Synthesis of Substituted Pyridazin-3-ones, 1,2-Oxazin-3-ones, and Furopyrimidines from (Arylmethylidene)furan-2(3H)-ones

T. V. Anis'kova^a* and A. Yu. Egorova^a

^a Institute of Chemistry, Chernyshevskii Saratov National Research State University, ul. Astrakhanskaya 83, bld. 1, Saratov, 410012 Russia *e-mail: aniskovatv@mail.ru

Received August 30, 2017

Abstract—Reactions of 5-substituted 3-(arylmethylidene)furan-2(3H)-ones with hydrazine hydrate, hydroxylamine, and guanidine involved opening of the furanone ring. Their hydrazinolysis under mild conditions afforded acyclic 4-oxoalkanoic acid hydrazides which underwent heterocyclization to substituted pyridazinones in boiling ethanol. The presence of an alkyl substituent in the 5-position of the initial furanone favored heterocyclization with the formation of pyrazolidinone derivatives. The reactions of 3-(arylmethylidene)furan-2(3H)-ones with hydroxylamine and guanidine also produced new six-membered heterocycles, 2H-1,2-oxazin-3(4H)-ones and 4,6-disubstituted 3,4-dihydrofuro[2,3-d]pyrimidin-2-amines, respectively.

DOI: 10.1134/S1070428018090208

Heterocyclic compounds containing a pyrimidine, pyridazine, or oxazine fragment attract considerable interest due to their potential diverse biological activity. These structural fragments are present in molecules of natural compounds and synthetic drugs exhibiting antitumor, antiviral, antibacterial, and other kinds of activity [1–9].

Six-membered heterocycles are most often synthesized on the basis of binucleophiles containing an HNNH, C=N, or CNH₂ moiety, such as guanidine, hydrazine, and hydroxylamine. These nitrogen nucleophiles are characterized by high reactivity and are widely used to construct new nitrogen-containing heterocyclic systems with various combinations of heteroatoms. Readily obtainable 3-arylmethylidenefuran-2(3H)-ones are convenient and accessible substrates for the synthesis of various difficultly accessible heterocyclic, spirocyclic, and polycyclic compounds [10–18]. 3-Arylmethylidenefuran-2(3H)-ones possess a combination of properties typical of cyclic esters and α,β -unsaturated carbonyl compounds, and they are capable of reacting with compounds having labile hydrogen atoms. In this respect, arylmethylidene derivatives of furan-2(3H)-ones can be regarded as suitable building blocks for the synthesis of various heterocyclic compounds with pyrimidine and pyridazine fragments.

In view of the above stated, development of methods for the synthesis of compounds containing

pyridine and pyridazine fragments is a promising research line. In the present work we studied reactions of 5-substituted 3-arylmethylidenefuran-2(3H)-ones with hydrazine, hydroxylamine, and guanidine.

Furanones **1a–1d** reacted with an equimolar amount of hydrazine hydrate in ethanol at room temperature to give 4-oxoalkanoic acid hydrazides **2a–2d** (Scheme 1). The ¹H NMR spectra of **2a–2d** showed singlets due to CH₂ (δ 3.13–3.21 ppm), C=CH (δ 7.08– 7.15 ppm), NH (δ 7.85–8.03 ppm), and NH₂ protons (δ 5.18–5.23 ppm), as well as aromatic proton signals at δ 7.03–7.98 ppm. The structure of previously unknown compounds **2a–2d** was additionally proved by ¹³C NMR spectra which contained an upfield signal at $\delta_{\rm C}$ 41.5–47.1 ppm due to methylene carbon atom, downfield signals from two carbonyl carbon atoms at $\delta_{\rm C}$ 164.3–169.4 and 193.1–197.5 ppm, and a number of signals of *sp*²-hybridized carbons.

Compounds 2a-2d were formed as a result of opening of the lactone ring of 1a-1d at the C²-O bond,

 $\begin{aligned} R = Ph, & Ar = 2\text{-}ClC_6H_4 (\textbf{a}), R = 4\text{-}MeC_6H_4, Ar = 2\text{-}ClC_6H_4 (\textbf{b}), \\ & 4\text{-}MeOC_6H_4 (\textbf{c}); 3\text{-}O_2NC_6H_4 (\textbf{d}). \end{aligned}$

 $R = Ph, Ar = 2-ClC_6H_4(a), R = 4-MeC_6H_4, Ar = 2-ClC_6H_4(b), 4-MeOC_6H_4(c); 3-O_2NC_6H_4(d).$

and no further heterocyclization occurred under the given conditions.

When the reaction of **1a–1d** with hydrazine hydrate was carried out in boiling ethanol, the products were substituted dihydropyridazin-3(2*H*)-ones **3a–3d** (Scheme 2). The ¹H NMR spectra of **3a–3d** displayed singlets of methylene protons on C⁵ of the pyridazine ring (δ 2.15–2.22 ppm), proton on the exocyclic double bond (δ 6.89–7.01 ppm), NH proton (δ 7.02–7.12 ppm), and aromatic protons (δ 7.19–8.05 ppm). In the ¹³C NMR spectra of **3a–3d**, the C⁵ signal was observed at δ_C 35.7–41.2 ppm, *sp*²-hybridized carbons resonated in the region δ_C 118.6–153.6 ppm, and the carbonyl carbon signal was located at δ_C 166.2–169.4 ppm.

Unlike the reaction at room temperature which stops at the stage of formation of acyclic hydrazide, in boiling ethanol intermediate hydrazide undergoes intramolecular cyclization to pyridazinone derivative via attack by the primary amino group on the ketone carbonyl carbon atom and elimination of water molecule. No alternative reaction paths leading to fivemembered heterocycles (dihydropyrrole or pyrazolidine) were observed.

The presence of an alkyl (pentyl) group in the 5-position of initial 3-arylmethylidenefuran-2(3*H*)ones **1e–1g** changed the reactivity, and the reaction of **1e–1g** with hydrazine hydrate afforded 68–72% of substituted pyrazolidin-3-ones **4a–4c** (Scheme 3). The structure of **4a–4c** was proved by spectral methods. In the ¹H NMR spectra of **4a–4c** we observed a multiplet signal of the alkyl substituent at δ 0.96–2.48 ppm, doublets of doublets of exocyclic methylene protons at δ 2.67–2.74 and 3.42–3.49 ppm, a multiplet of 4-H at δ 3.63–3.77 ppm, a doublet of 3-H at δ 4.22–4.31 ppm,

1e, 4a, Ar = Ph; 1f, 4b, $Ar = 3-O_2NC_6H_4$; 1g, 4c, $Ar = 4-MeOC_6H_4$.

Scheme 4.

1b, **5a**, Ar = 2-ClC₆H₄; **1c**, **5b**, Ar = 4-MeOC₆H₄; **1d**, **5c**, Ar = 3-O₂NC₆H₄.

two broadened NH singlets at δ 6.12–6.16 and 8.31– 8.37 ppm, and a set of aromatic proton signals in the region δ 6.76–7.43 ppm. The ¹³C NMR spectra of **4a–4c** contained a series of upfield signals due to sp^3 -carbons and two downfield carbonyl carbon signals, as well as other signals.

In this case, the reaction path is determined mainly by the activity of different reaction centers in the intermediate. The latter may be either hydrazide \mathbf{A} or bicyclic structure \mathbf{B} . Due to the presence of alkyl substituent, the positive charge on the neighboring carbonyl carbon atom of intermediate hydrazide \mathbf{A} is reduced, so that cyclization to six-membered pyridazinones can be ruled out; on the other hand, the carbon atom of the arylmethylidene fragment remains electron-deficient, which favors formation of pyrazolidine system. Another reaction sequence is also possible, namely the formation of bicyclic system \mathbf{B} and subsequent opening of the furanone ring to give compounds $4\mathbf{a}-4\mathbf{c}$.

Treatment of furan-2(3*H*)-ones **1b–1d** with excess hydroxylamine hydrochloride in the presence of a catalytic amount of pyridine in boiling ethanol for 6–8 h led to the formation of 1,2-oxazin-3(4*H*)-ones **5a–5c** (Scheme 4). The ¹H NMR spectra of **5a–5c** contained singlets of proton on the exocyclic double bond (δ 7.44–7.58 ppm) and 5-H of the oxazine ring (δ 7.20–7.25 ppm) and downfield signals of the NH proton (δ 8.39–8.51 ppm) and aromatic protons (δ 7.23–8.13 ppm). A series of signals of *sp*²-carbon atoms were observed in the ¹³C NMR spectra of **5a–5c** in the region $\delta_{\rm C}$ 103.6–147.2 ppm, and the carbonyl carbon signal was located at $\delta_{\rm C}$ 168.5–174.9 ppm, which provided an additional support to the proposed structure.

Hydroxylamine molecule possesses two nonequivalent nucleophilic centers, among which the nitrogen atom is more nucleophilic. Attack of hydroxylamine on C^2 of the furan ring of **1b–1d** gives intermediate hydroxamic acid which undergoes intramolecular cyclization via attack of the NHOH oxygen atom on the ketone carbonyl carbon atom. The cyclization is favored by deficit of electron density on C^4 and high nucleophilicity of the OH oxygen atom. Furthermore, flexibility of the C–N–OH fragment in the hydroxamic acid molecule favors appropriate spatial arrangement of the reaction centers for oxazine ring closure.

The reactions of 5-substituted 3-arylmethylidenefuran-2(3*H*)-ones **1a**, **1b**, and **1h** with guanidine carbonate were carried out by heating the reactants for 5 h in boiling ethanol in the presence of sodium ethoxide. The mixtures were then neutralized with concentrated aqueous HCl. The products were identified as dihydrofuro[2,3-*d*]pyrimidin-2-amines **6a–6c** (Scheme 5). Their ¹H NMR spectra displayed singlets of 5-H (δ 6.54–6.82 ppm), 4-H (δ 5.13–5.45 ppm), 3-H (δ 3.10–3.18 ppm), and NH₂ group (δ 0.97–1.13 ppm)

6, $R = Ph(\mathbf{a})$, 4-MeC₆H₄(**b**), 4-MeOC₆H₄(**c**).

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 54 No. 9 2018

and a set of aromatic proton signals in the region δ 7.06–7.51 ppm. In the ¹³C NMR spectra of **6a–6c**, the C⁴ nucleus resonated at δ_C 49.8–52.1 ppm, *sp*²-carbon signals were located at δ_C 103.9–146.2 ppm, and the C² signal was observed at δ_C 157.4–159.9 ppm.

Taking into account high reactivity of guanidine and the presence of several electrophilic centers in arylmethylidenefuranones 1, some alternative reaction paths could be expected. However, the product structure suggests the following transformation sequence: initial attack of the amino group of guanidine on the lactone fragment of furan-2-one with opening of the lactone ring, closure of pyrimidine ring via intramolecular attack of the imino group on the C=C double bond, and subsequent enolization and intramolecular dehydration (Scheme 5).

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were recorded at 20– 25°C on a Varian 400 spectrometer (operating frequencies 400 and 100 MHz, respectively) using CDCl₃ as solvent and tetramethylsilane as internal standard. Analytical thin-layer chromatography was performed on DC-Fertigfolien ALUGRAM Xtra SIL G/UV-254 plates using hexane–ethyl acetate–chloroform (2:2:1) as eluent; spots were visualized under UV light. The melting points were measured in open capillaries. The elemental analyses were obtained with a Vario Micro cube Elementar CHNS analyzer.

Initial 5-substituted 3-arylmethylidenefuran-2(3H)ones **1a–1h** were synthesized according to the procedure described in [19].

4-Oxobutanoic acid hydrazides 2a–2d (general procedure). A mixture of 0.02 mol of compound **1a–1d** and 0.02 mol of hydrazine hydrate in 12 mL of ethanol was stirred for 30–50 min at 20–25°C. The precipitate was filtered off, washed with water, and recrystallized from ethanol.

2-[(2-Chlorophenyl)methylidene]-4-oxo-4-phenylbutanehydrazide (2a). Yield 84%, mp 129– 131°C. ¹H NMR spectrum, δ , ppm: 3.13 s (2H, CH₂), 5.18 s (2H, NH₂), 7.15 s (1H, =CH), 7.34–7.79 m (9H, H_{arom}), 7.85 s (1H, NH). ¹³C NMR spectrum, δ_{C} , ppm: 47.1, 119.1, 121.3, 122.8, 124.3, 125.9, 127.9, 129.5, 130.5, 131.7, 132.3, 134.6, 135.9, 136.4, 138.5, 169.4, 194.7. Found, %: C 65.15; H 5.21; N 9.24. C₁₇H₁₅ClN₂O₂. Calculated, %: C 64.87; H 4.80; N 8.90.

2-[(2-Chlorophenyl)methylidene]-4-(4-methylphenyl)-4-oxobutanehydrazide (2b). Yield 81%, mp 131–133°C. ¹H NMR spectrum, δ, ppm: 2.45 s (3H, CH₃), 3.17 s (2H, CH₂), 5.23 s (2H, NH₂), 7.08 s (1H, =CH), 7.18 d and 7.32 d (2H each, MeC₆H₄, J = 8.1 Hz), 7.39–7.68 m (4H, H_{arom}), 8.03 s (1H, NH). ¹³C NMR spectrum, δ_C, ppm: 25.8, 45.4, 121.5, 122.8, 123.2, 125.2, 126.4, 127.7, 126.7, 128.9, 133.2, 133.2, 134.1, 137.1, 164.3, 193.1. Found %: C 66.03; H 4.91; N 8.72. C₁₈H₁₇ClN₂O₂. Calculated %: C 65.75; H 5.21; N 8.52.

2-[(4-Methoxyphenyl)methylidene]-4-(4-methylphenyl)-4-oxobutanehydrazide (2c). Yield 76%, mp 123–125°C. ¹H NMR spectrum, δ , ppm: 2.43 s (3H, CH₃), 3.45 s (OCH₃), 3.21 s (2H, CH₂), 5.21 s (2H, NH₂), 7.11 s (1H, =CH), 7.03 d (2H, H_{arom}, J = 8.1 Hz), 7.46 d (2H, H_{arom}, J = 8.1 Hz), 7.28 d and 7.56 d (2H each, MeC₆H₄, J = 8.1 Hz), 7.96 s (1H, NH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 22.1, 42.9, 53.2, 118.4, 120.3, 122.2, 124.7, 128.2, 129.1, 130.4, 131.7, 133.8, 158.2, 166.2, 197.5. Found, %: C 70.38; H 6.42; N 9.04. C₁₉H₂₀N₂O₃. Calculated, %: C 70.35; H 6.21; N 8.64.

4-(4-Methylphenyl)-2-[(3-nitrophenyl)methylidene]-4-oxobutanehydrazide (2d). Yield 86%, mp 143–145°C. ¹H NMR spectrum, δ , ppm: 2.52 s (3H, CH₃), 3.19 s (2H, CH₂), 5.20 s (2H, NH₂), 7.14 s (1H, =CH), 7.23 d and 7.65 d (2H each, MeC₆H₄, J = 8.1 Hz), 7.74–7.98 m (4H, H_{arom}), 8.01 s (1H, NH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 27.4, 41.5, 119.3, 120.2, 121.9, 122.8, 124.1, 125.3, 126.1, 127.4, 128.3, 130.5, 133.5, 137.5, 165.6, 197.3. Found, %: C 64.04; H 5.49; N 12.65. C₁₈H₁₇N₃O₄. Calculated, %: C 63.71; H 5.05; N 12.38.

Compounds 3a–3d and 4a–4c (general procedure). A mixture of 0.02 mol of compound **1a–1g** and 0.06 mol of hydrazine hydrate in 20 mL of ethanol was refluxed with stirring for 50–60 min. After cooling, the precipitate was filtered off, washed with water, and recrystallized from propan-2-ol.

4-[(2-Chlorophenyl)methylidene]-6-phenyl-4,5-dihydropyridazin-3(2*H***)-one (3a). Yield 69%, mp 192–194°C. ¹H NMR spectrum, \delta, ppm: 2.15 s (2H, CH₂), 7.01 s (1H, =CH), 7.08 s (1H, NH), 7.19– 7.68 m (9H, H_{arom}). ¹³C NMR spectrum, \delta_{\rm C}, ppm: 38.3, 116.2, 117.4, 118.3, 119.1, 121.9, 122.7, 124.5, 126.1, 127.9, 128.4, 130.2, 131.5, 133.3, 139.3, 142.1, 164.2. Found, %: C 69.11; H 4.73; N 9.76. C₁₇H₁₃ClN₂O. Calculated, %: C 68.81; H 4.42; N 9.44.**

4-[(2-Chlorophenyl)methylidene]-6-(4-methylphenyl)-4,5-dihydropyridazin-3(2H)-one (3b). Yield 73%, mp 201–203°C. ¹H NMR spectrum, δ , ppm: 2.20 s (2H, CH₂), 2.48 s (3H, CH₃), 6.93 s (1H, =CH), 7.02 s (1H, NH), 7.03 d and 7.46 d (2H each, MeC₆H₄, J = 8.1 Hz), 7.67–7.95 m (4H, H_{arom}). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 24.6, 40.1, 119.8, 120.6, 121.3, 123.7, 125.1, 126.3, 127.5, 129.5, 131.5, 133.1, 134.6, 138.2, 140.3, 162.3. Found, %: C 69.76; H 5.12; N 8.68. C₁₈H₁₅ClN₂O. Calculated, %: C 69.57; H 4.86; N 9.01.

4-[(4-Methoxyphenyl)methylidene]-6-(4-methylphenyl)-4,5-dihydropyridazin-3(2*H***)-one (3c). Yield 76%, mp 209–211°C. ¹H NMR spectrum, \delta, ppm: 2.16 s (2H, CH₂), 2.45 s (3H, CH₃), 3.53 s (OCH₃), 6.89 s (1H, =CH), 7.05 s (1H, NH), 7.07 d (2H, H_{arom}, J = 8.1 Hz), 7.49 d (2H, H_{arom}, J = 8.1 Hz), 7.21 d and 7.68 d (2H each, MeC₆H₄, J = 8.1 Hz). ¹³C NMR spectrum, \delta_{\rm C}, ppm: 25.9, 39.5, 54.7, 116.2, 121.4, 122.7, 123.3, 125.6, 128.2, 129.8, 133.2, 135.1, 142.1, 159.3, 163.9. Found, %: C 74.62; H 6.21; N 9.54. C₁₉H₁₈N₂O₂. Calculated, %: C 74.49; H 5.92; N 9.14.**

6-(4-Methylphenyl)-4-[(3-nitrophenyl)methylidene]-4,5-dihydropyridazin-3(2*H***)-one (3d). Yield 68%, mp 210–212°C. ¹H NMR spectrum, δ, ppm: 2.22 s (2H, CH₂), 2.51 s (3H, CH₃), 6.94 s (1H, =CH), 7.12 s (1H, NH), 7.25 d and 7.71 d (2H each, MeC₆H₄, J = 8.1 Hz), 7.87–8.05 m (4H, H_{arom}). ¹³C NMR spectrum, δ_C, ppm: 25.2, 38.9, 118.8, 124.7, 125.1, 125.9, 126.3, 127.7, 128.1, 128.9, 129.4, 130.2, 132.1, 133.9, 143.3, 161.2. Found, %: C 66.97; H 5.03; N 13.42. C₁₈H₁₅N₃O₃. Calculated, %: C 67.28; H 4.71; N 13.08.**

4-(2-Oxoheptyl)-5-phenylpyrazolidin-3-one (4a). Yield 71%, mp 97–99°C. ¹H NMR spectrum, δ , ppm: 0.96–2.35 m (11H, C₅H₁₁), 2.69 d.d (2H, J = 13.2, 4 Hz), 3.46 d.d (2H, CH₂, J = 13.2, 7 Hz), 3.63–3.69 m (1H, 4-H), 4.27 d (1H, 5-H, J = 8.1 Hz), 6.12 s (1H, NH), 8.37 s (1H, NH), 6.76–7.05 m (5H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 12.2, 21.5, 24.9, 29.7, 37.8, 41.4, 46.7, 74.7, 123.8, 124.7, 127.8, 129.1, 132.1, 133.8, 182.9, 209.7. Found, %: C 70.47; H 7.70; N 10.67. C₁₆H₂₂N₂O₂. Calculated, %: C 70.04; H 8.08; N 10.21.

5-(3-Nitrophenyl)-4-(2-oxoheptyl)pyrazolidin-3-one (4b). Yield 79%, mp 112–113°C. ¹H NMR spectrum, δ , ppm: 0.99–2.43 m (11H, C₅H₁₁), 2.67 d.d (2H, J = 13.2, 4 Hz), 3.42 d.d (2H, CH₂, J = 13.2, 7 Hz), 3.68–3.72 m (1H, 4-H), 4.31 d (1H, 5-H, J = 8.1 Hz), 6.14 s (1H, NH), 8.31 s (1H, NH), 7.17–7.43 m (4H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 14.7, 22.3, 26.1, 30.4, 36.2, 42.9, 45.9, 75.2, 126.2, 127.3, 129.1, 132.5, 133.6, 135.3, 184.2, 210.5. Found, %: C 60.42; H 6.95; N 12.98. C₁₆H₂₁N₃O₄. Calculated, %: C 60.17; H 6.63; N 13.16. **5-(4-Methoxyphenyl)-4-(2-oxoheptyl)pyrazolidin-3-one (4c).** Yield 72%, mp 92–93°C. ¹H NMR spectrum, δ , ppm: 1.04–2.48 m (11H, C₅H₁₁), 2.74 d.d (2H, J = 13.2, 4 Hz), 3.49 d.d (2H, CH₂, J = 13.2, 7 Hz), 3.71–3.77 m (1H, 4-H), 3.75 s (3H, OCH₃), 4.22 d (1H, 5-H, J = 8.1 Hz), 6.16 s (1H, NH), 8.35 s (1H, NH), 7.00–7.28 m (4H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 14.7, 22.3, 26.1, 30.4, 36.2, 42.9, 45.9, 75.2, 126.2, 127.3, 129.1, 132.5, 133.6, 135.3, 184.2, 210.5. Found, %: C 67.15; H 8.13; N 9.34. C₁₇H₂₄N₂O₃. Calculated, %: C 67.08; H 7.95; N 9.20.

Compounds 5a–5c (*general procedure***).** A mixture of 0.01 mol of compound **1b–1d**, 0.03 mol of hydroxylamine hydrochloride, and 0.03 mol of pyridine in 30 mL of ethanol was refluxed with stirring for 6–8 h. The mixture was cooled and poured into cold water, and the precipitate was filtered off, washed with water, and recrystallized from propan-2-ol.

4-[(2-Chlorophenyl)methylidene]-6-(4-methylphenyl)-2H-1,2-oxazin-3(4H)-one (5a). Yield 72%, mp 117–119°C. ¹H NMR spectrum, δ , ppm: 2.45 s (3H, CH₃), 7.20 s (1H, 5-H), 7.44 s (1H, =CH), 7.23 d and 7.39 d (2H each, MeC₆**H**₄, *J* = 8.1 Hz), 7.85– 8.13 m (4H, H_{arom}), 8.47 s (1H, NH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 23.9, 103.6, 125.1, 125.8, 126.2, 127.8, 128.3, 132.6, 133.4, 137.6, 157.4, 168.5. Found, %: C 69.69; H 4.87; N 4.87. C₁₈H₁₄ClNO₂. Calculated, %: C 69.35; H 4.53; N 4.49.

4-[(4-Methoxyphenyl)methylidene]-6-(4-methylphenyl)-2H-1,2-oxazin-3(4H)-one (5b). Yield 69%, mp 115–117°C. ¹H NMR spectrum, δ , ppm: 2.41 s (3H, CH₃), 3.58 s (3H, OCH₃), 7.25 s (1H, 5-H), 7.53 s (1H, =CH), 7.02 d (2H, H_{arom}, J = 8.1 Hz), 7.35 d (2H, H_{arom}, J = 8.1 Hz), 7.12 d and 7.41 d (2H each, MeC₆H₄, J = 8.1 Hz), 8.39 s (1H, NH). ¹³C NMR spectrum, δ_{C} , ppm: 25.3, 54.8, 107.5, 117.6, 126.6, 128.3, 127.7, 128.9, 130.4, 132.4, 134.5, 136.2, 159.1, 163.6, 169.8. Found, %: C 73.88; H 5.76; N 4.78. C₁₉H₁₇NO₃. Calculated, %: C 74.25; H 5.58; N 4.56.

6-(4-Methylphenyl)-4-[(3-nitrophenyl)methylidene]-2H-1,2-oxazin-3(4H)-one (5c). Yield 67%, mp 92–94°C. ¹H NMR spectrum, δ, ppm: 2.43 s (3H, CH₃), 7.23 s (1H, 5-H), 7.58 s (1H, =CH), 7.15 d and 7.38 d (2H each, MeC₆H₄, J = 8.1 Hz), 7.78–8.07 m (4H, H_{arom}), 8.51 s (1H, NH). ¹³C NMR spectrum, δ_C, ppm: 26.7, 108.4, 116.5, 123.8, 125.1, 127.3, 128.7, 129.3, 131.6, 132.4, 135.3, 136.1, 138.4, 147.2, 158.5, 174.9. Found, %: C 66.78; H 4.85; N 8.61. C₁₈H₁₄N₂O₄. Calculated, %: C 67.07; H 4.38; N 8.69.

Compounds 6a–6c (general procedure). A mixture of 0.01 mol of compound **1a**, **1b**, or **1h** and 0.01 mol of guanidine carbonate in 15 mL of ethanol containing 0.001 mol of sodium ethoxide was refluxed with stirring for 5 h. The mixture was cooled and neutralized with concentrated aqueous HCl, and the precipitate was filtered off, washed with water, and recrystallized from propan-2-ol.

4-(2-Chlorophenyl)-6-phenyl-3,4-dihydrofuro-[**2,3-***d*]**pyrimidin-2-amine (6a).** Yield 67%, mp 176– 178°C. ¹H NMR spectrum, δ , ppm: 1.13 s (2H, NH₂), 3.13 s (1H, NH), 5.45 s (1H, 4-H), 6.54 s (1H), 7.21– 7.43 m (9H, H_{arom}). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 52.1, 105.1, 119.1, 124.3, 124.9, 125.1, 127.2, 128.1, 128.9, 130.2, 131.8, 132.4, 135.9, 137.3, 143.1, 159.6. Found, %: C 66.35; H 4.13; N 13.34. C₁₈H₁₄ClN₃O₄. Calculated, %: C 66.77; H 4.36; N 12.98.

4-(2-Chlorophenyl)-6-(4-methylphenyl)-3,4-dihydrofuro[2,3-*d***]pyrimidin-2-amine (6b)**. Yield 73%, mp 196–198°C. ¹H NMR spectrum, δ, ppm: 1.05 s (2H, NH₂), 2.67 s (3H, CH₃), 3.18 s (1H, NH), 5.13 s (1H, 4-H), 6.68 s (1H), 7.21 d and 7.43 d (2H each, MeC₆**H**₄, J = 8.1 Hz), 7.25–7.38 m (4H, H_{arom}). ¹³C NMR spectrum, δ_C, ppm: 25.3, 49.8, 103.9, 121.8, 122.5, 124.5, 125.7, 127.5, 128.1, 128.9, 129.3, 131.6, 133.6, 134.5, 135.2, 145.3, 157.4. Found, %: C 67.87; H 4.93; N 12.82. C₁₉H₁₆ClN₃O. Calculated, %: C 67.56; H 4.77; N 12.44.

4-(2-Chlorophenyl)-6-(4-methoxyphenyl)-3,4-dihydrofuro[2,3-*d***]pyrimidin-2-amine (6c).** Yield 65%, mp 188–190°C. ¹H NMR spectrum, δ , ppm: 0.97 s (2H, NH₂), 3.10 s (1H, NH), 3.65 s (3H, OCH₃), 5.28 s (1H, 4-H), 6.82 s (1H), 7.06 d (2H, H_{arom}, *J* = 8.1 Hz), 7.51 d (2H, H_{arom}, *J* = 8.1 Hz), 7.18–7.31 m (4H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 50.2, 54.8, 107.7, 119.6, 122.7, 124.2, 124.9, 125.1, 126.2, 127.8, 128.1, 129.1, 130.2, 131.2, 132.5, 146.2, 159.9. Found, %: C 64.79; H 4.24; N 12.05. C₁₉H₁₆ClN₃O₂. Calculated, %: C 64.50; H 4.56; N 11.88.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 16-03-00530).

REFERENCES

 Coates, W.J., Prain, H.D., Reeves, M.L., and Warrington, B.H., *J. Med. Chem.*, 1990, vol. 33, p. 1735.

- Sagong, H.Y., Bauman, J.D., Patel, D., Das, K., Arnold, E., and LaVoie, E.J., *J. Med. Chem.*, 2014, vol. 57, p. 8086.
- Zuniga, E.S., Korkegian, A., Mullen, S., Hembre, E.J., Ornstein, P.L., Cortez, G., Biswas, K., Naresh, K., Cramer, J., Masquelin, T., Hipskind, P.A., Odingo, J., and Parish, T., *Bioorg. Med. Chem.*, 2017, vol. 25, p. 3922.
- Pretorius, S.I., Breytenbach, W.J., de Kock, C., Smith, P.J., and N'Da, D.D., *Bioorg. Med. Chem.*, 2013, vol. 21, p. 269.
- Sams, A.G., Hentzer, M., Mikkelsen, G.K., Larsen, K., Bundgaard, C., Plath, N., Christoffersen, C.T., and Bang-Andersen, V., *J. Med. Chem.*, 2010, vol. 53, p. 6386.
- Dave, C.D. and Shah, R.D., *Molecules*, 2002, vol. 7, p. 554.
- Madhavan, G.R., Chakrabarti, R., Vikramadithyan, R.K., Mamidi, R.N.V.S., Balraju, V., Rajesh, B.M., Misra, P., Kumar, S.K.B., Lohray, B.B., Lohray, V.B., and Rajagopalan, R., *Bioorg. Med. Chem.*, 2002, vol. 10, p. 2671.
- Gangiee, A., Adaira, O., and Queener, S.F., *Bioorg. Med. Chem.*, 2001, vol. 9, p. 2929.
- Saladino, R., Ciambecchini, U., Maga, G., Mastromarino, P., Conti, C., and Botta, M., *Bioorg. Med. Chem.*, 2002, vol. 10, p. 2143.
- 10. Aniskova, T., Kamneva, I., and Egorova, A., *Lett. Org. Chem.*, 2016, vol. 13, p. 699.
- 11. Anis'kova, T.V., Yegorova, A.Yu., and Chadina, V.V., Mendeleev Commun., 2008, vol. 18, p. 167.
- 12. Aniskova, T.V., Chadina, V.V., and Yegorova, A.Yu., *Synth. Commun.*, 2011, vol. 41, p. 2315.
- 13. Anis'kova, T.V., Kamneva, I.E., and Egorova, A.Yu., *Rev. J. Chem.*, 2014, vol. 4, p. 204.
- 14. Anis'kova, T.V. and Egorova, A.Yu., *Russ. J. Org. Chem.*, 2013, vol. 49, p. 1514.
- 15. Anis'kova, T.V. and Yegorova, A.Yu., Chem. Heterocycl. Compd., 2011, vol. 47, p. 514.
- 16. Anis'kova, T.V. and Egorova, A.Yu., *Russ. J. Org. Chem.*, 2012, vol. 48, p. 1578.
- 17. Aniskova, T., Grinev, V., and Yegorova, A., *Molecules*, 2017, vol. 22, p. 1251.
- Anis'kov, A.A., Kamneva, I.Ye., Zheleznova, M.A., and Yegorova, A.Yu., *Chem. Heterocycl. Compd.*, 2015, vol. 51, p. 709.
- Sedavkina, V.A., Morozova, N.A., Egorova, A.Yu., and Ostroumov, I.G., *Chem. Heterocycl. Compd.*, 1987, vol. 23, p. 377.