HETEROCYCLES, Vol. 91, No. 1, 2015, pp. 64 - 75. © 2015 The Japan Institute of Heterocyclic Chemistry Received, 22nd November, 2014, Accepted, 17th December, 2014, Published online, 25th December, 2014 DOI: 10.3987/COM-14-13135

REACTION OF 2-CHLORO-1-ALKYL-1*H*-INDOLE-3-CARBALDEHYDES WITH BARBITURIC ACIDS AND 5-METHYL-2-PHENYL-2,4-DIHYDROPYRAZOL-3-ONE. FORMATION OF COMPOUND WITH EXTREMELY SHORT INTRAMOLECULAR HYDROGEN BOND IN EIGHT-MEMBERED PSEUDOCYCLE

Konstantin F. Suzdalev,<sup>a,\*</sup> Maria N. Babakova,<sup>a</sup> Victor G. Kartsev,<sup>b</sup> and Konstantin A. Krasnov<sup>c</sup>

<sup>a</sup>Chemical Department of Southern Federal University, Zorge Street 7, 344090 Rostov-on-Don, Russia, E-mail: konsuz@gmail.com

bInterBioScreen Ltd., PO Box 218, Moscow, 119019 Russia, E-mail: screen@ibscreen.chg.ru

<sup>c</sup>Institute of Toxicology FMBA of Russia, Bekhterev str., 1, St-Petersburg, 192019, Russia, E-mail: krasnov\_tox@mail.ru

**Abstract** – New indolin-2-one derivatives, containing in its molecules eight-membered pseudo-cycle with unusually short intramolecular hydrogen bond OHO-bridge in have been synthesized by reaction of 2-chloro-1-alkyl-1*H*-indole-3-carbaldehyde with barbituric acids 5-methyl-2-phenyl-2,4-dihydropyrazol-3-one. Under the action of amines they undergo fragmentation to 5-aminomethylenebarbituric acids 4-aminomethylenepyrazolones and 1-alkyl-1,3-dihydroindol-2-ones.

# **INTRODUCTION**

It is known, that 2-chloroindole-3-carbaldehydes react with CH-acids, such as malononitrile<sup>1</sup> and 1,3-dihydroindol-2-ones<sup>2</sup> to give Knoevenagel condensation products with retention of chlorine atom in a molecule. The products of the second reaction are of interest as anticancer drugs.<sup>2</sup>

To obtain such derivatives we have investigated reactions of 2-chloroindole-3-carbaldehydes **1a,b** with barbituric acids **2a,b** and 5-methyl-2-phenyl-2,4-dihydropyrazol-3-one **7**. We have surprisingly found that unlike the reactions described in the literature<sup>1,2</sup> products of other species were prepared. Elemental analysis, mass spectra, IR and NMR <sup>1</sup>H data have shown that these products include indole nucleus and

fragments of active methylene compounds but do not contain a chlorine atom. X-Ray analysis of the crystals, obtained by reacting of aldehyde **1b** with 1,3-dimethylbarbituric acid has sown this product (**3c**) contain a specific eight-membered heterocyclic ring system. The purpose of this paper is to describe the synthesis, structural features and some chemical properties of the compounds obtained.

#### RESULTS AND DISCUSSION

The heating of starting materials **1a,b** with barbituric acids **2a,b** in butanol gave a 1,3-dihydroindol-2-ones **3a-d**. It is apparent, that the Knoevenagel products **A** formed at the initial stage underwent the conjugate addition of water followed by the elimination of HCl and formation of substances **3a-d** (Scheme 1).

Scheme 1

Barbituric acid moiety of compounds  $3\mathbf{a}$ - $\mathbf{d}$  exists in the enol form.  $^1\text{H-NMR}$  spectra in CDCl<sub>3</sub> of compounds  $3\mathbf{a}$ - $\mathbf{d}$  include the signals of strongly unshielded protons of OH groups (17.75-17.80 ppm), connected by a hydrogen bond to the carbonyl group in the 2-position of the indole ring. The presence of hydrogen bonding has also been proven by two narrow singlets of *N*-methyl groups of barbituric acid fragments in products  $3\mathbf{a}$  and  $3\mathbf{c}$ . This demonstrates the fixation of the fragments by a hydrogen bond. The  $^1\text{H-NMR}$  spectrum of compound  $3\mathbf{a}$ , in DMSO- $d_6$  essentially differs from its spectrum in CDCl<sub>3</sub>. The broad singlet of 6 protons of two NCH<sub>3</sub> groups of barbituric acid moiety, located at  $\delta$  3.32 ppm, may be explained

by the hindered rotation of this part of a molecule at room temperature in this solvent. It corresponds to the break of the H-bond, due to intermolecular association with DMSO.

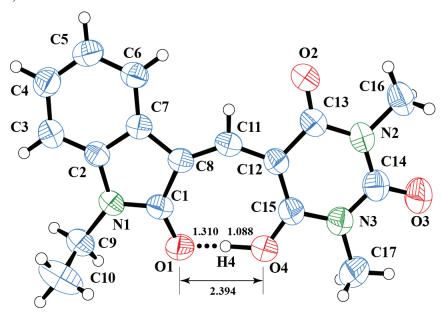



Figure 1. ORTEP view of structure 3c

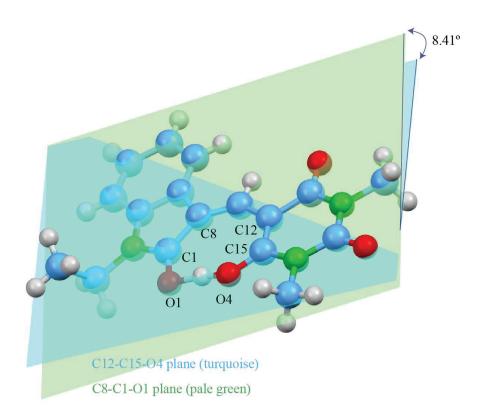



Figure 2. Ball and stick view of structure 3c. Planes C8-C1-O1 and C12-C15-O4

The X-ray analysis of compound **3c** (Figure 1) shows the presence of asymmetrical intramolecular hydrogen bond in a crystalline state. The distance between atoms O4 and H4 is 1.088 Å, while O1···H4 – 1.310 Å, which is considerably less than the sum of Van-der-Waals radii and indicates the presence of a "strong OHO bridge".<sup>3</sup> The formation of hydrogen bridge makes the molecule almost flat, the dihedral angle between the planes C1-C8-O1 and C12-C15-O4 is 8.41°, as shown in Figure 2. Since the hydrogen atom is located between O1 and O4, the angle C8-C11-C12 significantly deviates from its standard value (120°) and is of 141.14°. Values of the remaining angles of the ring with a hydrogen bond vary between 109.81° - 133.57°, except for the angle O1-H4-O4 which is 173.49°.

We have undertaken a literature search of substances similar in structure to our compound. According to database CCDC,<sup>4</sup> few structures having a conjugate system of carbonyl group, two double bonds and OH-function have been described.<sup>5</sup> They can be divided into three groups. The first includes compounds in which intramolecular hydrogen bonding is not occurring, and hence an eight-membered cycle does not form.<sup>5a</sup> In the second group two kinds of molecules with different interatomic distances O···O coexist in the crystal.<sup>5b</sup> In the third group the intramolecular hydrogen bond of the same type is formed in all molecules of the crystal.<sup>5c-g</sup> Our substance **3c** represents a third type of compounds. In this group only the one compound with two symmetrically placed pyrazolone rings is practically flat: the dihedral angle between planes analogous to shown in Figure 2 makes 0.13°.<sup>5c</sup> Most of compounds reported to be considerably twisted: the dihedral angle varies from 28.21° <sup>5b</sup> to 59.98°.<sup>5g</sup>

The shortest H-bond OHO in eight-membered pseudocycle among described molecules is 2.408 Å.<sup>5c</sup> In our compound **3c** distance between atoms O1 and O4 is 2.394 Å, indicating its unique structure.

We have investigated the reaction of derivatives **3a-d** with primary amines and hydrazine hydrate. Under mild conditions (at room temperature) compounds **4a,b** were obtained. They are ammonium salts of barbituric acid derivatives (Scheme 1). The structure of salts **4a,b** is confirmed by IR and <sup>1</sup>H-NMR spectra. In its IR spectra peaks at a long-wave part between 2527 and 3380 cm<sup>-1</sup> correspond to NH<sub>3</sub><sup>+</sup> group vibrations. The <sup>1</sup>H-NMR spectrum of compound **4a** contains a broad singlet at δ 7.60 ppm, corresponding to the three protons of NH<sub>3</sub><sup>+</sup> group. In the <sup>1</sup>H-NMR spectrum of the product **4b** the similar signal is at 8.05 ppm. We have not determine a geometry of the exo-cyclic double bond attached at the 3-position of the indolin-2-one in products **4a,b**, because of their instability. It seems plausible negative charge distribution between the two oxygen atoms of the pyrimidine ring and the carbonyl group of the indole moiety. Heating of compounds **4a,b** in *n*-BuOH leads to their destruction up to 1,3-dihydroindol-2-ones **5a,b** and 5-aminomethylenebarbiturates **6a,b**. Compounds **6a-d** may be obtained at once from substances **3a-d** by their boiling with amines in *n*-BuOH (Scheme 1). Structure of compounds **6a,b** was proved using the oncoming synthesis – ternary condensation of barbituric acid **2a**, triethylorthoformate and the appropriate amine according to a known method. <sup>6</sup> Melting points and spectroscopic data of 1,3-dihydroindol-2-ones **5a,b** and the deliberately obtained samples <sup>7</sup> are the same.

Reaction of aldehyde **1a** with 5-methyl-2-phenyl-2,4-dihydropyrazol-3-one **7** passes through the same pathway (as in the case of barbituric acids **2a,b**) to give the product **8** (Scheme 2).  $^{1}$ H-NMR spectrum of compound **8** in CDCl<sub>3</sub> contains a signal of strongly unshielded enol proton at  $\delta$  16.10 ppm that confirms the presence of intramolecular hydrogen bond in this solvent. The signals of methyl protons at the indole nitrogen atom and pyrazolone cycle appear at  $\delta$  3.40 and 2.40 ppm, respectively. In contrast to compound **3a**, the product **8** in DMSO- $d_6$  partly retains the intramolecular hydrogen bond; duplication of the signals in  $^{1}$ H-NMR spectrum indicates the presence of non-chelated conformer of this compound. So, in DMSO- $d_6$  NCH<sub>3</sub> group is characterized by singlets at  $\delta$  3.40 and 3.78 ppm, and CCH<sub>3</sub> group of pyrazolone cycle – by singlets at  $\delta$  2.25 and 2.40 ppm.

Reaction of compound 8 with tryptamine 9 proceeds as described above reacting compounds 3a,c with amines and produces decomposition products 5a and 10 (Scheme 2).

Scheme 2

Reaction of the compound **3a** with 5-methyl-2-phenyl-2,4-dihydropyrazol-3-one **7** led to formation of products **8** and **11** (Scheme 3).

Scheme 3

First, as in the case of reaction with amines, Michael addition to the double bond occurs. Elimination of dimethylbarbituric acid fragment 2a from intermediate B gives compound 8 in 10% yield. Alongside with the product 8, a substance 11 was obtained. Presumably, an anion, derived from pyrazolone 7 existing in a reaction mixture, attacks the double bond of the product 8. A subsequent elimination of 1-methyl-1,3-dyhidroindol-2-one 5a leads to the formation of substance 11 with yield of 9.5%. The melting point of the compound 11 is the same as described in the literature. This reaction shows that the anion formed from pyrazolone 7 consistently displaces barbiturate and indolin-2-one fragments from the parent molecule 3a to form the symmetrical thermodynamically stable product 11.

In conclusion, the observed reactions may be used as a method for the synthesis of 1,3-dihydro-2*H*-indol-2-ones (oxindoles) containing heterocyclic moieties. A large number of such compounds exhibit useful pharmaceutical properties,<sup>9</sup> including anticancer,<sup>10</sup> analgesic,<sup>11</sup> anti-inflammatory,<sup>12</sup> and serotonergic.<sup>13</sup> Recently oxindoles have been actively investigated as antiglycation agents – preparations for the prevention of late diabetic complications.<sup>14</sup> As regards the compounds **3a-d**, they are derivatives of barbituric acid. The importance of such compounds for drug design is well known: they can be used as hypnotics, sedatives, anticonvulsants and anesthetics.<sup>15</sup> Recently, much attention is paid to the use of barbituric acid derivatives in coordination and supramolecular chemistries.<sup>16</sup> The metal complexes of barbituric acids possess antitumor activities.<sup>17</sup> When the substances **3a-d** will be used as ligands, they may be employed in this field.

# **EXPERIMENTAL**

IR spectra were taken on Varian 3100 FT-IR, Excalibur Series instrument by means of Attenuated Total Reflectance (ATR) method. NMR spectra were recorded on Varian Unity 300 spectrometer (300 MHz).

**2-Chloro-1-methyl-1***H***-indole-3-carbaldehyde (1a).** To a solution of 2-chloro-1*H*-indole-3-carbaldehyde<sup>18</sup> (12.56 g, 70 mmol) in DMSO (40 mL) was added a solution of sodium hydroxide (3.5 g, 87.5 mmol) in water (3.5 mL). Hereupon the temperature of a mixture rose up to 43 °C. After 10 min the temperature started to fall and the mixture became to darken. Through 30 min after addition of alkali a mixture was cooled up to 10 °C and dimethyl sulfate (8.46 mL, 87.5 mmol) was added dropwise for maintaining temperature not above 20 °C. A mixture was stirred at rt during 1 h, then warmed up to 55-60 °C. To a warm solution cold water (70 mL) was added dropwise. A precipitated product of light-pink color was filtered. Recrystallization from benzene and washing with petroleum ether (bp 40-70 °C) gave compound **1a** (11.52 g, 85%) as colorless crystals; mp 105 °C (lit. 89-91 °C<sup>18</sup>) IR 1645 (C=O), 1590 (C-C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 3.82 (3H, s, NCH<sub>3</sub>), 7.24-7.37 (3H, m, H<sub>Ar</sub>), 8.23-8.35 (1H, m, H-4<sub>Ind</sub>), 10.10 (1H, s, CHO). *Anal*. Calcd for C<sub>10</sub>H<sub>8</sub>ClNO: C, 62.03; H, 4.16; Cl, 18.31; N, 7.23. Found: C, 62.00; H, 4.2; Cl, 18.30; N, 7.25.

**2-Chloro-1-ethyl-1***H***-indole-3-carbaldehyde (1b).** 2-Chloro-1*H*-indole-3-carbaldehyde<sup>18</sup> (15.72 g, 90 mmol) was treated with diethyl sulfate (14.8 mL, 110 mmol) in the described above manner to give **1b**. Recrystallization from *i*-PrOH gave pale beige crystals (14.3 g, 76%); mp 107 °C; IR 1645 (C=O), 1600, 1580 (C-C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.43 (t, J = 7.4 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 4.30 (q, J = 7.4 Hz, 2H, CH<sub>2</sub>CH<sub>3</sub>), 7.25-7.37 (m, 3H, H<sub>Ar</sub>.), 8.30 (m, 1H, H-4<sub>Ind</sub>), 10.15 (s, 1H, CHO). *Anal*. Calcd for C<sub>11</sub>H<sub>10</sub>NClO: C, 63.62; H, 4.85; N, 6.75; Cl, 17.07. Found: C, 63.40; H, 4.80; N, 6.80; Cl, 17.00.

**6-Hydroxy-1,3-dimethyl-5-(1-methyl-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1***H*-**pyrimidine-2,4-dione (3a).** A mixture of 2-chloro-1-methyl-1*H*-indol-3-carbaldehyde (**1a**) (1.94 g, 10 mmol) and 1,3-dimethylbarbituric acid **2a** (1.56 g, 10 mmol) was refluxed in *n*-BuOH (15 mL) for 30 min. The yellow residue began to precipitate from hot solution. Recrystallization from benzene gave **3a** (2.1 g, 68%); mp 243-245 °C; IR 1700, 1633(C=O), 1600 (C-C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 3.40 (s, 3H, CH<sub>3</sub>), 3.50 (s, 3H, CH<sub>3</sub>), 3.56 (s, 3H, CH<sub>3</sub>), 7.08-7.40 (m, 3H, H<sub>Ar</sub>), 7.80 (d, J = 7.0 Hz, 1H, H-4<sub>Ind</sub>), 8.6 (s, 1H, =CH-), 17.63 (s, 1H, OH). <sup>1</sup>H-NMR (DMSO-d<sub>6</sub>) δ: 3.32 (br s, 6H, 2CH<sub>3</sub>), 3.55 (s, 3H, N<sub>Ind</sub>-CH<sub>3</sub>), 7.20 (m, 3H, H<sub>Ar</sub>), 7.60 (d, 1H, H-4<sub>Ind</sub>), 8.40 (s, 1H, =CH-), 17.55 (br s, 1H, OH). MS m/z: 313 (M). *Anal*. Calcd for C<sub>16</sub>H<sub>15</sub>N<sub>3</sub>O<sub>4</sub>: C, 61.34; H, 4.83; N, 13.41. Found: C, 61.30; H, 4.80; N, 13.40.

**6-Hydroxy-5-(1-methyl-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1***H*-pyrimidine-2,4-dione (3b). The compound **1a** (0.29 g, 1.5 mmol) was refluxed in *n*-BuOH (2 mL) with barbituric acid **2b** (0.19 g, 1.5 mmol) in the described above manner to give **3b** (0.374 g, 87%) as a yellow residue, which was recrystallized from DMF. The crystals were refluxed in CCl<sub>4</sub> (15 mL) during 5 h for removal of DMF to give **3b**, mp 320 °C. IR 3200, 3290 (NH); 1700, 1660 (C=O), 1580 (C-C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>) δ: 3.5 (s, 3H, NCH<sub>3</sub>), 7.10-7.28 (m, 3H, H<sub>Ar</sub>), 7.60 (d, J = 7.1 Hz, 1H, H-4<sub>Ind</sub>), 8.28 (s, 1H, =CH-), 11.10 (br s, 1H, NH), 11.60 (br s, 1H, NH), 17.78 (br s, 1H, OH). *Anal*. Calcd for C<sub>14</sub>H<sub>11</sub>N<sub>3</sub>O<sub>4</sub>: C, 58.95; H, 3.89; N, 14.73. Found: C, 58.83; H 3.97; N, 14.85.

6-Hydroxy-1,3-dimethyl-5-(1-ethyl-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1*H*-pyrimidine-2,4-

**dione (3c).** The compound **1b** (0.415 g, 2 mmol) was heated with 1,3-dimethylbarbituric acid **2a** (0.312 g, 2 mmol) in *n*-BuOH (3 mL) in the described above manner (preparation of **3a**) to give compound **3c**. Recrystallization from *i*-PrOH gave yellow crystals (0.584 g, 80%), mp 250 °C; IR 1700, 1640 (C=O), 1600, 1590 (C-C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.40 (t, J = 7.4 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>), 3.45 (s, 3H, NCH<sub>3</sub>), 3.55 (s, 3H, NCH<sub>3</sub>), 4.10 (q, J = 7.4 Hz, 2H, CH<sub>3</sub>CH<sub>2</sub>), 7.10 – 7.35 (m, 3H, H<sub>Ar</sub>), 7.70 (d, J = 7.0 Hz, 1H, H-4<sub>Ind</sub>), 8.60 (s, 1H, =CH-), 17.68 (s, 1H, OH). *Anal.* Calcd for C<sub>17</sub>H<sub>17</sub>N<sub>3</sub>O<sub>4</sub>: C, 62.38; H, 5.23; N, 12.84. Found: C, 62.30; H, 5.30; N, 12.70. Crystal data: FW = 327.34, monoclinic, space group P2(1)/n a = 9.2686(8) Å, b = 6.9221(6) Å, c = 24.256(2) Å,  $\alpha$  = 90°,  $\beta$  = 91.022(2)°,  $\gamma$  = 90°, V= 1556.0(2) Å<sup>3</sup>, Z = 4, D<sub>x</sub> = 1.397 Mg/m<sup>3</sup>. T = 293(2) K, wavelength 0.71073 Å. Absorption coefficient 0.102 mm<sup>-1</sup>, F (000) = 688. Crystal size: 0.40 x 0.05 x 0.05 mm. R (int) = 0.0406. Final R indices [I>2 sigma (I)] R<sub>1</sub> = 0.0481, R<sub>w2</sub> = 0.1232. R indices (all

data)  $R_1 = 0.0742$ ,  $R_{w2} = 0.1372$ . Extinction coefficient - 0.11 (2). Largest diff. peak and hole 0.216 and -0.193 e/ Å<sup>3</sup>. Refinement method - full-matrix least-squares on F<sup>2</sup>. Goodness-of-fit on F<sup>2</sup> 1.014. Deposition number CCDC-1031039 for compound No. **3c**. Free copies of the data can be obtained via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

**6-Hydroxy-5-(1-ethyl-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-1***H*-pyrimidine-2,4-dione (3d). The compound **1b** (0.387 g, 2 mmol) was refluxed with barbituric acid **2b** (0.256 g, 2 mmol) in the described above manner (preparation of **3a**) to give **3d**. Residue was recrystallized from DMF and then refluxed in CCl<sub>4</sub> (15 mL) during 5 h for removal of DMF. Yield 0.42 g (70%), mp 320 °C. IR 3280, 3200, 3050 (NH, OH), 1700, 1660 (C=O), 1590, 1610, 1600 (C – C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (DMSO- $d_6$ )  $\delta$ : 1.35 (t, J = 7.4 Hz, 3H, C $\underline{\text{H}}_3$ CH<sub>2</sub>), 4.05 (q, J = 7.4 Hz, 2H, CH<sub>3</sub>C $\underline{\text{H}}_2$ ), 7.10–7.30 (m, 3H, H<sub>Ar</sub>), 7.60 (d, J = 7.2 Hz, 1H, H-4<sub>Ind</sub>), 8.30 (s, 1H, =CH-), 11.10 (s, 1H, NH), 11.60 (s, 1H, NH), 17.78 (br s, 1H, OH). *Anal*. Calcd for C<sub>15</sub>H<sub>13</sub>N<sub>3</sub>O<sub>4</sub>: C, 60.20; H, 4.38; N, 14.04. Found: C, 60.10; H, 4.40; N, 14.10.

**1,3-Dimethyl-5-(1-methyl-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,6-dioxohexahydropyrimi- din-4-ol 1-propylammonium salt (4a).** To a solution of compound **3a** (0.94 g, 3 mmol) in CHCl<sub>3</sub> (10 mL) was added 1-propylamine (0.3 mL, 3.6 mmol) and reaction mixture was left over night at rt. Yellow crystals of **4a** were collected by filtration. Yield - 0.96 g (89%), mp 245-248 °C. IR 3100, 2527 (NH<sub>3</sub><sup>+</sup>), 1670, 1660, 1650 (C=O), 1550 (C-C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (DMSO- $d_6$ )  $\delta$ : 0.90 (t, J = 7.3 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+</sup>), 1.55 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+</sup>), 2.70 (t, J = 7.5 Hz, 2H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+</sup>), 3.20 (s, 6H, 2NCH<sub>3</sub>), 3.22 (s, 3H, N<sub>Ind</sub>CH<sub>3</sub>), 6.70-7.00 (m, 4H, H<sub>Ind</sub>), 7.60 (br s, 3H, NH<sub>3</sub><sup>+</sup>), 7.80 (s, 1H, =CH-). *Anal.* Calcd for C<sub>19</sub>H<sub>24</sub>N<sub>4</sub>O<sub>4</sub>: C, 61.28; H, 6.50; N, 15.04. Found: C, 61.37; H, 6.62; N, 15.72.

**1,3-Dimethyl-5-(1-methyl-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-2,6-dioxohexahydropyrimi- din-4-ol benzylammonium salt (4b).** The compound **3a** (0.31 g, 1 mmol) was reacted with benzylamine (0.11 mL, 1 mmol) in the described above manner to give **4b.** Yield - 0.348 g (87%), mp 243-245 °C. IR 3380, 3170, 2648 (NH<sub>3</sub><sup>+</sup>), 1660, 1610 (C=O), 1600, 1580 (C-C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>) δ: 3.20 (s, 6H, 2NCH<sub>3</sub>), 3.23 (s, 3H, N<sub>Ind</sub>CH<sub>3</sub>), 3.96 (s, 2H, C<u>H</u><sub>2</sub>Ph), 6.70-7.00 (m, 4H, H<sub>Ind</sub>), 7.30-7.45 (m, 5H, H<sub>Ar</sub>), 7.80 (s, 1H, =CH-), 8.05 (br s, 3H, -NH<sub>3</sub><sup>+</sup>). *Anal.* Calcd for C<sub>23</sub>H<sub>24</sub>N<sub>4</sub>O<sub>4</sub>: C, 65.70; H, 5.75; N, 13.33. Found: C, 65.62; H, 5.81; N, 13.43.

**1-Methyl-1,3-dihydroindol-2-one (5a), 1,3-dimethyl-5-propylaminomethylenepyrimidine-2,4,6-trione (6a)** *(Method A)*. The mixture of compound **3a** (0.31 g, 1 mmol) and 1-propylamine (0.1 mL, 1.2 mmol) in *n*-BuOH (3 mL) was refluxed for 1 h. White powder was filtered and recrystallized from *i*-PrOH to give **6a**. Yield - 0.12 g (53%), mp 145 °C. IR 3170 (NH), 1630, 1650, 1670 (C=O) cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 1.00 (t, J = 7.3 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.70 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>), 3.33 (s, 6H, 2NCH<sub>3</sub>), 3.42 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>), 8.20 (d, J = 10.3 Hz, 1H, =CH-), 10.31 (br s, 1H, NH). MS m/z: 225 (M<sup>+</sup>). *Anal.* Calcd

for  $C_{10}H_{15}N_3O_3$ : C, 53.32; H, 6.71; N, 18.66. Found: C, 53.20; H, 6.7; N, 18.70. Mother liquor was evaporated *in vacuo* up to dryness. The residue was purified by column chromatography on  $Al_2O_3$  (eluent – CHCl<sub>3</sub>, column - d=2 cm, l=20 cm,  $R_f$  = 0.79). The first fraction was collected and the solvent evaporated. The residue of **5a** was recrystallized from *i*-PrOH to give colorless needles (0.062 g, 46%); mp 86 °C (lit. mp 86 °C).

- **1,3-Dimethyl-5-propylaminomethylenepyrimidine-2,4,6-trione (6a)** *(Method B)* The mixture of 1-propylamine (0.17 mL, 2 mmol), 1,3-dimethylbarbituric acid **2a** (0.312 g, 2 mmol) and triethyl orthoformate (0.4 mL, 2.5 mmol) was refluxed for 15 min in EtOH (2.5 mL). Filtered residue of **6a** was recrystallized from EtOH, to give **6a** as colorless crystals 0.315 g (70%), mp 145 °C; Spectral data for compound **6a**, obtained by both methods are the same.
- **1-Ethyl-1,3-dihydroindol-2-one** (**5b)**, **5-hydrazinomethylene-1,3-dimethylpyrimidine-2,4,6-trione** (**6c)**. The mixture of compound **3c** (0.655 g, 2 mmol) and hydrazine hydrate (0.1 mL, 2 mmol) in CHCl<sub>3</sub> (10 mL) was left for 24 h at rt. Precipitated residue of crude product **6c** was filtered and purified by column chromatography on Al<sub>2</sub>O<sub>3</sub> [eluent CHCl<sub>3</sub> /MeOH (8 : 2), column d=2 cm, l=20 cm, R<sub>f</sub> = 0.65]. The first colorless fraction was collected and the solvent was evaporated. Recrystallization from EtOH gave compound **6c** ( 0.05 g, 13%), mp 135 °C. *Anal*. Calcd for C<sub>7</sub>H<sub>10</sub>N<sub>4</sub>O<sub>3</sub>: C, 42.42; H, 5.09; N, 28.27. Found: C, 42.30; H, 5.10; N, 28.40. IR 3310, 3250 (NH<sub>2</sub>), 3200 (NH), 1680, 1650, 1610 (C=O) cm<sup>-1</sup>; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>) δ: 2.90 (s, 6H, 2NCH<sub>3</sub>), 5.50 (s, 2H, NH<sub>2</sub>), 8.10 (s, 1H, -CH=), 11.15 (br d, *J* = 10.2 Hz, 1H, NH). MS m/z: 198 (M). Filtrate was evaporated *in vacuo* and residue was recrystallized from benzene/petroleum ether (bp 40-70 °C) (5:1) to give colorless needles of compound **5b** (0.05g, 17%); mp 96 °C (lit. mp 96 °C).<sup>7</sup>
- **5-(Benzylaminomethylene)-1,3-dimethylpyrimidine-2,4,6-trione (6b)** *Method A*: The mixture of compound **3a** (0.31 g, 1 mmol) and benzylamine (0.11 mL, 1 mmol) was refluxed in *n*-BuOH in the manner used for preparation of compound **6a** (*Method A*) to give **6b**. Yield 0.238 g (87%).
- *Method B:* The mixture of benzylamine (0.22 mL, 2mmol), 1,3-dimethylpyrimidine-2,4,6-trione (0.312 g, 2 mmol) and triethyl orthoformate (0.4 mL, 2.5 mmol) was refluxed in EtOH in the manner used for preparation of compound **6a** (*Method B*) to give **6b**. Yield 0.437 g (80%), mp 160 °C. IR 3170 (NH), 1600, 1590 (C-C<sub>Ar</sub>), 1650, 1680 (C=O) cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 3.28 (s, 3H, NCH<sub>3</sub>), 3.32 (s, 3H, NCH<sub>3</sub>), 4.63 (d, J = 11.3 Hz, 2H, CH<sub>2</sub>Ph), 7.20-7.45 (m, 5H, H<sub>Ar</sub>), 8.30 (1H, d, J = 10.2 Hz, =CH-), 10.54 (br s, 1H, NH). *Anal.* Calcd for C<sub>14</sub>H<sub>15</sub>N<sub>3</sub>O<sub>3</sub>: C 61.53; H 5.53; N 15.38. Found: C, 61.59; H, 5.40; N, 15.40.
- **5-Propylaminomethylenepyrimidine-2,4,6-trione (6d)**. The mixture of compound **3b** (0.29 g, 1 mmol) and 1-propylamine (0.12 mL, 1.5 mmol) was refluxed in *n*-BuOH in the manner used for preparation of **6a** (*Method A*). Filtered residue was recrystallized from DMF to give **6d**. Yield 0.084 g (43%), mp 260 °C. IR 3300, 3260, 3060, 3000 (NH<sub>3</sub><sup>+</sup>), 1700, 1640, 1610 (C=O), 1590 (C-C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>) δ: 0.90

(t, J = 7.3 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.64 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>), 3.45 (m, 2H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>), 8.10 (d, 1H, J = 10.1 Hz, -CH=), 10.15 (m, 1H, NHCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 10.32 (d, 1H, NH), 10.45 (s, 1H, NH). *Anal.* Calcd for C<sub>8</sub>H<sub>11</sub>N<sub>3</sub>O<sub>3</sub>: C, 48.73; H, 5.62; N, 21.31. Found: C, 48.65; H, 5.56; N, 21.44.

**3-(5-Hydroxy-3-methyl-1-phenyl-***IH***-pyrazol-4-ylmethylene-1-methyl-1,3-dihydroindol-2-one (8).** The mixture of compound **1a** (1.93g, 10 mmol) and 5-methyl-2-phenyl-2*H*-pyrazol-3-one **7** (1.74 g, 10 mmol) was refluxed in *n*-BuOH (15 mL) for 2 h and then cooled. Yellow crystals were collected by filtration and recrystallized from benzene, washing by petroleum ether (bp 40-70 °C) to give compound **8** (1 g, 30%), mp 150-152 °C. IR 1640 (C=O), 1605, 1550 (C-C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 2.40 (s, 3H, C-CH<sub>3</sub>), 3.40 (s, 3H, N-CH<sub>3</sub>), 6.90-7.95 (m, 10H, H<sub>Ar</sub>), 16.10 (s, 1H, OH). <sup>1</sup>H-NMR (DMSO- $d_6$ )  $\delta$ : 2.15 and 2.40 (s + s, together 3H, C-CH<sub>3</sub>), 3.40 and 3.75 (s + s, together 3H, N-CH<sub>3</sub>), 7.00-7.90 (m, 10H, H<sub>Ar</sub>), 16.20 (s, 1H, OH). MS m/z: 331 (M). *Anal*. Calcd for C<sub>20</sub>H<sub>17</sub>N<sub>3</sub>O<sub>2</sub>: C, 72.49; H, 5.17; N, 12.68. Found: C, 72.58; H, 5.18; N, 12.59.

4-{[2-(1*H*-Indol-3-yl)ethylamino]-methylene}-5-methyl-2-phenyl-2,4-dihydropyrazol-3-one (10).

The mixture of compound **8** (0.33 g, 1 mmol) and tryptamine **9** (0.16 g, 1 mmol) was refluxed in *n*-BuOH (3 mL) for 3 h. Formed residue was filtered. Recrystallization from *n*-BuOH with charcoal gave **10** as colorless crystals. Yield - 0.146 g (42%), mp 198 °C. IR 3373 (NH), 1633(C=O), 1584, 1567 (C-C<sub>Ar</sub>) cm<sup>-1</sup>; <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 2.05 (s, 3H, CH<sub>3</sub>), 3.15 (t, J = 7.4 Hz, 2H, NHCH<sub>2</sub>CH<sub>2Ind</sub>), 3.70 (m, 2H, NHCH<sub>2</sub>CH<sub>2</sub>Ind), 7.02-7.28 (m, 5H, H<sub>Ar</sub>), 7.32-7.43 (m, 4H, H<sub>Ar</sub>), 7.60 (d, 1H, H-4<sub>Ind</sub>), 7.96 (d, J = 10.1 Hz, 1H, -CH=), 7.98 (d, J = 9.0 Hz, 1H, H-4<sub>Ind</sub>), 8.15 (s, 1H, NH<sub>Ind</sub>), 9.90 (br s, 1H, NH). *Anal*. Calcd for C<sub>21</sub>H<sub>20</sub>N<sub>4</sub>O: C, 73.23; H, 5.85; N, 16.27. Found: C, 73.36; H, 5.77; N, 16.35.

5-Methyl-4-[(5-methyl-3-oxo-2-phenyl-2,4-dihydro-3H-pyrazol-4-yl)methylene]-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (11), 3-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-ylmethylene-1-methyl-1,3-dihydroindol-2-one (8). The mixture of compound 3a (0.31 g, 1 mmol) and 5-methyl-2-phenyl-2H-pyrazol-3-one 7 (0.17 g, 1 mmol) was refluxed in chlorobenzene (3 mL) for 4 h and left overnight. Yellow residue was filtered off and divided by column chromatography on Al<sub>2</sub>O<sub>3</sub> (eluent – CHCl<sub>3</sub>, column – d=2 cm, l=70 cm) First fraction ( $R_f = 0.73$ ) was separated and the solvent was removed *in vacuo*. Residue was recrystallized from benzene/petroleum ether (bp 40-70 °C) (1/2) to give compound 11 (0.034 g, 9.5%), mp 178-180 °C (lit. mp 178-180 °C). H-NMR (CDCl<sub>3</sub>)  $\delta$ : 2.29-2.45 (s, 6H, 2CH<sub>3</sub>), 7.20-8.00 (m, 11H, 10H<sub>Ar</sub>, -CH=), 17.95 (s, 1H, OH). MS m/z: 358 (M). The second yellow fraction ( $R_f = 0.23$ ) was collected and the solvent was evaporated. The residue was recrystallized from benzene to give compound 8. Yield -0.032 g (10%); mp 150-152 °C; spectral data are the same as in the described above protocol.

## **ACKNOWLEDGEMENTS**

Research was carried out according the state task of the Ministry of Education and Science of the Russian Federation  $N_{\odot}$  4.129.2014/K.

#### **REFERENCES**

- 1. D. M. Ketcha, *Tetrahedron Lett.*, 1988, **29**, 2151.
- 2. (a) A. Andreani, M. Granaiola, A. Leoni, A. Locatelli, R. Morigi, M. Rambaldi, and V. Garaliene, *J. Med. Chem.*, 2002, **45**, 2666; (b) A. Adreani, A. Locatelli, M. Rambaldi, A. Leoni, R. Bossa, A. Fraccari, and I. Galatulas, *Anticancer Res.*, 1996, **16**, 3585.
- 3. L. Sobczyk, S. J. Grabowski, and T. M. Krygowski, *Chem. Rev.*, 2005, **105**, 3513.
- 4. http://www.ccdc.cam.ac.uk./
- (a) C. Pettinari, F. Marchetti, R. Pettinary, D. Martini, A. Drozdov, and S. Troyanov, *J. Chem. Soc., Dalton Trans.*, 2001, 1790; (b) G. Jeffrey and Y. Yeon, *Carbohydr. Res.*, 1988, 174, 1; (c) Y. A. Azev, H. Neunhoeffer, S. Foro, H. L. Linder, and S. V. Shorshnev, *Mendeleev Commun.*, 1995, 29; (d) D. Bevk, R. Jakse, J. Svete, A. Golobic, L. Golic, and B. Stanovnik, *Heterocycles*, 2003, 61, 197; (e) U. Druck and W. Littke, *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.*, 1980, 36, 3002; (f) M. Helliwell, D. Gomez de Anderez, J. Habash, J. R. Helliwell, and J. Vernon, *Acta Crystallogr., Sect. B: Struct. Sci.*, 1989, 45, 591; (g) W. Sucrow, K. Auffenberg-Weddige, K.-P. Grosz, G. Bredthauer, and J. Pickardt, *Chem. Ber.*, 1983, 116, 1525.
- 6. G. Clark-Lewis and M. Thompson, *J. Chem. Soc.*, 1954, 2401.
- 7. (a) A. Michaelis, *Ber.*, 1897, **30**, 2809; (b) H. G. Colman, *Ann.*, 1888, **248**, 114.
- 8. S. Hünig, Ann., 1851, **574**, 99.
- 9. S. R. S. Rudrangi, V. K. Bontha, V. R. Manda, and S. Bethi, Asian J. Res. Chem., 2011, 4, 335.
- (a) B. Yu, D-Q. Yu, and H-M. Liu. *Eur. J. Med. Chem.*, 2014, in press, http://dx.doi.org/10.1016/j. ejmech.2014.06.056; (b) G. Nesi, S. Sestito, V. Mey, S. Ricciardi, M. Falasca, R. Danesi, A. Lapucci, M. C. Breschi, S. Fogli, and S. Rapposelli, *ACS Med. Chem. Lett.*, 2013, 4, 1137; (c) B. V. Silva, N. M. Ribeiro, A. C. Pinto, M. D. Vargas, and L. C. Dias, *J. Braz. Chem. Soc.*, 2008, 19, 1244.
- M. Alcaraz, S. Atkinson, P. Cornwall, A. C. Foster, D. M. Gill, L. A. Humphries, P. S. Keegan, R. Kemp, E. Merifield, R. A. Nixon, A. J. Noble, D. O'Beirne, Z. M. Patel, J. Perkins, P. Rowa, P. Sadler, J. T. Singleton, J. Tornos, A. J. Watts and I. A. Woodland, *Org. Process Res. Dev.*, 2005, 9, 555.
- 12. C. Kikuchi, T. Hiranuma, and M. Koyama, *Bioorg. Med. Chem. Lett.*, 2002, 12, 2549.
- 13. R. Gallagher, Jr., G. L. Patricia, W. W. James, J. P. Hieble, and R. M. De-Marinis, *J. Med. Chem.*, 1985, **28**, 1533.
- 14. (a) M. Khan, M. Yousaf, A. Wadood, M. Junaid, M. Ashraf, U. Alam, M. Ali, M. Arshad, Z. Hussain,

- and K. M., Khan, *Bioorg. Med. Chem.*, 2014, **22** 3441; (b) K. M. Khan, M. Khana, N. Ambreena, M. Tahaa, F. Rahima, S. Rasheeda, S. Saiedc, H. Shafic, S. Perveend, and M. I. Choudharya, *Med. Chem.*, 2013, **9**, 681.
- 15. F. López-Muñoz, R. Ucha-Udabe, and C. Alamo, Neuropsychiatr. Dis. Treat., 2005, 1(4), 329.
- 16. K. T. Mahmudov, M. N. Kopylovich, A. M. Maharramov, M. M. Kurbanova, A. V. Gurbanov, and A. J. L. Pombeiro, *Coord. Chem. Rev.*, 2014, **265**, 1.
- (a) V. I. Balas, I. I. Verginadis, G. D. Geromichalos, N. Kourkoumelis, L. Male, M. B. Hursthouse, K. H. Repana, E. Yiannaki, K. Charalabopoulos, T. Bakas, and S. K. Hadjikakou, *Eur. J. Med. Chem.*, 2011, 46, 2835; (b) A. Castineiras, N. Fernandez-Hermida, I. Garcia-Santos, and L. Gomez-Rodriguez, *Dalton Trans.*, 2012, 41, 13486; (c) N. Dixit, R. K. Koiri, B. K. Maurya, S. K. Trigun, C. Hobartner, and L. Mishra, *J. Inorg. Biochem.*, 2011, 105, 256.
- H. D. H. Showalter, A. D. Sercel, D. M. Leja, C. D. Wolfangel, L. A. Ambroso, W. L. Elliot, D. W. Fry, A. J. Kraker, C. T. Howard, G. H. Lu, Ch. W. Moore, J. M. Nelson, B. J. Roberts, P. W. Vinsent, W. A. Denny, and A. M. Thompson, *J. Med. Chem.*, 1997, 40, 413.