Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Urea based CCR3 antagonists employing a tetrahydro-1,3-oxazin-2-one spacer

T. G. Murali Dhar*, Guchen Yang, Paul Davies, Mary F. Malley, Jack Z. Gougoutas, Dauh-Rurng Wu, Joel C. Barrish, Percy H. Carter

Bristol-Myers Squibb Company, Research and Development, Princeton, NJ 08543-4000, USA

ARTICLE INFO

ABSTRACT

Article history: Received 1 October 2008 Revised 30 October 2008 Accepted 3 November 2008 Available online 6 November 2008

Keywords: CCR3 Chemokine Urea CYP2D6 Tetrahydro-13-oxazin-2-one Conformational restriction of open chain analogs with a more polar tetrahydro-1.3-oxazin-2-one spacer led to the identification of potent urea-based CCR3 antagonists that exhibited excellent selectivity over binding to CYP2D6. The in vitro binding and eosinophil shape change data are presented. Compound 19b exhibited similar selectivity and potency to our development candidate BMS-639623.

© 2008 Elsevier Ltd. All rights reserved.

Accumulation of pulmonary eosinophils is one of the hallmarks of allergic asthma,¹ and the number of eosinophils is often correlated with disease severity.^{1,2} Although the pathophysiological role of the eosinophil remains enigmatic, studies in both humans³ and mice⁴ have suggested that this leukocyte likely participates in remodeling of the asthmatic airway. CC Chemokine Receptor 3 (CCR3) serves as the primary chemokine receptor⁵ on eosinophils and, together with its ligands, mediates both the migration and activation of eosinophils.⁶ Several independent studies with CCR3-deficient mice have confirmed the central role of CCR3 in governing eosinophilia in murine models of asthma.⁷ Moreover, human genetic studies have suggested that the primary CCR3 ligand (eotaxin-1) plays a role in human asthma.⁸ Given these results, numerous researchers have pursued the discovery and development of selective CCR3 antagonists for the treatment of allergic asthma.⁹

Colleagues in our laboratories recently described the discovery of DPC168 (A. Fig. 1) as a picomolar antagonist of CCR3 with pharmacokinetics suitable for clinical development.¹⁰ Subsequent to this, we described our efforts to improve the selectivity of this series of urea-based CCR3 antagonists relative to inhibition of the 2D6 isoform of human cytochrome P-450 (CYP2D6) by reducing the lipophilicity of the central ring (see piperidine **B**, Fig. 1)¹¹ or by replacing the central ring with an acyclic chain substituted with polar groups (C and D, Fig. 1).¹² These latter studies led to the identification of BMS-639623 (C, Fig. 1) as a backup candidate for clinical development in asthma. We reasoned that combining the

structural features inherent in the central linking moieties of A-D in the form of tetrahydro-1,3-oxazin-2-ones (hereafter 'oxazolidinones'; see E, Fig. 1) should provide an alternative series of ureabased CCR3 antagonists with improved selectivity over CYP2D6 inhibition. In this Letter, we describe the synthesis, in vitro binding and functional profiles of this new oxazolidinone-linked series of CCR3 antagonists.

We envisioned that oxazolidinones of type E (Fig. 1) can be synthesized from the known¹³ ethyl ester **3a**. However, attempted hydrolysis of 3a under mild conditions did not yield the desired acid **4** (Scheme 1), presumably due to the base-lability of **3a**.¹⁴ In order to avoid base-mediated decomposition, the tert-butyl ester 3b was prepared in a fashion analogous to literature protocol, starting with *t*-Bu acrylate (Scheme 1). The relative stereochemistry of the vinyl and ester moieties in **3b** was assigned based on the literature precedent,¹³ and was not unambiguously confirmed (vide infra). Deprotection of the *tert*-butyl ester provided the racemic acid 4 in high yield. However, Curtius rearrangement proceeded in poor yield, presumably due to the basic conditions and high temperature employed during the reaction.¹⁵ Ozonolysis of the double bond, followed by reductive workup, afforded the aldehyde, which was subjected to reductive amination with known amines (6, 7a, 7b)^{10,16} to provide the amino-oxazolidinones 8. Carbamate deprotection, followed by coupling of the nascent amine with known phenyl carbamates $(9, 10)^{10,12}$ afforded the original target compounds 11-13.

Because of the apparent base sensitivity of oxazolidinone 4presumably due to the labile hydrogen atom alpha to the acid moiety-we decided to quarternize this carbon atom by incorporating a methyl group, with the aim of increasing the yield during the

^{*} Corresponding author. Tel.: +1 609 252 4158; fax: +1 609 252 7410. E-mail address: murali.dhar@bms.com (T.G.M. Dhar).

Figure 1. Previous members of the urea-based class of CCR3 antagonists provide precedent for the use of tetrahydro-1,3-oxazin-2-one as a spacer.

Curtius rearrangement sequence. Although structure–activity relationships (SAR) in the acyclic series of CCR3 antagonists suggested that quarternizing the carbon atom adjacent to the urea nitrogen could be tolerated by the receptor,¹⁷ it was of interest to see if this trend would continue in the oxazolidinone series. The key methyloxazolidinone precursor **14** was synthesized following the aforementioned literature protocol,¹³ and its conversion to the target compounds is outlined in Scheme 2. Hydrolysis of the *tert*-butyl ester in **14** employing 6 N HCl provided the racemic acid **15** in good yield. In order to establish the relative stereochemistry of the acid and vinyl moieties, a single crystal X-ray analysis of **15** was performed.¹⁸

The single crystal X-ray analysis of compound **15** revealed it to be a mixture of *cis* and *trans* isomers.¹⁹ Since separation of diastereomers of the acid-oxazolidinone **15** was difficult, it was carried over to the next step without further purification. Curtius rearrangement of **15** led to the desired Boc-protected amine **16** in good yield after recrystallization from ethyl ether. Reductive amination with amines (**6**, **7c**), followed by Boc deprotection and coupling with phenyl carbamates (**9**, **10**, **18a**, **18b**) led to oxazolidinones **19–23**. Fortuitously, the *cis*- and *trans*-diastereomers could be easily separated via silica gel column chromatography at this stage. The relative stereochemistry of the individual diastereomers was not established.²⁰

The binding and cellular functional data for selected compounds is listed in Table 1. From these data, it is clear that (i) quarternizing the carbon atom adjacent to the urea functionality did not lead to significant changes in binding potency (compare compounds **11** with **19a** and **19b**); (ii) the *m*-(methyltetrazolyl)phenyl moiety is the favored tail-piece in terms of binding (for example, compare the diasteromeric pairs **19a,b** with **20a,b**); (iii) the binding potency of the open chain amines 23a and 23b are similar to that of the cyclic piperidine analogs 19a and 19b; (iv) in terms of cellular shape change, one diastereomer is approximately an order of magnitude more potent than the other diastereomer (compare 19a with 19b and 23a with 23b); and (iv) most of the compounds show better selectivity over CYP2D6 compared to **B** (Fig. 1, $IC_{50} = 7200 \text{ nM}$), BMS-639623 (**C**, Fig. 1, $K_i = 2600 \text{ nM}$) and excellent selectivity compared to DPC168 (A, Fig. 1, IC₅₀ = 30 nM). Compound 19b appeared to be the best compound in the series, as it exhibited comparable binding, functional and CYP2D6 potency to clinical candidate BMS-639623 (C). The compound also exhibited excellent selectivity over the hERG channel (IC₅₀ = 15,700 nM in a Ca²⁺-flux assay). However, like all of the compounds in this oxazolidinone series, it was not stable when incubated in vitro with human liver microsomes, and so it was not advanced into detailed in vivo evaluation.

Scheme 1. Reagents and conditions: (a) see Ref. 13; (b) 6 N HCl, dioxane, 50 °C, 30 min, 85%; (c) DPPA, t-BuOH, toluene, Et₃N, 110 °C, 18 h, 9%; (d) i–O₃, CH₂Cl₂, -78 °C, DMS; ii–CH₂Cl₂, Na(OAC)₃BH, 10–36% over two steps; (e) i–3 N HCl, dioxane, 50 °C, 1 h, quantitative; ii–CH₃CN, rt, 18 h, 70%.

Scheme 2. Reagents and conditions: (a) see Ref. 13; (b) 6 N HCl, dioxane, 50 °C, 30 min, 79%; (c) DPPA, *t*-BuOH, toluene, Et₃N, 110 °C, 18 h, 46%; (d) i–O₃, CH₂Cl₂, -78 °C, DMS; ii–CH₂Cl₂, Na(OAc)₃BH, 44–59% over two steps; (e) i–3 N HCl, dioxane, 50 °C, 1 h, quantitative; ii–CH₃CN, rt, 18 h.

Table 1

Binding and shape change data for urea-based CCR3 antagonists employing a tetrahydro 1,3-oxazin-2-one spacer^{21,22}

Compound	Structure	CCR3 binding (IC ₅₀ , nM)	Shape change (IC ₅₀ , nM)	CYP2D6 (IC ₅₀ , nM
A	See Figure 1	2	ND	30
B	See Figure 1	1.2	ND	7400
C	See Figure 1	0.3	0.038	$K_{\rm i} = 2600$
11		0.23	ND	4300
12		2.1	2.2, 2.9	ND
13		9.2	ND	ND
19a		0.12	2.4, 6.3	33,000
19b		0.15	0.13, 0.12	17,000
20a		5.4	ND	ND
20b		0.37	3.4	2100
21a		13	ND	ND
21b		1.1	ND	21,000
22a	F V	44	ND	ND
22b		5.5	ND	40,000

Table 1 (continued)

ND, not determined.

In conclusion, a series of urea-based CCR3 antagonists with a tetrahydro-1,3-oxazin-2-one linker have been identified. Quarternizing the carbon atom adjacent to the urea functionality of the tetrahydro-1,3-oxazin-2-one core was critical to obtaining good yields during the Curtius rearrangement reaction en route to the final products. Of the compounds shown, the potency and selectivity of analog **19b** was similar to that of our development candidate BMS-639623. We will report our additional efforts towards generating potent, selective, and bioavailable CCR3 antagonists in subsequent manuscripts.

Acknowledgments

The authors thank our colleagues John V. Duncia, Joseph B. Santella, Soo S. Ko and George V. DeLucca for providing intermediates 6, 7a, 7b, 9, 10, 17, 18a, and 18b.

References and notes

- 1 Will-Karp, M.; Karp, C. L. Science 2004, 305, 1726.
- Green, R. H.; Brightling, C. E.; McKenna, S.; Hargadon, B.; Parker, D.; Bradding, 2. P.: Wardlaw, A. I.: Pavord, I. D. Lancet 2002, 360, 1715.
- Flood-Page, P.; Menzies-Gow, A.; Phipps, S.; Ying, S.; Wangoo, A.; Ludwig, M. S.; 3.
- Hurbers, N.; Robinson, D.; Kay, A. B. J. Clin. Invest. 2003, 112, 1029.Hurbles, A. A.; Lloyd, C. M.; McMillan, S. J.; Friend, D. S.; Xanthou, G.;McKenna, E. E.; Ghiran, S.; Gerard, N. P.; Yu, C.; Orkin, S. H.; Gerard, C. Science 4 2004 305 1776
- 5. For leading references on chemokines and their receptors, see: Sallusto, F.; Baggiolini, M. Nat. Immunol. 2008, 9, 949.
- Pease, J. E. Curr. Drug Targets 2006, 7, 3. 6
- (a) Ma, W.; Bryce, P. J.; Humbles, A. A.; Laouini, D.; Yalcindag, A.; Alenius, H.; Friend, D. S.; Oettgen, H. C.; Gerard, C.; Geha, R. S. J. Clin. Invest. 2002, 109, 621; (b) Humbles, A. A.; Lu, B.; Friend, D. S.; Okinaga, S.; Lora, J.; Al-Garawi, A.; Martin, T. R.; Gerard, N. P.; Gerard, C. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1479; (c) Fulkerson, P. C.: Fischetti, C. A.: McBride, M. L.: Hassman, L. M.: Hogan, S. P.: Rothenberg, M. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16418.
- 8 (a) Batra, J.; Rajpoot, R.; Ahluwalia, J.; Devarapu, S. K.; Sharma, S. K.; Dinda, A. K. Ghosh B. J. Med. Genet. 2007, 44, 397; (b) Nakamura, H.; Luster, A. D.; Nakamura, T.; In, K. H.; Sonna, L. A.; Deykin, A.; Israel, E.; Drazen, J. M.; Lilly, C. M. J. Allergy Clin. Immunol. 2001, 108, 946.
- 9. De Lucca, G. V. Curr. Opin. Drug Discov. Dev.. 2006, 9, 516.
- 10 De Lucca, G. V.; Kim, U.-T.; Vargo, B. J.; Duncia, J. V.; Santella, J. B., III; Gardner, D. S.; Zheng, C.; Liauw, A.; Wang, Z.; Emmett, G.; Wacker, D. A.; Welch, P. K.; Covington, M.; Stowell, N. C.; Wadman, E. A.; Das, A. M.; Davies, P.;

Yeleswaram, S.; Graden, D. M.; Solomon, K. A.; Newton, R. C.; Trainor, G. L.; Decicco, C. P.; Ko, S. S. J. Med. Chem. 2005, 48, 2194.

- Pruitt, J. R.; Batt, D. G.; Wacker, D. A.; Bostrom, L. L.; Booker, S. K.; McLaughlin, 11. E.; Houghton, G. C.; Varnes, J. G.; Christ, D. D.; Covington, M.; Das, A. M.; Davies, P.; Graden, D.; Kariv, I.; Orlovsky, Y.; Stowell, N. C.; Vaddi, K. G.; Wadman, E. A.; Welch, P. A.; Yeleswaram, S.; Solomon, K. A.; Newton, R. C.; Decicco, C. P.; Carter, P. H.; Ko, S. S. Bioorg. Med. Chem. Lett. 2007, 17, 2992.
- Santella, J. B., III; Gardner, D. S.; Yao, W.; Shi, C.; Reddy, P.; Tebben, A. J.; 12. Delucca, G. V.; Wacker, D. S.; Watson, P. S.; Welch, P. K.; Wadman, E. S.; Davies, P.; Solomon, K. A.; Graden, D. M.; Yeleswaram, S.; Mandlekar, S.; Kariv, I.; Decicco, C. P.; Ko, S. S.; Carter, P.; Duncia, J. V. Bioorg. Med. Chem. Lett. 2008, 18, 576.
- 13. Kurihara, T.; Matsubara, Y.; Harusawa, S.; Yoneda, R. J. Chem. Soc. Perkin Trans. 1 1991. 3177.
- 14. The major peak by LC/MS corresponded to the arecoline derivative. There is precedent for a similar type of reaction occurring in DMSO/DBU at 120 °C. See: Matsubara, Y.; Yoneda, R.; Harusawa, S.; Kurihara, T. Chem. Pharm. Bull. 1988, 36 1597
- 15. The putative arecoline derivative was again observed by LC/MS as a major product.
- Gardner, D. S.; Santella, J. B., III; Tebben, A. J.; Batt, D. G.; Ko, S. S.; Traeger, S. C.; 16. Welch, P. K.; Wadman, E. A.; Davies, P.; Carter, P.; Duncia, J. V. Bioorg. Med. Chem. Lett. 2008, 18, 586.
- Ko, S. S.; Delucca, G. V.; Duncia, J. V.; Santella, J. B.; Wacker, D. A.; Yao, W. PCT WO 2001098269
- 18. Crystallographic data (excluding structure factors) for 15 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication Nos. CCDC 703990 and 703991. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).
- The authors in Ref. 13 observe that the threo aldol product undergoes cyclization to the trans-oxazolidinone within 10 min, whereas the mesylate of the ervthro isomer gives the *cis*-oxazolidinone when kept at room temperature for 3 days. When we subjected the diasteromeric mixture of the aldol products to the cyclization conditions reported in Ref. 13 and stirred the reaction mixture for 18 h at room temperature, a mixture of *cis_trans*-oxazolidinone isomers obtained (15) was along with erythromesylate in a ratio of $\sim 1:1.5$.
- Chiral HPLC analysis (Chiracel OD, 250 × 4.6 mm 10 u, CO2/MeOH, 70:30) of 19a indicated the presence of a set of enantiomers, in a 1:1 ratio, as expected
- For a description of the human CCR3 binding assay please see Ref. 12, and 21. references cited therein.
- For a description of the eosinophil shape change assay please see: Sabroe, I.; 22 Hartnell, A.; Jopling, L. A.; Bel, S.; Ponath, P. D.; Pease, J. E.; Collins, P. D.; Williams, T. J. J. Immunol. **1999**, 162, 2946.