1H, 2-H, ⁴*J* = 2.0 Hz), 7.22 m (2H, 2'-H, 6'-H), 7.26 m (1H, 4'-H), 7.33 m (2H, 3'-H, 5'-H). Found, %: C 75.36, 75.46; H 6.61, 6.65. C₁₇H₁₈O₃. Calculated, %: C 75.53; H 6.71.

(2,3-Dihydro-1,4-benzodioxin-6-yl)(4-methylphenyl)methanol (7c). Yield 79%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.34– 2.40 br.s (4H, CH₃, OH), 4.23 s (4H, OCH₂CH₂O), 5.71 s (1H, CHOH), 6.84 m (2H, 7-H, 8-H), 6.90 br.s (1H, 5-H), 7.15 d (2H, 3'-H, 5'-H, J = 7.8 Hz), 7.26 d (2H, 2'-H, 6'-H, J = 7.8 Hz). Found, %: C 74.74, 74.82; H 6.14, 6.21. C₁₆H₁₆O₃. Calculated, %: C 74.98; H 6.29.

(2,3-Dihydro-1,4-benzodioxin-6-yl)(4-methoxyphenyl)methanol (7d). Yield 92%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.35 br.s (1 H, OH), 3.81 s (3 H, OCH₃), 4.23 s (4 H, OCH₂CH₂O), 5.69 s (1H, CHOH), 6.82–6.89 m (5H, H_{arom}), 7.29 d (2H, 2'-H, 6'-H, J = 8.4 Hz), Found, %: C 70.22, 70.36; H 5.78, 5.85. C₁₆H₁₆O₄. Calculated, %: C 70.57; H 5.92. (2,3-Dihydro-1,4-benzodioxin-6-yl)(4-fluorophenyl)methanol (7e). Yield 89%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.28 br.s (1H, OH), 4.24 s (4H, OCH₂CH₂O), 5.72 s (1H, CHOH), 6.83 m (2H, 7-H, 8-H), 6.83 m (1H, 5-H), 7.03 t (2H, 3'-H, 5'-H, ³J_{HH} = 8.2, J_{HF} = 8.2 Hz), 7.34 d.d (2H, 2'-H, 6'-H, ³J_{HH} = 8.2, J_{HF} = 5.4 Hz). Found, %: C 68.93, 69.06; H 4.88, 4.94. C₁₅H₁₃FO₃. Calculated, %: C 69.22; H 5.03.

(4-Chlorophenyl)(2,3-dihydro-1,4-benzodioxin-6-yl)methanol (7f). Yield 87%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.51 br.s (1H, OH), 4.23 s (4H, OCH₂CH₂O), 5.68 s (1H, CHOH), 6.81 d.d (1H, 7-H, ⁴J = 1.8, ³J = 8.2 Hz), 6.84 d (1H, 8-H, ³J = 8.2 Hz), 6.85 d (1H, 5-H, ⁴J = 1.8 Hz), 7.30 s (4H, H_{arom}). Found, %: C 64.88, 64.96; H 4.61, 4.63. C₁₅H₁₃ClO₃. Calculated, %: C 65.11; H 4.73.

3-[(2,3-Dihydro-1,4-benzodioxin-6-yl)(hydroxy)methyl]benzonitrile (7g). Yield 72%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.48 br.s (1H, OH), 4.25 s (4H, OCH₂CH₂O), 5.74 s (1H, CHOH), 6.82–6.86 m (3H, 5-H, 7-H, 8-H), 7.43 t (1H, 5'-H, *J* = 7.8 Hz), 7.54 d (1H, 6'-H, *J* = 7.8 Hz), 7.62 d (1H, 4'-H, *J* = 7.8 Hz), 7.69 s (1H, 2'-H). Found, %: C 71.82, 71.76; H 4.78, 4.81; N 5.01, 5.09. C₁₆H₁₃NO₃. Calculated, %: C 71.90; H 4.90; N 5.24.

(2,3-Dihydro-1,4-benzodioxin-6-yl)(thiophen-2yl)methanol (7h). Yield 78%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.68 s (1H, OH), 4.24 s (4H, OCH₂CH₂O), 5.93 s (1H, CHOH), 6.86 d (1H, 8-H, ³J = 8.1 Hz), 6.88–6.97 m (4H, H_{arom}), 7.26 d (1H, 5-H, ⁴J = 2.4 Hz). Found, %: C 62.66, 62.71; H 4.71, 4.78. C₁₃H₁₂O₃S. Calculated, %: C 62.88; H 4.87.

(3,4-Dimethoxyphenyl)(4-fluorophenyl)methanol (7i). Yield 88%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.61 br.s (1H, OH), 3.86 s (6H, OCH₃), 5.73 s (1H, CHOH), 6.36 d (1H, 5-H, ³J = 8.2 Hz), 6.40 d.d (1H, 6-H, ⁴J = 1.8, ³J = 8.2 Hz), 6.49 d (1H, 2-H, ⁴J = 1.8 Hz), 6.53 t (2H, 3'-H, 5'-H, ³J_{HH} = 8.2, J_{HF} = 8.2 Hz), 6.90 d.d (2H, 2'-H, 6'-H, ³J_{HH} = 8.2, J_{HF} = 6.0 Hz). Found, %: C 68.51, 68.62; H 5.58, 5.62. C₁₅H₁₅FO₃. Calculated, %: C 68.69; H 5.76.

(7-Bromo-2,3-dihydro-1,4-benzodioxin-6-yl)-(phenyl)methanol (7j). Yield 95%, viscous oily material. ¹H NMR spectrum (CDCl₃) δ , ppm: 2.48 br.s (1H, OH), 4.22 s (4H, OCH₂CH₂O), 6.09 s (1H, CHOH), 7.05 s and 7.07 s (1H each, 5-H, 8-H), 7.30 m (1H, 4'-H), 7.35 t (2H, 3'-H, 5'-H, ³J = 7.8 Hz), 7.43 d (2H, 2'-H, 6'-H, ${}^{3}J$ = 7.8 Hz). Found, %: C 55.88, 55.95; H 3.96, 4.01. C₁₅H₁₃BrO₃. Calculated, %: C 56.10; H 4.08.

(7-Nitro-2,3-dihydro-1,4-benzodioxin-6-yl)-(phenyl)methanol (7k). Yield 77%, viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 3.05 br.s (1H, OH), 4.29 m and 4.34 m (2H each, OCH₂CH₂O), 6.41 s (1H, CHOH), 7.19 s (1H, 6-H), 7.26–7.34 m (5H, H_{arom}), 7.65 s (1H, 3'-H). Found, %: C 62.51, 62.62; H 4.38, 4.47; N 4.71, 4.73. C₁₅H₁₃NO₅. Calculated, %: C 62.72; H 4.56; N 4.88.

N-{7-[(Hydroxy)(4-methylphenyl)methyl]-2,3-dihydro-1,4-benzodioxin-6-yl}phenylacetamide (7m). Yield 79%, mp 151–152°C (from EtOH). ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 2.25 s (3H, CH₃), 3.54 s (2H, CH₂Ph), 4.18 s (4H, OCH₂CH₂O), 5.71 d (1H, OH, *J* = 3.3 Hz), 5.97 d (1H, CHOH, *J* = 3.3 Hz), 6.82 s (1H, 5-H), 7.04 s (4H, 2'-H, 3'-H, 5'-H, 6'-H), 7.08 s (1H, 8-H), 7.24 m (3H, H_{arom}), 7.31 m (2H, H_{arom}), 9.35 s (1H, NH). Found, %: C 73.88, 73.96; H 5.81, 5.83; N 3.39, 3.48. C₂₄H₂₃NO₄. Calculated, %: C 74.02; H 5.95; N 3.60.

N-{7-[(4-Chlorophenyl)(hydroxy)methyl]-2,3-dihydro-1,4-benzodioxin-6-yl}thiophene-2-carboxamide (7n). Yield 83%, mp 149–150°C (from EtOH). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 4.24 s (4H, OCH₂CH₂O), 5.85 d (1H, OH, *J* = 3.8 Hz), 6.51 d (1H, CHOH, *J* = 3.8 Hz), 6.88 s (1H, 5-H), 7.27 d (2H, 3'-H, 5'-H, *J* = 8.0 Hz), 7.30 d (2H, 2'-H, 6'-H, *J* = 8.0 Hz), 7.21 m (2H, 8-H, 4"-H), 7.71 m (1H, 5"-H), 7.83 d.d (1H, 3"-H, ⁴*J* = 0.8, ³*J* = 4.8 Hz), 10.01 s (1H, NH). Found, %: C 59.59, 59.64; H 3.86, 3.92; N 3.26, 3.33. C₂₀H₁₆CINO₄S. Calculated, %: C 59.77; H 4.01; N 3.49.

General procedure for etherification of benzyl alcohols and diarylmethanols. Benzyl alcohol or diarylmethanol, 0.1 mol, was dissolved in 1.5 mol of the corresponding alkanol, 1.8 mL (~5 mmol) of 10% aqueous HCl was added, and the mixture was kept at 20°C (or heated) as indicated in Tables 1 and 2. The mixture was poured into 250 mL of cold water and extracted with diethyl ether (2×50 mL), the extract was dried over MgSO₄ and evaporated, and the residue was distilled or recrystallized from appropriate solvent. In micro syntheses, the products were isolated by chromatography on Al₂O₃ or SiO₂.

The physicochemical characteristics of ethers **2a** [8], **2b** [11], **2d** [24], **2e** [4], **2f** [25], **2h** [26], and **4f** [21] were consistent with published data. The yields are given in Tables 1 and 2.

1-Methoxy-4-(1-methoxyethyl)benzene (2c). bp 122–123°C (20 mm), $n_D^{20} = 1.5104$. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.41 d (3H, CHCH₃, J = 6.2 Hz), 3.17 s (3H, CHOCH₃), 3.78 s (3H, OCH₃), 4.21 q (1H, CHOCH₃, J = 6.2 Hz), 6.84 d (2H, 3-H, 5-H, J = 8.2 Hz), 7.19 d (2H, 2-H, 6-H, J = 8.2 Hz). Found, %: C 72.01, 72.11; H 8.31, 8.36. C₁₀H₁₄O₂. Calculated, %: C 72.26; H 8.49.

1-tert-Butyl-4-(1-ethoxyethyl)benzene (2g). bp 141–142°C (21 mm), $n_D^{20} = 1.5004$. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.21 t (3H, CH₃CH₂O, J = 6.9 Hz), 1.37 s [9H, C(CH₃)₃], 1.48 d (3H, CH₃CH, J = 6.3 Hz), 3.42 q (2H, OCH₂CH₃, J = 6.9 Hz), 4.46 q (1H, CH₃CH, J = 6.3 Hz), 7.28 d (2H, H_{arom}, J = 8.2 Hz), 7.39 d (2H, H_{arom}, J = 8.2 Hz). Found, %: C 81.27, 81.42; H 10.56, 10.63. C₁₄H₂₂O. Calculated, %: C 81.50; H 10.74.

1-(1-Methoxyethyl)-4-(1-methylcyclopropyl)benzene (2i). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.77 m and 0.91 m (2H each, CH₂CH₂), 1.45 s (3H, CH₃), 1.47 d (3H, CH₃CH, *J* = 6.6 Hz), 3.25 s (3H, OCH₃), 4.31 q (1H, CH₃CH, *J* = 6.6 Hz), 7.26 s (4H, H_{arom}). Found, %: C 81.88, 81.92; H 9.36, 9.45. C₁₃H₁₈O. Calculated, %: C 82.06; H 9.53.

1-(1-Isopropoxyethyl)-4-(1-methylcyclopropyl)benzene (2j). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.76 m and 0.90 m (2H each, CH₂CH₂), 1.14 d and 1.18 d [3H each, CH(CH₃)₂, J = 6.2 Hz], 1.43 d (3H, CH₃CH, J = 7.4 Hz), 1.45 s (3H, CH₃), 3.53 sept [1H, CH(CH₃)₂, J = 6.2 Hz], 4.54 q (1H, OCHCH₃, J = 7.4 Hz), 7.23–7.28 m (4H, H_{arom}). Found, %: C 82.28, 82.41; H 9.98, 10.07. C₁₅H₂₂O. Calculated, %: C 82.52; H 10.15.

6-(1-Methoxyethyl)-1,2,3,4-tetrahydronaphthalene (2k). bp 158–159°C (19 mm), $n_D^{20} = 1.5275$. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.48 d (3H, CHCH₃, J = 6.2 Hz), 1.66 m (4H, 2-H, 3-H), 2.82 m (4H, 1-H, 4-H), 3.28 s (3H, OCH₃), 4.24 q (1H, CHCH₃, J = 6.2 Hz), 7.06–7.10 m (3H, 5-H, 7-H, 8-H). Found, %: C 81.81, 81.92; H 9.38, 9.42. C₁₃H₁₈O. Calculated, %: C 82.06; H 9.53.

6-(1-Ethoxyethyl)-1,2,3,4-tetrahydronaphthalene (**21**). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.21 t (3H, OCH₂CH₃, J = 7.2 Hz), 1.45 d (3H, CHCH₃, J = 6.2 Hz), 1.83 m (4H, 2-H, 3-H), 2.79 m (4H, 1-H, 4-H), 3.38 m (2H, OCH₂CH₃), 4.36 q (1H, CHCH₃, J = 6.2 Hz), 7.03 s (1H, H_{arom}), 7.07 s (2H, H_{arom}). Found, %: C 82.04, 82.16; H 9.71, 9.79. C₁₄H₂₀O. Calculated, %: C 82.30; H 9.87. **6-(1-Isopropoxyethyl)-1,2,3,4-tetrahydronaphthalene (2m).** Viscous oily material. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.17 d and 1.21 d [(3H each, CH(CH₃)₂, J = 7.3 Hz], 1.45 d (3H, CHCH₃, J =6.3 Hz), 1.85 m (4H, 2-H, 3-H), 2.82 m (4H, 1-H, 4-H), 3.57 s [(1H, CH(CH₃)₂], 4.53 q (1H, CHCH₃, J =6.3 Hz), 7.07–7.11 m (3H, H_{arom}). Found, %: C 82.24, 82.36; H 9.94, 10.03. C₁₅H₂₂O. Calculated, %: C 82.52; H 10.15.

6-(1-Methoxyethyl)-2,3-dihydro-1,4-benzodioxine (**4a**). bp 164–165°C (31 mm). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.36 d (3H, CHCH₃, J = 6.2 Hz), 3.18 s (3H, OCH₃), 4.18 q (1H, CHCH₃, J = 6.2 Hz), 4.25 s (4H, OCH₂CH₂O), 6.75 d.d (1H, 7-H, ⁴J = 2.0, ³J = 8.3 Hz), 6.79 d (1H, 5-H, ⁴J = 2.0 Hz), 6.80 d (1H, 8-H, ³J = 8.3 Hz). Found, %: C 67.81, 67.91; H 7.07, 7.14. C₁₁H₁₄O₃. Calculated, %: C 68.02; H 7.26.

6-(1-Ethoxyethyl)-2,3-dihydro-1,4-benzodioxine (**4b**). bp 168–169°C (20 mm). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.18 t (3H, OCH₂CH₃, J = 7.4 Hz), 1.41 d (3H, CHCH₃, J = 6.2 Hz), 3.35 m (2H, OCH₂CH₃), 4.25 s (4H, OCH₂CH₂O), 4.31 q (1H, CHCH₃, J = 6.2 Hz), 6.79–6.85 m (3H, H_{arom}). Found, %: C 68.96, 69.09; H 7.56, 7.64. C₁₂H₁₆O₃. Calculated, %: C 69.21; H 7.75.

6-(1-Isopropoxyethyl)-2,3-dihydro-1,4-benzodioxine (4c). Viscous oily material. ¹H NMR spectrum (CD₂Cl₂), δ , ppm: 1.10 d and 1.15 d [3H each, CH(CH₃)₂, J = 6.0 Hz], 1.36 d (3H, CHCH₃, J = 6.5 Hz), 3.52 sept [1H, CH(CH₃)₂], 4.26 s (4H, OCH₂CH₂O), 4.45 q (1H, CHCH₃, J = 6.5 Hz), 6.82– 6.86 m (3H, H_{arom}). Found, %: C 70.01, 70.12; H 8.01, 8.08. C₁₃H₁₈O₃. Calculated, %: C 70.24; H 8.16.

6-[1-(Benzyloxy)ethyl]-2,3-dihydro-1,4-benzodioxine (4d). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.50 d (3H, CHCH₃, J = 5.6 Hz), 4.30 s (4H, OCH₂CH₂O), 4.34 d and 4.51 d (1H each, CH₂Ph, J = 12.1 Hz), 4.44 q (1H, CHCH₃, J = 5.6 Hz), 6.88 d.d (1H, 7-H, ⁴J = 1.8, ³J = 8.1 Hz), 6.92 d (1H, 8-H, ³J = 8.1 Hz), 6.95 d (1H, 5-H, J = 1.8 Hz), 7.30–7.37 m (5H, Ph). Found, %: C 75.39, 75.44; H 6.53, 6.58. C₁₇H₁₈O₃. Calculated, %: C 75.53; H 6.71.

6-(1-Methoxypropyl)-2,3-dihydro-1,4-benzodioxine (4e). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.86 t (3H, CH₂CH₃, J = 7.6 Hz), 1.65 m and 1.79 m (1H each, CH₂CH₃), 3.20 s (3H, OCH₃), 3.91 t (1H, CHCH₂, J = 5.4 Hz), 4.26 s (4H, OCH₂CH₂O), 6.76 d (1H, 7-H, ³J = 8.2 Hz), 6.81 s (1H, 5-H), 6.84 d (1H, 8-H, ³J = 8.2 Hz). Found, %: C 68.95, 69.06; H 7.58, 7.64. C₁₂H₁₆O₃. Calculated, %: C 69.21; H 7.75.

6-[1-(Pentyloxy)propyl]-2,3-dihydro-1,4-benzodioxine (4g). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.87 t [3H, (CH₂)₄CH₃, J = 6.5 Hz)], 0.89 t (3H, CHCH₂CH₃, J = 6.5 Hz), 1.31 m (4H, CH₂CH₂CH₃), 1.56 m (2H, OCH₂CH₂), 1.58 m and 1.62 m (1H each, CHCH₂CH₃), 3.23 m and 3.32 m (1H each, OCH₂CH₂CH₂), 3.99 t (1H, CHCH₂CH₃, J = 5.6 Hz), 4.25 s (4H, OCH₂CH₂O), 6.74 d.d (1H, 7-H, ⁴J = 2.0, ³J = 8.2 Hz), 6.81 d (1H, 5-H, ⁴J = 2.0 Hz), 6.83 d (1H, 8-H, ³J = 8.2 Hz). Found, %: C 72.48, 72.57; H 8.98, 9.03. C₁₆H₂₄O₃. Calculated, %: C 72.69; H 9.15.

6-(1-Ethoxybutyl)-2,3-dihydro-1,4-benzodioxine (**4h**). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.90 t (3H, CH₂CH₂CH₃, J = 7.2 Hz), 1.17 t (3H, OCH₂CH₃, J = 6.3 Hz), 1.28 m and 1.40 m (1H each, CH₂CH₂CH₃), 1.57 m and 1.76 m (1H each, CHCH₂), 3.29 m (1H) and 3.37 m (1H each, OCH₂CH₃), 4.09 t (1H, CHCH₂, J = 6.0 Hz), 4.25 s (4H, OCH₂CH₂O), 6.76 d (1H, 7-H, ³J = 8.2 Hz), 6.82 s (1H, 5-H), 6.84 d (1H, 8-H, ³J = 8.2 Hz). Found, %: C 70.89, 70.96; H 8.31, 8.38. C₁₄H₂₀O₃. Calculated, %: C 71.16; H 8.53.

6-(1-Methoxy-2-methylpropyl)-2,3-dihydro-1,4benzodioxine (4i). bp 171–172°C (28 mm), $n_D^{20} =$ 1.5268. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.73 d and 0.99 d [3H, CH(CH₃)₂, J = 6.4 Hz], 1.86 m [1H, CH(CH₃)₂], 3.18 s (3H, OCH₃), 3.63 d (1H, CHOCH₃, J = 6.8 Hz), 4.25 s (4H, OCH₂CH₂O), 6.71 d.d (1H, 7-H, ⁴J = 1.8, ³J = 8.2 Hz), 6.77 d (1H, 5-H, ⁴J = 1.8 Hz), 6.82 d (1H, 8-H, ³J = 8.2 Hz). Found, %: C 70.01, 70.12; H 7.98, 8.03. C₁₃H₁₈O₃. Calculated, %: C 70.24; H 8.16.

6-(1-Ethoxy-2-methylpropyl)-2,3-dihydro-1,4benzodioxine (4j). bp 177–178°C (24 mm), $n_D^{20} =$ 1.5256. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.74 d and 1.01 d [3H each, CH(CH₃)₂, J = 6.6 Hz], 1.17 t (3H, OCH₂CH₃, J = 7.2 Hz), 1.88 m [1H, CH(CH₃)₂], 3.26 m and 3.38 m (1H each, OCH₂CH₃), 3.74 d (1H, CHOCH₂CH₃, J = 7.4 Hz), 4.26 s (4H, OCH₂CH₂O), 6.73 d.d (1H, 7-H, ⁴J = 1.6, ³J = 8.0 Hz), 6.80 d (1H, 5-H, ⁴J = 1.6 Hz), 6.83 d (1H, 8-H, ³J = 8.0 Hz). Found, %: C 70.92, 71.03; H 8.32, 8.41. C₁₄H₂₀O₃. Calculated, %: C 71.16; H 8.53.

6-(1-Methoxypentyl)-2,3-dihydro-1,4-benzodioxine (4k). bp 189–190°C (26 mm). ¹H NMR spectrum (CDCl₃), δ , ppm: 0.87 t [3H, (CH₂)₃CH₃, J = 6.4 Hz], 1.30 m (1H) and 1.32 m (3H, CH₂CH₂CH₂CH₂CH₃), 1.61 m and 1.74 m (1H each, CH₂CH₂CH₂CH₃), 3.19 s (3H, OCH₃), 3.97 t (1H, CHOCH₃, J = 6.4 Hz), 4.25 s (4H, OCH₂CH₂O), 6.75 d.d (1H, 7-H, ${}^{4}J = 1.9$, ${}^{3}J = 8.2$ Hz), 6.81 d (1H, 5-H, ${}^{4}J = 1.9$ Hz), 6.83 d (1H, 8-H, ${}^{3}J = 8.2$ Hz). Found, %: C 71.02, 71.11; H 8.36, 8.46. C₁₄H₂₀O₃. Calculated, %: C 71.16; H 8.53.

6-(1-Ethoxypentyl)-2,3-dihydro-1,4-benzodioxine (**41).** bp 186–187°C (20 mm), $n_D^{20} = 1.5136$. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.89 t [3H, (CH₂)₃CH₃, J =7.0 Hz], 1.18 t (3H, OCH₂CH₃, J = 6.8 Hz), 1.20– 1.34 m (4H, CH₂CH₂CH₂CH₃), 1.59 m and 1.78 m (1H each, CH₂CH₂CH₂CH₃), 3.29 m and 3.38 m (1H each, OCH₂CH₃), 4.08 t (1H, CHOCH₂CH₃, J =6.8 Hz), 4.26 s (4H, OCH₂CH₂O), 6.77 d.d (1H, 7-H, ⁴J = 2.1, ³J = 8.3 Hz), 6.83 d (1H, 5-H, ⁴J = 2.1 Hz), 6.84 d (1H, 8-H, ³J = 8.3 Hz). Found, %: C 71.72, 71.83; H 8.68, 8.77. C₁₅H₂₂O₃. Calculated, %: C 71.97; H 8.86.

6-[Cyclopropyl(methoxy)methyl]-2,3-dihydro-1,4-benzodioxine (4m). Viscous oily material. ¹H NMR spectrum (CD₂Cl₂), δ , ppm: 0.25 m (1H), 0.44 m (2H), 0.62 m (1H), and 1.12 m (1H) (cyclopropane); 3.23 s (3H, OCH₃), 3.44 d (1H, CHCH₃, *J* = 6.1 Hz), 4.28 s (4H, OCH₂CH₂O), 6.81 d.d (1H, 7-H, ⁴*J* = 1.8, ³*J* = 8.3 Hz), 6.85–6.87 m (2H, 5-H, 8-H). Found, %: C 70.68, 70.77; H 7.16, 7.23. C₁₃H₁₆O₃. Calculated, %: C 70.89; H 7.32.

6-[Cyclopropyl(ethoxy)methyl]-2,3-dihydro-1,4benzodioxine (4n). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.25 m (1H), 0.43 m (2H), 0.62 m (1H), and 1.15 m (1H) (cyclopropane); 1.19 t (3H, OCH₂CH₃), 3.37 m (2H, OCH₂CH₃), 3.53 d (1H, CHOCH₂H₃, J = 7.6 Hz), 4.26 s (4H, OCH₂CH₂O), 6.79–6.87 m (3H, H_{arom}). Found, %: C 71.48, 71.62; H 7.53, 7.58. C₁₄H₁₈O₃. Calculated, %: C 71.77; H 7.74.

6-Bromo-7-[cyclopropyl(methoxy)methyl]-2,3dihydro-1,4-benzodioxine (40). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.42 m (3H), 0.55 m (1H), and 1.12 m (1H) (cyclopropane); 3.22 s (3H, OCH₃), 4.11 d (1H, CHOCH₃, J = 6.3 Hz), 4.25 s (4H, OCH₂CH₂O), 6.97 s and 7.03 s (1H each, 5-H, 8-H). Found, %: C 51.91, 52.04; H 4.87, 4.94. C₁₃H₁₅BrO₃. Calculated, %: C 52.19; H 5.05.

6-Bromo-7-[cyclopropyl(ethoxy)methyl]-2,3dihydro-1,4-benzodioxine (4p). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ, ppm: 0.37–0.47 m (3H), 0.54 m (1H), and 1.11 m (1H) (cyclopropane); 1.17 t (3H, OCH₂CH₃, J = 7.3 Hz), 3.34 q (2H, OCH₂CH₃), 4.20 d (1H, CHOCH₂CH₃, J = 6.8 Hz), 4.24 s (4H, OCH₂CH₂O), 6.97 s and 7.00 s (1H each, 5-H, 8-H). Found, %: C 53.36, 53.48; H 5.35, 5.39. C₁₄H₁₇BrO₃. Calculated, %: C 53.69; H 5.47.

6-Bromo-7-[cyclopropyl(isopropoxy)methyl]-**2,3-dihydro-1,4-benzodioxine (4q).** Viscous oily material. ¹H NMR spectrum (CDCl₃), δ, ppm: 0.38 m (2H), 0.48 m (2H), and 1.10 m (1H) (cyclopropane); 1.08 d and 1.14 d [3H each, CH(CH₃)₂, J = 6.2 Hz], 3.41 sept [1H, CH(CH₃)₂], 4.25 s (4H, OCH₂CH₂O), 4.29 d [1H, CHOCH(CH₃)₂, J = 6.3 Hz], 6.99 s and 7.00 s (1H each, 5-H, 8-H). Found, %: C 54.81, 54.92; H 5.64, 5.75. C₁₅H₁₉BrO₃. Calculated, %: C 55.06; H 5.85.

6-(1-Methoxy-2-phenylethyl)-2,3-dihydro-1,4benzodioxine (4r). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.89 d.d (1H, J = 5.6, 13.9 Hz) and 3.09 d.d (1H, J = 7.8, 13.9 Hz) (CH₂Ph), 3.19 s (3H, OCH₃), 4.23 d.d (1H, CHCH₂Ph, J = 5.6, 7.8 Hz), 4.27 s (4H, OCH₂CH₂O), 6.71 d.d (1H, 7-H, ⁴J = 1.8, ³J = 8.2 Hz), 6.81–6.84 m (2H, 5-H, 8-H), 7.14 d (2H, 2'-H, 6'-H, J = 8.0 Hz), 7.23 m (1H, 4'-H), 7.25 t (2H, 3'-H, 5'-H, J = 8.0 Hz). Found, %: C 75.30, 75.41; H 6.52, 6.62. C₁₇H₁₈O₃. Calculated, %: C 75.53; H 6.71.

6-(1-Ethoxy-2-phenylethyl)-2,3-dihydro-1,4benzodioxine (4s). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.18 t (3H, OCH₂CH₃, J =7.2 Hz), 2.89 d.d (1H, J = 6.2, 13.7 Hz) and 3.17 d.d (1H, J = 7.7, 13.7 Hz) (CH₂Ph), 3.28 m and 3.44 m (1H each, OCH₂CH₃), 4.27 s (4H, OCH₂CH₂O), 4.37 d.d (1H, CHOCH₂CH₃, J = 6.2, 7.7 Hz), 6.74 d.d (1H, 7-H, ⁴J = 1.8, ³J = 8.2 Hz), 6.84–6.87 m (2H, 5-H, 8-H), 7.18 d (2H, 2'-H, 6'-H, J = 7.8 Hz), 7.21 m (1H, 4'-H), 7.28 t (2H, 3'-H, 5'-H, J = 7.8 Hz) Found, %: C 75.79, 75.86; H 6.91, 6.96. C₁₈H₂₀O₃. Calculated, %: C 76.03; H 7.09.

6-(1-Isopropoxy-2-phenylethyl)-2,3-dihydro-1,4benzodioxine (4t). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.99 d and 1.09 d [3H each, CH(CH₃)₂, J = 6.2 Hz], 2.85 d.d (1H, J = 5.8, 13.3 Hz) and 3.05 d.d (1H, J = 8.0, 13.3 Hz) (CH₂Ph), 3.46 sept [1H, CH(CH₃)₂], 4.27 s (4H, OCH₂CH₂O), 4.43 d.d [1H, CHOCH(CH₃)₂, J = 5.8, 8.0 Hz], 6.75 d.d (1H, 7-H, ⁴J = 1.8, ³J = 8.2 Hz), 6.82 d (1H, 8-H, ³J =8.2 Hz), 6.86 d (1H, 5-H, ⁴J = 1.8 Hz), 7.17 d (2H, 2'-H, 6'-H, ³J = 7.8 Hz), 7.20 m (1H, 4'-H), 7.26 t (2H, 3'-H, 5'-H, ³J = 7.8 Hz). Found, %: C 76.21, 76.34; H 7.22, 7.31. C₁₉H₂₂O₃. Calculated, %: C 76.48; H 7.43.

7-(1-Methoxyethyl)-3,4-dihydro-2*H*-1,5-benzodioxepine (6a). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.41 d (3H, CHCH₃, J = 7.5 Hz), 2.21 m (2H, OCH₂CH₂CH₂O), 3.23 s (3H, OCH₃), 4.22 m (5H, OCH₂CH₂CH₂O, CHOCH₃), 6.88 d.d (1H, 8-H, ⁴J = 2.1, ³J = 8.1 Hz), 6.94 d (1H, 6-H, ⁴J =2.1 Hz), 6.96 d (1H, 9-H, ³J = 8.1 Hz). Found, %: C 68.96, 69.09; H 7.57, 7.63. C₁₂H₁₆O₃. Calculated, %: C 69.21; H 7.75.

7-(1-Methoxy-2-phenylethyl)-3,4-dihydro-2*H***-1,5-benzodioxepine (6b).** Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.21 quint (2H, OCH₂CH₂CH₂O, J = 5.6 Hz), 2.87 d.d (1H, J = 7.2, 14.4 Hz) and 3.10 d.d (1H, J = 8.1, 14.4 Hz) (CH₂Ph), 3.20 s (3H, OCH₃), 4.22 m (4H, OCH₂CH₂CH₂O), 4.26 d.d (1H, CHOCH₃, J = 7.2, 8.1 Hz), 6.81 d.d (1H, 8-H, ⁴J = 2.2, ³J = 8.2 Hz), 6.90 d (1H, 6-H, ⁴J =2.2 Hz), 6.94 d (1H, 9-H, ³J = 8.2 Hz), 7.14 m (2H, 2'-H, 6'-H), 7.21 m (1H, 4'-H), 7.25 m (2H, 3'-H, 5'-H). Found, %: C 75.71, 75.84; H 6.89, 6.97. C₁₈H₂₀O₃. Calculated, %: C 76.03; H 7.09.

7-(1-Ethoxy-2-phenylethyl)-3,4-dihydro-2*H***-1,5benzodioxepine (6c). Viscous oily material. ¹H NMR spectrum (CDCl₃), \delta, ppm: 1.15 t (3H, OCH₂CH₃,** *J* **= 7.1 Hz), 2.21 quint (2H, OCH₂CH₂CH₂O,** *J* **= 5.4 Hz), 2.86 d.d (1H,** *J* **= 5.7, 13.4 Hz) and 3.11 d.d (1H,** *J* **= 7.8, 13.4 Hz) (CH₂Ph), 3.28 m and 3.41 m (1H each, OCH₂CH₃), 4.22 m (4H, OCH₂CH₂CH₂O), 4.35 d.d (1H, CHOCH₂CH₃,** *J* **= 5.7, 7.8 Hz), 6.81 d.d (1H, 8-H, ⁴***J* **= 1.8, ³***J* **= 8.0 Hz), 6.90 d (1H, 6-H, ⁴***J* **= 1.8 Hz), 6.93 d (1H, 9-H, ³***J* **= 8.0 Hz), 7.14 d (2H, 2'-H, 6'-H,** *J* **= 7.7 Hz), 7.21 m (1H, 4'-H), 7.25 m (2H, 3'-H, 5'-H). Found, %: C 76.22, 76.37; H 7.23, 7.31. C₁₉H₂₂O₃. Calculated, %: C 76.48; H 7.43.**

7-(1-Isopropoxy-2-phenylethyl)-3,4-dihydro-2*H***-1,5-benzodioxepine (6d).** Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.99 d and 1.09 d [3H each, CH(CH₃)₂, J = 5.6 Hz], 2.21 quint (2H, OCH₂CH₂CH₂O, J = 5.3 Hz), 2.85 d.d (1H, J = 5.3, 13.3 Hz) and 3.04 d.d (1H, J = 8.0, 13.3 Hz) (CH₂Ph), 3.45 sept [1H, CH(CH₃)₂], 4.23 t (4H, OCH₂CH₂CH₂O, J = 5.3 Hz), 4.44 d.d [1H, CHOCH(CH₃)₂, J = 5.7, 7.8 Hz], 6.85 d.d (1H, 8-H, ⁴J = 1.8, ³J = 8.2 Hz), 6.92–6.95 m (2H, 6-H, 9-H), 7.15 d (2H, 2'-H, 6'-H, J = 8.0 Hz), 7.21 m (1H, 4'-H), 7.26 m (2H, 3'-H, 5'-H). Found, %: C 76.71, 76.78; H 7.53, 7.61. C₂₀H₂₄O₃. Calculated, %: C 76.89; H 7.74.

1,1'-(Methoxymethanediyl)dibenzene (8a). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 3.46 s (3H, OCH₃), 5.32 s (1H, CHOCH₃), 7.32 m (2H, H_{arom}), 7.39–7.46 m (8H, H_{arom}). Found, %: C 84.62, 84.68; H 6.87, 6.98. C₁₄H₁₄O. Calculated, %: C 84.81; H 7.12. **1,1'-(Ethoxymethanediyl)dibenzene (8b).** Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.37 t (3H, OCH₂CH₃), 3.62 q (2H, OCH₂CH₃), 5.46 s (1H, CHOCH₂CH₃), 7.34 m (2H, H_{arom}), 7.39–7.47 m (8H, H_{arom}). Found, %: C 84.65, 84.73; H 7.39, 7.48. C₁₅H₁₆O. Calculated, %: C 84.87; H 7.60.

6-[Methoxy(phenyl)methyl]-2,3-dihydro-1,4benzodioxine (8c). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ, ppm: 3.38 s (3H, OCH₃), 4.24 s (4H, OCH₂CH₂O), 5.18 s (1H, CHOCH₃), 6.84 m (2H, 5-H, 7-H), 6.87 m (1H, 8-H), 7.28 m (1H) and 7.33– 7.38 m (4H) (Ph). Found, %: C 74.74, 74.82; H 6.11, 6.15. C₁₆H₁₆O₃. Calculated, %: C 74.98; H 6.29.

6-[Ethoxy(phenyl)methyl]-2,3-dihydro-1,4benzodioxine (8d). Viscous oily material. ¹H NMR spectrum (CD₂Cl₂), δ , ppm: 1.28 t (3H, OCH₂CH₃, J =7.6 Hz), 3.52 m (2H, OCH₂CH₃), 4.24 s (4H, OCH₂CH₂O), 5.28 s (1H, CHOCH₂CH₃), 6.84 m (2H, 5-H, 7-H), 6.89 m (1H, 8-H), 7.28 m (1H) and 7.33– 7.39 m (4H) (Ph). Found, %: C 75.21, 75.42; H 6.55, 6.59. C₁₇H₁₈O₃. Calculated, %: C 75.53; H 6.71.

6-[Isopropoxy(phenyl)methyl]-2,3-dihydro-1,4benzodioxine (8e). mp 62–63°C. ¹H NMR spectrum (CD₂Cl₂), δ , ppm: 1.21 d and 1.23 d [3H each, CH(CH₃)₂, J = 5.6 Hz], 3.67 sept [1H, OCH(CH₃)₂], 4.24 s (4H, OCH₂CH₂O), 5.41 s [1H, CHOCH(CH₃)₂], 6.82 m (2H, 5-H, 7-H), 6.88 m (1H, 8-H), 7.27 m (1H) and 7.32–7.39 m (4H) (Ph). Found, %: C 75.81, 75.93; H 6.86, 6.94. C₁₈H₂₀O₃. Calculated, %: C 76.03; H 7.09.

6-[Methoxy(4-methylphenyl)methyl]-2,3-dihydro-1,4-benzodioxine (8f). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.36 s (3H, CH₃), 3.39 s (3H, OCH₃), 4.24 s (4H, OCH₂CH₂O), 5.15 s (1H, CHOCH₃), 6.84 m (2H, 7-H, 8-H), 6.90 m (1H, 5-H), 7.17 d (2H, 3'-H, 5'-H, J = 7.8 Hz), 7.26 d (2H, 2'-H, 6'-H, J = 7.8 Hz). Found, %: C 75.33, 75.45; H 6.48, 6.55. C₁₇H₁₈O₃. Calculated, %: C 75.53; H 6.71.

6-[Ethoxy(4-methylphenyl)methyl]-2,3-dihydro-1,4-benzodioxine (8g). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.31 t (3H, OCH₂CH₃, J =7.4 Hz) 2.37 s (3H, CH₃), 3.52 m (2H, OCH₂CH₃), 4.23 s (4H, OCH₂CH₂O), 5.25 s (1H, CHOEt), 6.81 m (2H, 7-H, 8-H), 6.87 m (1H, 5-H), 7.14 d (2H, 3'-H, 5'-H, J = 7.8 Hz), 7.24 d (2H, 2'-H, 6'-H, J = 7.8 Hz). Found, %: C 75.87, 75.92; H 6.88, 7.01. C₁₈H₂₀O₃. Calculated, %: C 76.03; H 7.09.

6-[Isopropoxy(4-methylphenyl)methyl]-2,3-dihydro-1,4-benzodioxine (8h). mp 69–70°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.23 d and 1.24 d [3H each, CH(CH₃)₂, J = 5.6 Hz], 2.35 s (3H, CH₃), 3.68 sept [1H, CH(CH₃)₂], 4.24 s (4H, OCH₂CH₂O), 5.39 s [1H, CHOCH(CH₃)₂], 6.82 m (2H, 7-H, 8-H), 6.91 m (1H, 5-H), 7.15 d (2H, 3'-H, 5'-H, J = 7.8 Hz), 7.26 d (2H, 2'-H, 6'-H, J = 7.8 Hz). Found, %: C 76.22, 76.37; H 7.28, 7.38. C₁₉H₂₂O₃. Calculated, %: C 76.48; H 7.43.

6-[Methoxy(4-methoxyphenyl)methyl]-2,3-dihydro-1,4-benzodioxine (8i). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ, ppm: 3.33 s (3H, CHOCH₃), 3.78 s (3H, C₆H₄OCH₃), 4.23 s (4H, OCH₂CH₂O), 5.10 s (1H, CHOCH₃), 6.79 m (3H, 5-H, 7-H, 8-H), 6.85 d (2H, 3'-H, 5'-H, J = 8.4 Hz), 7.24 d (2H, 2'-H, 6'-H, J = 8.4 Hz). Found, %: C 71.06, 71.18; H 6.17, 6.22. C₁₇H₁₈O₄. Calculated, %: C 71.31; H 6.34.

6-[Ethoxy(4-methoxyphenyl)methyl]-2,3-dihydro-1,4-benzodioxine (8j). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.26 t (3H, OCH₂CH₃, J = 7.1 Hz), 3.50 m (2H, OCH₂CH₃), 3.80 s (3H, OCH₃), 4.23 s (4H, OCH₂CH₂O), 5.23 s (1H, CHOCH₂CH₃), 6.82 m (2H, 7-H, 8-H), 6.87 m (1H, 5-H), 6.88 d (2H, 3'-H, 5'-H, J = 8.4 Hz), 7.26 d (2H, 2'-H, 6'-H, J = 8.4 Hz). Found, %: C 71.67, 71.82; H 6.51, 6.63. C₁₈H₂₀O₄. Calculated, %: C 71.98; H 6.71.

6-[Isopropoxy(4-methoxyphenyl)methyl]-2,3-dihydro-1,4-benzodioxine (8k). mp 80–81°C. ¹H NMR spectrum (CD₂Cl₂), δ , ppm: 1.20 d and 1.21 d [3H each, CH(CH₃)₂, J = 5.8 Hz], 3.65 sept [1H, OCH(CH₃)₂], 3.80 s (3H, OCH₃), 4.25 s (4H, OCH₂CH₂O), 5.33 s [1H, CHOCH(CH₃)₂], 6.81 s (2H, 7-H, 8-H), 6.86 s (1H, 5-H), 6.87 d (2H, 3'-H, 5'-H, J =8.4 Hz), 7.27 d (2H, 2'-H, 6'-H, J = 8.4 Hz). Found, %: C 72.28, 72.44; H 6.88, 6.91. C₁₉H₂₂O₄. Calculated, %: C 72.59; H 7.05.

6-[(4-Fluorophenyl)(isopropoxy)methyl]-2,3-dihydro-1,4-benzodioxine (8l). mp 83–84°C. ¹H NMR spectrum (CD₂Cl₂), δ , ppm: 1.20 d and 1.22 d [3H each, CH(CH₃)₂, J = 5.8 Hz], 3.65 sept [1H, OCH(CH₃)₂], 4.25 s (4H, OCH₂CH₂O), 5.37 s [1H, CHOCH(CH₃)₂], 6.78 d.d (1H, 7-H, ⁴J = 1.8, ³J =8.1 Hz), 6.82 d (1H, 8-H, ³J = 8.1 Hz), 6.86 d (1H, 5-H, ⁴J = 1.8 Hz), 7.00 t (2H, 3'-H, 5'-H, $J_{HF} = 8.2$, ³ $J_{HH} = 8.2$ Hz), 7.31 d.d (2H, 2'-H, 6'-H, $J_{HF} = 5.4$, ³ $J_{HH} = 8.2$ Hz). Found, %: C 71.24, 71.41; H 6.08, 6.18. C₁₈H₁₉FO₃. Calculated, %: C 71.51; H 6.33.

6-[(4-Chlorophenyl)(ethoxy)methyl]-2,3-dihydro-1,4-benzodioxine (8m). bp 267–268°C (20 mm). ¹H NMR spectrum (CDCl₃) δ , ppm: 1.14 t (3H, OCH₂CH₃, J = 6.2 Hz), 3.38 m (2H, OCH₂CH₃), 4.21 s (4H, OCH₂CH₂O), 5.33 s (1H, CHOCH₂CH₃, 6.75–6.81 m (3H, 5-H, 7-H, 8-H), 7.34 s (4H, H_{arom}). Found, %: C 66.67, 66.82; H 5.36, 5.48. C₁₇H₁₇ClO₃. Calculated, %: C 67.00; H 5.62.

3-[(2,3-Dihydro-1,4-benzodioxin-6-yl)(ethoxy)methyl]benzonitrile (8n). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.27 t (3H, OCH₂CH₃, J = 7.1 Hz), 3.48 m and 3.54 m (1H each, OCH₂CH₃), 4.25 s (4H, OCH₂CH₂O), 5.26 s (1H, CHOCH₂CH₃), 6.78 d.d (1H, 7-H, ⁴J = 1.8, ³J =8.3 Hz), 6.84 m (2H, 5-H, 8-H), 7.41 t (1H, 5-H, ³J =8.0 Hz), 7.52 d (1H, 6'-H, ³J = 8.0 Hz), 7.58 d (1H, 4'-H, ³J = 8.0 Hz), 7.67 s (1H, 2'-H). Found, %: C 72.85, 73.02; H 5.61, 5.68; N 4.51, 4.63. C₁₈H₁₇NO₃. Calculated, %: C 73.20; H 5.80; N 4.74.

6-[Ethoxy(thiophen-2-yl)methyl]-2,3-dihydro-1,4-benzodioxine (80). bp 254-255 °C (29 mm). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.31 t (3H, OCH₂CH₃, J = 6.8 Hz), 3.59 m (2H, OCH₂CH₃), 4.24 s (4H, OCH₂CH₂O), 5.53 s (1H, CHOCH₂CH₃), 6.89–6.93 m (4H, 3'-H, 4'-H, 7-H, 8-H), 7.02 d (1H, 5-H, ⁴J = 1.8 Hz), 7.26 d (1H, 5'-H, J = 4.9 Hz). Found, %: C 64.88, 64.97; H 5.63, 5.72. C₁₅H₁₆O₃S. Calculated, %: C 65.19; H 5.84.

4-[(4-Fluorophenyl)(methoxy)methyl]-1,2-dimethoxybenzene (8p). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 3.38 s (3H, CHOCH₃), 3.87 s (3H, OCH₃), 3.88 s (3H, OCH₃), 5.9 s (1H, CHOCH₃), 6.84–6.88 m (3H, 3-H, 5-H, 6-H), 7.03 t (2H, 3'-H, 5'-H, $J_{HF} = 8.2$, ³ $J_{HH} = 8.2$ Hz), 7.31 d.d (2H, 2'-H, 6'-H, $J_{HF} = 5.4$, ³ $J_{HH} = 8.2$ Hz). Found, %: C 69.22, 69.33; H 5.98, 6.07. C₁₆H₁₇FO₃. Calculated, %: C 69.55; H 6.20.

4-[(4-Fluorophenyl)(isopropoxy)methyl]-1,2-dimethoxybenzene (8q). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.23 d and 1.25 d [3H each, CH(CH₃)₂, J = 5.8 Hz], 3.67 sept [1H, OCH(CH₃)₂], 3.87 s (3H, OCH₃), 3.88 s (3H, OCH₃), 5.44 s [1H, CHOCH(CH₃)₂], 6.84 d (1H, 5-H, J = 7.8 Hz), 6.87 d.d (1H, 6-H, ⁴J = 1.8, ³J = 7.8 Hz), 6.89 d (1H, 3-H, ⁴J = 1.8 Hz), 7.01 t (2H, 3'-H, 5'-H, $J_{HF} = 8.4$, ³ $J_{HH} = 8.4$ Hz), 7.32 d.d (2H, 2'-H, 6'-H, $J_{HF} = 5.4$, 6.85. C₁₈H₂₁FO₃. Calculated, %: C 71.03; H 6.96.

6-Bromo-7-[methoxy(phenyl)methyl]-2,3-dihydro-1,4-benzodioxine (8r). mp 74–75°C. ¹H NMR spectrum (CD₂Cl₂), δ , ppm: 3.39 s (3H, OCH₃), 4.25 s (4H, OCH₂CH₂O), 5.58 s (1H, CHOCH₃), 7.02 s and 7.10 s (1H each, 5-H, 8-H); 7.31 m (1H), 7.36 m (2H), and 7.42 m (2H) (Ph). Found, %: C 57.02, 57.18; H 4.31, 4.39. $C_{16}H_{15}BrO_3$. Calculated, %: C 57.33; H 4.51.

6-Bromo-7-[ethoxy(phenyl)methyl]-2,3-dihydro-1,4-benzodioxine (8s). Viscous oily material. ¹H NMR spectrum (CD₂Cl₂), δ , ppm: 1.28 t (3H, OCH₂CH₃, J = 6.6 Hz), 3.55 m (2H, OCH₂CH₃), 4.25 s (4H, OCH₂CH₂O), 5.69 s (1H, CHOCH₂CH₃), 7.04 s and 7.06 s (1H each, 5-H, 8-H); 7.29 m (1H), 7.35 m (2H), and 7.42 m (2H) (Ph). Found, %: C 58.16, 58.23; H 4.72, 4.79. C₁₇H₁₇BrO₃. Calculated, %: C 58.47; H 4.91.

6-[Methoxy(phenyl)methyl]-7-nitro-2,3-dihydro-1,4-benzodioxine (8t) was not isolated in the pure state because of its low concentration in the mixture with unreacted diarylmethanol.

N-{7-[Ethoxy(4-methylphenyl)methyl]-2,3-dihydro-1,4-benzodioxin-6-yl}cyclopropanecarboxamide (8u). mp 114–115°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.72 m (2H), 0.90 m (1H), 0.95 m (1H), and 1.31 m (1H) (C₃H₅); 1.32 t (3H, OCH₂CH₃, J = 7.2 Hz), 2.34 s (3H, CH₃), 3.61 q (2H, OCH₂CH₃, J = 7.2 Hz), 4.23 m (4H, OCH₂CH₂O), 5.35 s (1H, CHOCH₂CH₃), 6.61 s (1H, 5-H), 7.12 d (2H, 3'-H, 5'-H, J = 7.8 Hz), 7.19 d (2H, 2'-H, 6'-H, J = 7.8 Hz), 7.74 s (1H, 8-H), 8.73 br.s (1H, NH). Found, %: C 71.68, 71.77; H 6.62, 6.74; N 3.58, 3.63. C₂₂H₂₅NO₄. Calculated, %: C 71.91; H 6.86; N 3.81.

N-{7-[Ethoxy(4-methylphenyl)methyl]-2,3-dihydro-1,4-benzodioxin-6-yl}-2-phenylacetamide (8v). Viscous oily material. ¹H NMR spectrum (CDCl₃) δ, ppm: 1.09 t (3H, OCH₂CH₃, J = 6.8 Hz), 2.35 s (3H, CH₃), 3.33 m and 3.41 m (1H each, OCH₂CH₃), 3.46 d and 3.54 d (1H each, CH₂Ph, J =14.8 Hz), 4.23 m (4H, OCH₂CH₂O), 5.17 s (1H, CHOCH₂CH₃), 6.63 s (1H, 5-H), 7.03 d (2H, 3'-H, 5'-H, J = 8.0 Hz), 7.09 d (2H, 2'-H, 6'-H, J = 8.0 Hz), 7.12 m (2H) and 7.29 m (3H) (Ph), 7.76 s (1H, 8-H), 8.35 br.s (1H, NH). Found, %: C 74.52, 74.63; H 6.28, 6.36; N 3.12, 3.23. C₂₆H₂₇NO₄. Calculated, %: C 74.80; H 6.52; N 3.36.

N-{7-[(4-Chlorophenyl)(ethoxy)methyl]-2,3-dihydro-1,4-benzodioxin-6-yl}thiophene-2-carboxamide (8w). Viscous oily material. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.35 t (3H, OCH₂CH₃, *J* = 7.2 Hz), 3.67 m (2H, OCH₂CH₃), 4.28 m (4H, OCH₂CH₂O), 5.38 s (1H, CHOCH₂CH₃), 6.71 s (1H, 5-H), 7.07 d.d (1H, 4'-H, *J*_{3',4'} = 3.7, *J*_{4',5'} = 4.9 Hz), 7.25 s (4H, H_{aron}), 7.38 d.d (1H, 3'-H, *J*_{3',5'} = 0.9, *J*_{3',4'} = 3.7 Hz), 7.48 d.d (1H, 5'-H, $J_{3',5'} = 0.9$, $J_{4',5'} = 4.9$ Hz), 7.99 s (1H, 8-H), 9.33 br.s (1H, NH). Found, %: C 61.21, 61.32; H 4.45, 4.53; N 2.99, 3.07. C₂₂H₂₀ClNO₄S. Calculated, %: C 61.46; H 4.69; N 3.26.

N-{7-[Ethoxy(3-fluorophenyl)methyl]-2,3-dihydro-1,4-benzodioxin-6-yl}cyclopropanecarboxamide (8x). mp 137–138°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.70–0.85 m (3H), 0.94 m (1H), and 1.27 m (1H) (C₃H₅); 1.34 t (3H, OCH₂CH₃, *J* = 6.9 Hz), 3.63 m (2H, OCH₂CH₃), 4.25 m (4H, OCH₂CH₂O), 5.34 s (1H, CHOCH₂CH₃), 6.67 s (1H, 5-H), 6.95 d.d.d (1H, 4'-H, *J*_{HF} = 8.0, ⁴*J*_{HH} = 2.4, ³*J*_{HH} = 8.0 Hz), 7.02 d (1H, 2-H, *J*_{HF} = 6.0 Hz), 7.11 d (1H, 6'-H, ³*J* = 8.2 Hz), 7.26 d.d (1H, 5'-H, *J*_{HF} = 8.0, ³*J*_{HH} = 8.2 Hz), 7.70 s (1H, 8-H), 8.57 br.s (1H, NH). Found, %: C 67.63, 67.73; H 5.76, 5.85; N 3.51, 3.67. C₂₁H₂₂NFO₄. Calculated, %: C 67.91; H 5.97; N 3.77.

REFERENCES

- 1. Dueno, E.E., Chu, F., Kim, S-I., and Jung, K.W., *Tetrahedron Lett.*, 1999, vol. 40, p. 1843.
- 2. Boyer, B., Keramane, E.-M., Roque, J.-P., and Pavia, A.A., *Tetrahedron Lett.*, 2000, vol. 41, p. 2891.
- Khusnutdinov, R.I., Baiguzina, A.R., Gimaletdinova, L.I., and Dzhemilev, U.M., *Russ. J. Org. Chem.*, 2012, vol. 48, p. 1191.
- Yu, J.-L., Wang, H., Zou, K.-F., Zhang, J.-R., Gao, X., Zang, D.-W., and Li, Z.-T., *Tetrahedron*, 2013, vol. 69, p. 310.
- 5. Imanami, K., Seo, H., Tobita, Y., and Oriyama, T., *Synthesis*, 2005, p. 183.
- 6. Suzuki, T., Kobayashi, K., Noda, K., and Oriyama, T., *Synth. Commun.*, 2001, vol. 31, p. 2761.
- Imanami, K., Yono, K., and Oriyama, T., Synthesis, 2005, p. 2669.
- Sakai, N., Moriya, T., and Konakahara, T., J. Org. Chem., 2007, vol. 72, p. 5920.
- Gooβen, L.J. and Linder, C., Synlett, 2006, no. 20, p. 3489.
- 10. Zaccheria, F., Praro, B., and Ravasio, N., *Tetrahedron Lett.*, 2009, vol. 50, p. 5221.
- 11. Das, P.N., Sarma, K., Pathak, M.G., and Gosmani, A., *Synlett*, 2010, no. 19, p. 2908.
- 12. Olah, G.A., Shamura, T., and Prakash, G.K.S., *Catal. Lett.*, 1997, vol. 46, p. 1.
- Makarova, M.A., Paukshis, E.A., Thowas, J.M., Williams, C., and Zamaraev, K.I., *J. Catal.*, 1994, vol. 149, p. 36.
- Habenicht, C., Kam, L.C., Wilschut, M.S., and Antal, M.J., Jr., *Ind. Eng. Chem. Res.*, 1995, vol. 34, p. 3784.

- Ballantine, J.A., Davies, M., Patel, I., Pumell, J.H., Rayanakom, M., Williams, K.J., and Thomas, J.M., J. Mol. Catal., 1984, vol. 26, p. 37.
- Shabarov, Yu.S., *Mono- i disakharidy* (Mono- and Disaccharides), Moscow: Mosk. Gos. Univ., 1997, pp. 40–45, 134.
- 17. Carey, F.A. and Tremper, H.S., J. Am. Chem. Soc., 1969, vol. 91, p. 2967.
- Lau, C.K., Dufresne, C., Belanger, P.C., Pietre, S., and Scheigetz, J., *J. Org. Chem.*, 1986, vol. 51, p. 3038.
- 19. Kim, S., Chang, K.V., and Yang, S., J. Org. Chem., 1987, vol. 52, p. 3917.
- Gazzaeva, R.A., Khasanov, M.I., Mochalov, S.S., and Zefirov, N.S., *Chem. Heterocycl. Compd.*, 2007, vol. 43, p. 799.

- Gazzaeva, R.A., Fedotov, A.N., Trofimova, E.V., Popova, O.A., Mochalov, S.S., and Zefirov, N.S., *Russ. J. Org. Chem.*, 2006, vol. 42, p. 87.
- 22. Tanuda, H. and Muneyuki, R., J. Am. Chem. Soc., 1965, vol. 87, p. 4794.
- 23. Mochalov, S.S., Khasanov, M.I., and Zefirov, N.S., Chem. Heterocycl. Compd., 2009, vol. 45, p. 201.
- 24. Block, E.A., Delves, S.G., Lee, J.A., Roberts, P.M., and Thomson, J.E., *Org. Lett.*, 2012, vol. 14, p. 4278.
- 25. Hartzell, G.E. and Huyser, E.S., J. Org. Chem., 1964, vol. 29, p. 3341.
- Kuliev, A.M., Farzaliev, V.M., Levshina, A.M., and Mamedov, F.N., *Prisadki Smaz. Maslam*, 1969, no. 2, p. 108.