## Inert Can Be Advantageous: Advisable Reconstruction and Application of Palladium Chloride for the Preferential Oxidation of the Hydrogen Impurity in Carbon Monoxide Streams

Luyang Qiao,<sup>[a]</sup> Qiaohong Li,<sup>[a]</sup> Zhangfeng Zhou,<sup>[a]</sup> Rui Si,<sup>[b]</sup> and Yuangen Yao<sup>\*[a]</sup>

Preferential oxidation of the H<sub>2</sub> impurity in CO streams is crucial for the catalytic conversion of CO into ethylene glycol. It is uncertain as to whether H<sub>2</sub> can overthrow the dominance of CO and finally lead the reaction. Not only is this a typical research issue, but it is also extremely critical for practical applications. So far, no catalyst has shown selectivity higher than 50% owing to competitive adsorption of CO. In this work, we report a PdCl<sub>x</sub>-based catalyst that can readily overcome the challenge mentioned above. Over this catalyst, the selectivity of H<sub>2</sub> oxidation is promoted by more than 40% relative to that over the conventional Pd/Al<sub>2</sub>O<sub>3</sub> catalyst and reaches a value of 87%. The turnover frequency of undesired CO oxidation is inhibited by at least one order of magnitude. We found that the reconstructed palladium chloride was highly selective to this reaction by facile inhibition of the adsorption and oxidation of CO.

Through the coupling of CO to dimethyl oxalate and following selective hydrogenation,<sup>[1,2]</sup> the route for the catalytic conversion of CO into ethylene glycol has become a challenging and attractive subject of C<sub>1</sub> chemistry. As a raw material, CO is mainly derived from the reforming of abundant resources such as coal and shale gas. Nevertheless, desirable CO usually contains trace amounts of H<sub>2</sub> even after cryogenic separation, which is severely poisonous to the following process of CO coupling; thus, the amount of H<sub>2</sub> needs to be reduced to an acceptable level (below 100 ppm).<sup>[1b]</sup> To address this problem, the preferential oxidation (PrOx) of H<sub>2</sub> in a CO-rich stream was developed as the most promising approach among the chemical and physical methods. This technique is realized in the

| [a] | Dr. L. Qiao, Dr. Q. Li, Dr. Z. Zhou, Prof. Y. Yao<br>Key Laboratory of Coal to Ethylene Glycol and Its Related Technology<br>State Key Laboratory of Structural Chemistry<br>Fujian Institute of Research on the Structure of Matter<br>Chinese Academy of Sciences<br>Yangqiao West Road 155<br>Fuzhou, Fujian 350002 (P.R. China)<br>E-mail: yyg@fjirsm.ac.cn |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [b] | Prof. R. Si<br>Shanghai Synchrotron Radiation Facility<br>Shanghai Institute of Applied Physics<br>Chinese Academy of Sciences<br>Shanghai 201204 (P.R. China)                                                                                                                                                                                                  |
|     | Supporting Information for this article can be found under:<br>http://dx.doi.org/10.1002/cctc.201600301.                                                                                                                                                                                                                                                        |

world's first plant of coal to ethylene glycol with a capacity of 200 000 tons (see Figure S1, Supporting Information).

H<sub>2</sub> oxidation is a common reaction that has been studied extensively as a model reaction and as an available method for H<sub>2</sub>O<sub>2</sub> production.<sup>[3]</sup> Nevertheless, early studies on this reaction were generally performed under mild conditions, other than a competitive reactant-rich atmosphere, such as CO. As far as we know, research on the PrOx of H<sub>2</sub> in CO-rich streams is a largely unexplored area. The best catalyst ever manufactured for the PrOx of H<sub>2</sub> is Pd/Al<sub>2</sub>O<sub>3</sub>, which offers benchmarked performance and is highly active for H<sub>2</sub> conversion. Nevertheless, this catalyst is generally better able to oxidize CO than H<sub>2</sub> owing to the adsorption of CO on the metal surface, which significantly inhibits the adsorption and activation of H<sub>2</sub>.<sup>[4,5]</sup> Depending on the feedback from a large-scale plant of coal to ethylene glycol, the selectivity for H<sub>2</sub> oxidation over the Pd/ Al<sub>2</sub>O<sub>3</sub> catalyst is generally lower than 50% despite the fact that the conversion of H<sub>2</sub> is high. Low selectivity inevitably induces the consumption of the CO feed and the accumulation of  $CO_{2}$ , both of which are not benign to subsequent dimethyl oxalate and ethylene glycol synthesis.

With the aim to elevate the selectivity, the rational design of novel catalysts based on fundamental understanding of this reaction is very critical. To drive the competitive reaction in a targeted direction, much effort has been dedicated to comprehending the effects of promoters by adjusting the structural or electronic texture of the catalyst.<sup>[6,7]</sup> However, another pathway to upgrade the selectivity by prohibiting the undesired side reaction has rarely been reported. Inhibitors can also be advantageous. Purposely exploiting a catalytically inert or even poisonous material towards one reaction can possibly proffer its counterpart certain enhanced effects. As a kind of well-known catalytic poison, chloride usually plays a negative role in the reaction of CO oxidation or PrOx.<sup>[8]</sup> Owing to the presence of chlorine, all the active sites on the catalyst will be occupied and the adsorption of the reactants will be blocked. This phenomenon provides us with some clues on how to promote the selectivity of H<sub>2</sub> oxidation by inhibiting the adsorption and oxidation of CO.

Herein, we first designed a PdCl<sub>x</sub>-based catalyst that was verified to be highly selective towards the PrOx of H<sub>2</sub> in COrich streams. In contrast with the benchmark Pd/Al<sub>2</sub>O<sub>3</sub> catalyst, CO oxidation was inhibited by at least one order of magnitude and the selectivity was promoted by more than 40% on the novel catalyst. It is proposed that the coordinatively unsaturat-



ed (CU) configuration of PdCl<sub>x</sub> is responsible for this breakthrough. By intentionally reconstructing the texture of palladium chloride, the best balance of activity and selectivity was achieved. The catalyst (denoted as CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>) was prepared by incipient wetness impregnation. For comparison, the PdCl<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and Pd/Al<sub>2</sub>O<sub>3</sub> catalyst were also prepared. The Pd loadings of all the discussed catalysts were measured by inductively coupled plasma optical emission spectrometry (ICP-OES) and were found to be between 0.9 and 1.1 wt%, which correspond well to theoretical values. The BET surface areas of all the discussed catalysts were slightly lower than that of the

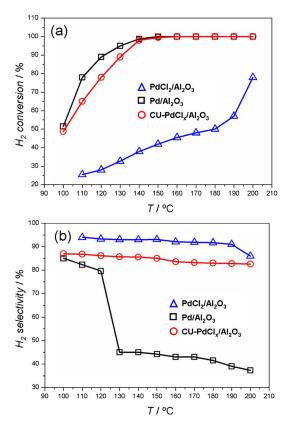



Figure 1. a) Conversion of H<sub>2</sub> and b) selectivity for H<sub>2</sub> oxidation as a function of reaction temperature over the CU-PdCl\_x/Al\_2O\_3, Pd-Al\_2O\_3, and PdCl\_2/Al\_2O\_3 catalysts.

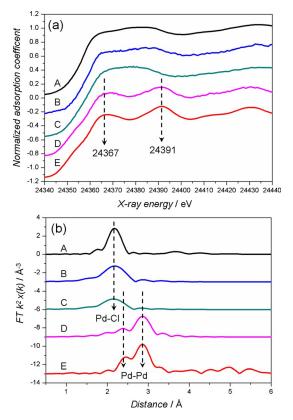
bare  $Al_2O_3$  support (310 m<sup>2</sup>g<sup>-1</sup>) owing to pore blocking by impregnation (see Table S1).

The properties of the catalysts were evaluated under simulated industrial conditions (2 vol% H<sub>2</sub>, 4 vol% O<sub>2</sub>, and 94 vol% CO).<sup>[9]</sup> As the most efficient catalyst ever manufactured for the PrOx of H<sub>2</sub>, Pd/Al<sub>2</sub>O<sub>3</sub> was initially tested to benchmark the activity and selectivity of the system. Figure 1a illustrates the profiles of the H<sub>2</sub> conversions as a function of reaction temperature. The conversion of  $H_2$  approximated to 50% at 100 °C and reached 100% at 150 °C over Pd/Al<sub>2</sub>O<sub>3</sub>. With a similar tendency, the  $H_2$  conversion over CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> reached 99.5% at 150  $^{\circ}$ C, and the complete oxidation of H<sub>2</sub> was realized at 155 °C. However, the activity of PdCl<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> was much lower than that of CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>. The conversion of H<sub>2</sub> was negligible at 100 °C and decreased to 50% at 180 °C. This can probably be attributed to the relative intact structure of PdCl<sub>2</sub>, and therefore, the adsorption of the reactants is significantly hindered.

The selectivities are compared in Figure 1 b. For Pd/Al<sub>2</sub>O<sub>3</sub>, the selectivity approached a maximum at 100°C, and then abruptly decreased to 44.2% upon increasing the temperature to 150 °C. At this temperature, complete conversion of H<sub>2</sub> was achieved at the expense of the selectivity, which suggested that CO oxidation began to predominate the system. In contrast, the selectivity of CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> initially attained 87% at 100 °C, and this level was steadily maintained over the entire temperature region with a slight decrease of only 5%. This result is significantly better than that on Pd/Al<sub>2</sub>O<sub>3</sub> and indicates that the oxidation of CO is probably inhibited efficiently on CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>. In addition, the selectivity of PdCl<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> was the highest, but this is meaningless owing to its low activity for the desired reaction.

To further demonstrate the extraordinarily high selectivity of  $H_2$  oxidation over CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>, the catalytic behavior of the catalysts were examined from the viewpoint of kinetics. The turnover frequency (TOF) values of the catalysts for all the reactions were measured under different conditions (conversions below 20%) and are shown in Table 1. For H<sub>2</sub> oxidation in a CO-rich stream, the TOF for H<sub>2</sub> conversion over CU-PdCl<sub>x</sub>/  $Al_2O_3$  was  $4.8 \times 10^{-2} \text{ s}^{-1}$  at 90 °C, which approximates to that over Pd/Al<sub>2</sub>O<sub>3</sub>; this indicates that both catalysts are able to oxi-

| Sample                                               | H <sub>2</sub> oxidation in CO-rich stream |                                     |                                     | CO oxidation in the presence of $H_2$ |                                     |                                     |
|------------------------------------------------------|--------------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|
| -                                                    | <i>T</i> [°C]                              | $TOF \times 10^{-2} [s^{-1}]^{[a]}$ | $E_{\rm a}$ [kJ mol <sup>-1</sup> ] | <i>T</i> [°C]                         | $TOF \times 10^{-2} [s^{-1}]^{[a]}$ | $E_{\rm a}$ [kJ mol <sup>-1</sup> ] |
| CU-PdCl <sub>x</sub> /Al <sub>2</sub> O <sub>3</sub> | 60                                         | 1.8                                 | 29.9                                | 110                                   | 0.6                                 | 38.6                                |
|                                                      | 70                                         | 2.8                                 |                                     | 130                                   | 1.1                                 |                                     |
|                                                      | 80                                         | 3.7                                 |                                     | 150                                   | 2.1                                 |                                     |
|                                                      | 90                                         | 4.8                                 |                                     | 170                                   | 3.2                                 |                                     |
| Pd/Al <sub>2</sub> O <sub>3</sub>                    | 60                                         | 2.4                                 | 24.9                                | 110                                   | 18.6                                | 3.8                                 |
|                                                      | 70                                         | 3.2                                 |                                     | 130                                   | 19.8                                |                                     |
|                                                      | 80                                         | 4.1                                 |                                     | 150                                   | 20.9                                |                                     |
|                                                      | 90                                         | 5.0                                 |                                     | 170                                   | 21.9                                |                                     |

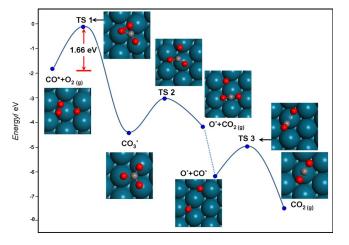



dize H<sub>2</sub>. For CO oxidation in the presence of H<sub>2</sub>, the TOF for CO conversion was only  $0.6 \times 10^{-2}$  s<sup>-1</sup> at 110 °C. Relative to that on Pd/Al<sub>2</sub>O<sub>3</sub>, the TOF on CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> is almost 30-fold lower under the same conditions. This inhibition indicates that it is difficult to oxidize CO over CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>. On the basis of the Arrhenius plots (Figure S5), we calculated the apparent activation energies (*E*<sub>a</sub>) of the CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> and Pd/Al<sub>2</sub>O<sub>3</sub> catalysts. The *E*<sub>a</sub> value of 38.6 kJ mol<sup>-1</sup> over CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> is one order of magnitude higher than that of 3.8 kJ mol<sup>-1</sup> over Pd/Al<sub>2</sub>O<sub>3</sub> for CO oxidation. The high activation barrier of CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> correlates well with its efficient inhibition of CO oxidation and outstanding selectivity towards H<sub>2</sub> oxidation.

Previous studies illustrated that the presence of CO usually has a negative effect on reactions in which  $H_2$  is involved.<sup>[10,11]</sup> To investigate the influence of a high concentration of CO on the PrOx of H<sub>2</sub>, we tested the adsorption behavior of the catalysts by static chemisorption. In the individual tests, Table S2 shows that the adsorption of both  $H_2$  and CO on  $Pd/Al_2O_3$  is more facile than on CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>. Relative to the amount of CO adsorbed without competition of H<sub>2</sub>, the amount of CO adsorbed slightly decreased on both CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> (from 24.5 to 18.8  $\mu$ molg<sup>-1</sup>) and Pd/Al<sub>2</sub>O<sub>3</sub> (from 43 to 34.6  $\mu$ molg<sup>-1</sup>) after H<sub>2</sub> preadsorption. With a reverse order of CO/H<sub>2</sub> adsorption, however, the behavior of these two catalysts was very different. After CO preadsorption, a significant decrease (from 24.6 to 5.9  $\mu$ mol g<sup>-1</sup>) in the amount of H<sub>2</sub> adsorbed was observed on Pd/Al<sub>2</sub>O<sub>3</sub>. This indicates that a strong interaction between CO and the Pd sites is established on Pd/Al<sub>2</sub>O<sub>3</sub>, and then the adsorption of H<sub>2</sub> is blocked. On the contrary, only a small decrease (from 14.3 to 13  $\mu$ mol g<sup>-1</sup>) in the amount of H<sub>2</sub> adsorbed was found on CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>. The coordination of Cl around the Pd sites should be responsible for this result, as this tends to deplete backdonation from the d bands of Pd to the antibonding  $2\pi^*$  orbitals of CO.<sup>[12]</sup> Thus, the interaction between CO and Pd is weakened. Such fragile adsorption of CO on the catalyst makes CO labile and commutable by H<sub>2</sub>. Finally, the adsorption gap between CO and H<sub>2</sub> can be minimized over CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> by deliberately restricting access to CO, and then the opportunity for  $H_2$  is maximized.

Both the electronic properties and the short-range local structures of the discussed catalysts were determined from the extended X-ray absorption fine structure (EXAFS) spectra and X-ray absorption near-edge structure (XANES) spectra of the Pd K-edge. As shown in Figure 2a, the XANES curve of PdCl<sub>2</sub>/ $Al_2O_3$  fits well with the standard PdCl<sub>2</sub> sample, but a slight deviation is found in CU-PdCl<sub>4</sub>/Al<sub>2</sub>O<sub>3</sub>, which suggests that the local electron density of Pd increases as the coordination of electron-withdrawing Cl becomes unsaturated. This verifies that the intrinsic structure of PdCl<sub>4</sub> is not intact. In contrast, the curve of Pd/Al<sub>2</sub>O<sub>3</sub> shows two metallic peaks at energies of approximately 24367 and 24391 eV. These features are identical to those of a standard Pd foil sample.

The curves of the Fourier-transformed k<sup>2</sup>-weighted Pd K-edge EXAFS are shown in Figure 2b. The Pd–Cl coordination number (CN) of CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> ( $3.3\pm0.4$ ) is markedly lower than that of the standard PdCl<sub>2</sub> sample and that of PdCl<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ( $5.3\pm0.9$ ), and the Pd–Cl distance (R) of PdCl<sub>x</sub> is smaller, which




**Figure 2.** a) XANES spectra and b)  $k^2$ -weighted Fourier transform Pd K-edge EXAFS spectra of the standard PdCl<sub>2</sub> power (A), PdCl<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> (B), CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> (C), Pd/Al<sub>2</sub>O<sub>3</sub> (D), and standard Pd foil (E).

suggests that the Pd–Cl bond increases in length as the amount of excess Cl decreases and the configuration of  $PdCl_x$  becomes coordinatively unsaturated. Besides that, no Pd–Pd bond can be detected in CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>, and consequently, no metallic Pd particles are formed.

Notably, the  $E_a$  values acquired from the Arrhenius plots are apparent in that the diffusional effect was not eliminated; therefore, an intrinsic investigation about the behavior of the catalysts is essential. DFT calculations were performed to explore the inhibitory mechanisms of CO oxidation over the PdCl<sub>x</sub> structure. The chosen Pd (111) surface of Pd/Al<sub>2</sub>O<sub>3</sub> and the defective PdCl<sub>x</sub> (140) surface of CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> were identified through characterization by high-resolution transmission electron microscopy, X-ray absorption fine structure, and X-ray photoelectron spectroscopy (see Section S6 in the Supporting Information). The comparable energetic landscapes of all the pathways for CO oxidation on the surfaces are depicted in Schemes S2 and S3. We propose two mechanisms for CO oxidation depending on whether H<sub>2</sub> is involved or not.

On Pd (111), pathway I is illustrated by a redox mechanism in which H<sub>2</sub> is only a spectator.<sup>[13]</sup> As shown in Figure 3, adsorbed CO\* is directly attacked by O<sub>2</sub> to yield a carbonate intermediate (CO<sub>3</sub>\*) with a barrier of 1.66 eV via transition state 1 (TS1), and it then decomposes to CO<sub>2</sub> and O\* via TS2. CO<sub>2</sub> is readily desorbed from the Pd surface and O\* approaches another adsorbed CO\* species to produce another molecule of CO<sub>2</sub> via TS3. Differing in the adsorption modes, other similar



ChemPubSoc

Figure 3. Pathway I for CO oxidation on the Pd (111) surface with TS1-TS3.

pathways were also investigated (see Section S5.2). Although the barriers for these other pathways are slightly lower than that for pathway I, the odds that they will occur are low, because their initial states are contradicted by the real circumstances of our system. With the involvement of  $H_2$ , an associate mechanism is proposed in pathway II. As shown in Figure 4,

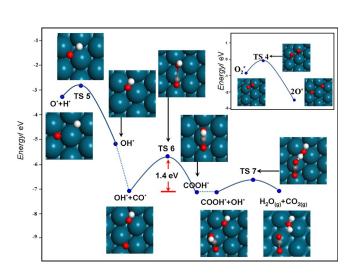
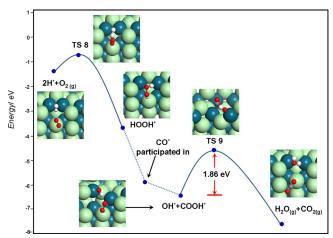




Figure 4. Pathway II for CO oxidation on the Pd (111) surface with TS4–TS7.

adsorbed  $O_2^*$  initially dissociates into two O\* (TS4), own of which abstracts H\* to form hydroxy groups (OH\*) on the Pd (111) surface via TS5. Then, one OH\* associates with CO\* to yield a carboxylate intermediate (OCOH\*) via TS6 by overcoming a barrier of 1.4 eV. Finally, this OCOH\* species transfers a hydrogen atom to another neighboring OH\* spontaneously to yield CO<sub>2</sub> and H<sub>2</sub>O via TS7, in which a long OCOHOH\* intermediate geometry is formed, as previously speculated by Ojifinni et al.<sup>[14]</sup> The lower barrier of pathway II indicates that CO oxidation is probably enhanced by participation of H<sub>2</sub>. This effect is assisted by the initial formation of OH\*, which is supported by studies on hydroxy-enhanced CO oxidation and the water–gas shift reaction.<sup>[15, 16]</sup> On PdCl<sub>x</sub> (140), on the basis of our calculations all the proposed pathways need to overcome a higher energy barrier. As shown in Figure 5, preferred pathway II for CO oxidation was comparatively investigated on this surface. Initially, two dissociated H\* grasp gaseous  $O_2$  to form a HOOH\* species (other



**Figure 5.** Pathway II for CO oxidation on the PdCl<sub>x</sub> (140) surface with TS8 and TS9.

than OH\*) on the defective sites ( $V_{Cl}$ ) via TS8 owing to the lack of exposed Pd. Then, adsorbed CO\* readily substitutes a hydroxy group in HOOH\* to yield a OCOH\* intermediate. If this replaced OH\* intends to associate with OCOH\* again to abstract a hydrogen atom, a higher barrier of 1.86 eV must be surmounted via TS9. Besides that, the barrier of pathway I, which abides by a redox mechanism, also increases from 1.66 to 2.71 eV on the PdCl<sub>x</sub> (140) surface. This indicates that the oxidation of CO is undoubtedly inhibited on the PdCl<sub>x</sub> (140) surface, regardless of whether H<sub>2</sub> is involved or not.

We then performed in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments to further verify the inhibitory mechanisms proposed by DFT calculations. The spectra of CO oxidation in the presence of H<sub>2</sub> were recorded in the range of 40 to 200 °C over the discussed catalysts. For clarity, only the region of 3000 to 1150 cm<sup>-1</sup> is extracted for detailed illustration. As shown in Figure S6, injecting the reactants into the cell initially yielded CO bands of the gaseous type ( $\tilde{v} = 2173 \text{ and } 2120 \text{ cm}^{-1}$ ), linear type ( $\tilde{v} = 2090 \text{ cm}^{-1}$ ), and bridged type ( $\tilde{\nu} = 1968 \text{ cm}^{-1}$ ) at 40 °C.<sup>[17]</sup> Furthermore, bands at  $\tilde{v} = 1435$  and 1230 cm<sup>-1</sup> were also observed, and they were generally attributed to the O-C-O stretching vibration of the CO<sub>3</sub>\* species.<sup>[18]</sup> With an increase in the temperature, a series of new bands ( $\tilde{\nu} = 1596$ , 1396, 1374 cm<sup>-1</sup>) corresponding to the O-C-O stretching vibration of the OCOH\* species[19] emerged and became clearer above 130°C. Simultaneously, the intensities of the bands associated with the CO3\* species gradually decreased as the new bands emerged. This suggested that the associate mechanism began to dominate the reaction. Coupled with maximization of the OCOH\* species, the bands for CO<sub>2</sub> ( $\tilde{\nu}$  = 2362 and 2342 cm<sup>-1</sup>)<sup>[15a]</sup> abruptly increased in intensity and remained almost steady in the range of 130 to



200 °C. The dramatic increase in the intensity of the CO<sub>2</sub> bands indicates that the oxidation of CO is enhanced by the participation of H<sub>2</sub> through pathway II.

For CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>, the spectra depicted in Figure 6 exhibit certain differences upon comparison to the spectra of Pd/ Al<sub>2</sub>O<sub>3</sub>. The bands of the OCOH\* or CO<sub>3</sub>\* intermediate are not observed over the entire range of temperatures, which indicates that all the pathways for CO oxidation abiding by an associate or redox mechanism do not occur. Furthermore, the intensity of the CO<sub>2</sub> signal is approximately only 1/20 of that on Pd/Al<sub>2</sub>O<sub>3</sub>. This wide margin unequivocally demonstrates that CO oxidation is inhibited by at least one order of magnitude on CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>, which correlates well with our DFT calculations.

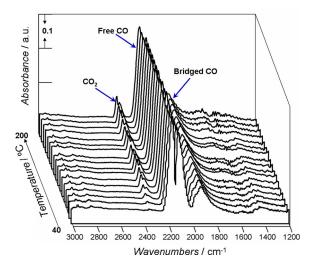



Figure 6. In situ DRIFTS spectra for CO oxidation in the presence of  $\rm H_2$  over the CU-PdCl\_/Al\_2O\_3 catalyst.

In conclusion, we developed a highly efficient CU-PdCl<sub>x</sub>/ Al<sub>2</sub>O<sub>3</sub> catalyst for the abatement of the H<sub>2</sub> impurity in CO streams. Relative to that on the conventional Pd/Al<sub>2</sub>O<sub>3</sub> catalyst, the selectivity for H<sub>2</sub> oxidation on CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> is significantly higher and is increased by more than 40%, and furthermore, the conversion of H<sub>2</sub> is ensured. Hence, the best balance of activity and selectivity could be acquired over this catalyst. We demonstrated that the superior performance of this catalyst could be attributed to the dual inhibitory effects of PdCl<sub>x</sub> for CO adsorption and oxidation. By exploring the mechanism of this structure-guided behavior, we found that the energy barrier for all favored pathways for CO oxidation were difficult to overcome on the  $PdCl_x$  (140) surface. We believe that insight into the unconventional utilization of catalytically inert palladium chloride to promote this reaction will give researchers some clues for the rational design of catalysts and will allow us to reconsider that an inert, even poisonous, material for one reaction may play an inverse role for its counterpart.

## **Experimental Section**

All catalysts were prepared by incipient wetness impregnation. Typically, commercial  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (2 g) was impregnated into an aqueous solution of PdCl<sub>2</sub> (10 mL, Aldrich, 99.9%) at an appropriate concentration at 25 °C for 6 h. The pH value of the solution was controlled at pH ~2 by adding hydrochloric acid. After impregnation, the sample was dried at 100°C under vacuum for 12 h and was then treated in a microwave reactor for 10 min. The patterned PdCl<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst was thus obtained. We treated this catalyst (1 g) with 0.5 vol% aqueous vapor and 10 vol%  $H_2$  balanced with Ar under 150 °C for 30 min. The resulting catalyst was denoted CU-PdCl<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>. With the same procedures, the patterned Pd/Al<sub>2</sub>O<sub>3</sub> catalyst was also synthesized by replacing PdCl<sub>2</sub> with Pd(NO<sub>3</sub>)<sub>2</sub> (Aldrich, 99.9%), and the sample was reduced further under 200°C with 10 vol% H<sub>2</sub>/Ar mixture. Details of the catalytic measurements, characterization data, and DFT calculations are given in the Supporting Information.

## Acknowledgements

The authors are thankful for financial support from the 973 Program of China (2011CBA00505), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA07070200 and XDA09030102), and the National Key Technology R&D Program (2012BAE06B08). The work was also supported by the BL14W1 beam line of the Shanghai Synchrotron Radiation Facility.

**Keywords:** C1 building blocks · hydrogen · oxidation · palladium · selectivity

- a) Q. Li, Z. Zhou, R. Chen, B. Sun, L. Qiao, Y. Yao, K. Wu, *Phys. Chem. Chem. Phys.* **2015**, *17*, 9126–9134; b) S. Peng, Z. Xu, Q. Chen, Y. Chen, J. Sun, Z. Wang, M. Wang, G. Guo, *Chem. Commun.* **2013**, *49*, 5718–5720.
- [2] a) Z. He, H. Lin, P. He, Y. Yuan, J. Catal. 2011, 277, 54–63; b) Y. Huang, H. Ariga, X. Zheng, X. Duan, S. Takakusagi, K. Asakura, Y. Yuan, J. Catal. 2013, 307, 74–83.
- [3] a) L. Ouyang, P. Tian, G. Da, X. Xu, C. Ao, T. Chen, R. Si, J. Xu, Y. Han, J. Catal. 2015, 321, 70–80; b) T. R. Reina, C. Megias-Sayago, A. P. Florez, S. Ivanova, M. A. Centeno, J. A. Odriozola, J. Catal. 2015, 326, 161–171.
- [4] a) T. Schalow, B. Brandt, D. E. Starr, M. Laurin, S. K. Shaikhutdinov, S. Schauermann, J. Libuda, H. J. Freund, *Angew. Chem. Int. Ed.* 2006, *45*, 3693–3697; *Angew. Chem.* 2006, *118*, 3775–3780; b) H. J. Freund, G. Meijer, M. Scheffler, R. Schlogl, M. Wolf, *Angew. Chem. Int. Ed.* 2011, *50*, 10064–10094; *Angew. Chem.* 2011, *123*, 10242–10275.
- [5] a) H. Conrad, G. Ertl, E. E. Latta, *J. Catal.* **1974**, *35*, 363–368; b) R. J. Behm, V. Penka, M. G. Cattania, K. Christmann, G. Ertl, *J. Chem. Phys.* **1983**, *78*, 7486–7490; c) G. A. Kok, A. Noordemeer, B. E. Nieuwenhuys, *Surf. Sci.* **1983**, *135*, 65–80.
- [6] a) P. Sonström, D. Arndt, X. Wang, V. Zielasek, M. Baumer, Angew. Chem. Int. Ed. 2011, 50, 3888–3891; Angew. Chem. 2011, 123, 3974–3978; b) S. Colussi, A. Gayen, M. F. Camellone, M. Boaro, J. Llorca, S. Fabris, A. Trovarelli, Angew. Chem. Int. Ed. 2009, 48, 8481–8484; Angew. Chem. 2009, 121, 8633–8636.
- [7] a) C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. Flytzani-Stephanopoulos, H. He, *Angew. Chem. Int. Ed.* **2012**, *51*, 9628–9632;
  *Angew. Chem.* **2012**, *124*, 9766–9770; b) N. Ji, T. Zhang, M. Zheng, A. Wang, H. Wang, X. Wang, J. Chen, *Angew. Chem. Int. Ed.* **2008**, *47*, 8510–8513; *Angew. Chem.* **2008**, *120*, 8638–8641.
- [8] a) H. S. Oh, J. H. Yang, C. K. Costello, Y. Wang, S. R. Bare, H. H. Kung, M. C. Kung, J. Catal. 2002, 210, 375–386; b) A. Wootsch, C. Descorme, D. Duprez, J. Catal. 2004, 225, 259–266.
- [9] a) Y. Yao, China Patent., ZL201110181697.3, 2011; b) Y. Yao, China Patent., ZL201110182739.5, 2011.



- [10] a) M. Morkel, G. Rupprechter, H. J. Freund, J. Chem. Phys. 2003, 119, 10853–10866; b) J. M. White, S. Akther, CRC Crit. Rev. Solid State Mater. Sci. 1988, 14, 131.
- [11] a) M. Eriksson, L. C. Ekedahl, Surf. Sci. 1998, 412, 430–440; b) C. Nyberg,
  L. Westerlund, Surf. Sci. 1991, 256, 9–18.
- [12] G. Blyholder, J. Phys. Chem. 1964, 68, 2772.
- [13] a) T. Bunluesin, R. J. Gorte, G. W. Graham, Appl. Catal. B 1998, 15, 107– 114; b) G. Chinchen, M. Spencer, J. Catal. 1988, 112, 325–327.
- [14] R. A. Ojifinni, N. S. Froemming, J. Gong, M. Pan, T. S. Kim, J. M. White, G. Henkelman, C. B. Mullins, J. Am. Chem. Soc. 2008, 130, 6801–6812.
- [15] a) J. Lin, B. Qiao, L. Li, H. Guan, C. Ruan, A. Wang, W. Zhang, X. Wang, T. Zhang, J. Catal. 2014, 319, 142–149; b) J. Lin, B. Qiao, J. Liu, Y. Huang, A. Wang, L. Li, W. Zhang, L. Allard, X. Wang, T. Zhang, Angew. Chem. Int. Ed. 2012, 51, 2920–2924; Angew. Chem. 2012, 124, 2974–2978.
- [16] a) M. Yang, J. L. Liu, S. Lee, B. Zugic, J. Huang, L. F. Allard, M. Flytzani-Stephanopoulos, J. Am. Chem. Soc. 2015, 137, 3470–3473; b) G. G. Olympiou, C. M. Kalamaras, C. D. Zeinalipour-Yazdi, A. M. Efstathiou, Catal. Today 2007, 127, 304–318.
- [17] K. I. Choi, M. A. Vannice, J. Catal. 1991, 127, 465-488.
- [18] a) X. Liu, W. Ruettinger, X. Xu, R. Farrauto, *Appl. Catal. B* 2005, *56*, 69–75; b) K. G. Azzam, I. V. Babich, K. Seshan, L. Lefferts, *J. Catal.* 2007, *251*, 153–162.
- [19] a) C. M. Kalamaras, S. Americanou, A. M. Efstathiou, J. Catal. 2011, 279, 287–300; b) G. Jacobs, B. H. Davis, Appl. Catal. A 2007, 333, 192–20.

Received: March 15, 2016 Published online on May 23, 2016