Synthesis of 3-Substituted Benzpyrid-4-imino-2-oxime Derivatives

H. A. Soleiman, A. I. M. Koraiem and N. Y. Mahmoud* Chemistry Department, Aswan Faculty of Science, South Valley University, Aswan, Egypt

Pyrazolone, Isoxazolone, Pyrimidinone, Pyrimidinothione, thiazolidinone and β -lactam incorporating 2-oximino benzpyrid-4-one derivatives have been synthesized by cyclocondensation addition reaction and cycloaddition of hydrazine hydrate, phenyl hydrazine, hydroxylamine, urea, thiourea, mercapto acetic acid, and chloroacetylchloride, respectively.

Keywords: Substituted heterocyclic compounds; Synthesis.

INTRODUCTION

New molecules fused and isolated heterocyclic compounds are biologically interesting and their chemistry has received considerable interest,¹⁻⁷ as has their use synthetic drugs.⁸⁻¹² This is principally due to the unique physical and chemical properties of such compounds, which enable their wide application as plant growth regulators.¹³ The compounds described in this work are composed of four-, five-, and six-membered heterocyclic systems containing nitrogen, oxgyen, and sulfur atoms. However various styryl and Schiff base compounds incorporating the benzpyrid-4-imino-2oxime residue have been synthesized and studied by us. Therefore, several fused and isolated pyrazolo-, pyrimidino-, oxazolo-, thiazolo-, and β -lactam and their derivatives have been synthesized.

RESULT AND DISCUSSION

In a recent paper, we reported that the synthesis of 3acetyl benzpyrid-4-imino-2-oxime was obtained by acetylation of an active methylene group in the compound benzpyrid-4-one-2-oxime¹⁴ when heated with acetamide in an oil bath at 200-220.¹⁵ The formation of compound (1) was suggested to proceed as a reaction related to the mixed Claisen condensation using nonenolizable acetamide as basic cyclating agents to generate heterocyclic ketone enolate ions (A). Nucleophilic addition reaction of ethanolic solution of the latter enolate formed ions to the carbonyl group of acid amide (acyl transfer) forming the suggested intermediate compound (B), which undergo through thermal basic condition dissociates by expelling an amino group which attracted proton ion from BH⁺ to afford the corresponding suggested nucleophilic addition product(c), followingly dehydration process to give 3-acetyl benzpyrid-4-imino-2-oxime (equation 1).

The methyl group in compound (1) condensed with different aromatic aldehydes in ethanol under piperidine as catalysit to yield the corresponding N-chalcone benzpyrid-4-imino-2-oxime derivatives (2_{a-e}) (Scheme I). The chalcone derivatives (2_{a-e}) when interacted with hydrazine hydrate in the presence of acetic acid in ethanol as solvent and/or phenylhdyrazine in ethanol as solvent under piperidine as catalyst, respectively, gave the required N-acetylpyrazolo-, and/or Nphenylpyrazolo-, (3_{a-e}), (4_{a-e}), respectively (Scheme I). When the chalcone derivatives interacted with hydroxylamine hydrochloride in ethanol as solvent, with sodium hydroxide as catalyst, they gave the required N-isooxazolino benzpyrid-4-imino derivatives (5_{a-e}) (Scheme I). The chalcone derivatives (2_{a-e}) when interacted with urea and/or thiourea in ethanol as solvent, with sodium hydroxide as catalyst, gave the

required N-pyrimidino benzpyrid-4-imino derivatives (6_{a-e}) and/or N-pyrimidinothiono benzpyrid-4-imino derivatives

N-acetylbenzpyrid-4-imino-2-oxime (1) was condensed with nitroso compounds such as p-nitrosophenol, $\beta(\alpha)$ -nitroso- α -(β)-naphthol, in the presence of piperidine as catalyst to give the corresponding Schiff base derivatives (8_{a-c}) (Scheme II). Cycloaddition reaction of thioglycolic acid to the previously prepared Schiff base compounds (8_{a-c}) proceeded successfully. Thus, thioglycolic acid when added to

Scheme II

 (7_{a-e}) (Scheme I).

Where (8,9,10) _{a-c}, a, Y=p.OH, A=H; b Y=α-OH, A=C₆H₄; c=β-OH, A=C₆H₄

Schiff base in ethanol in the presence of piperidine as catalyst afforded thiazolidinone derivatives (9_{a-c}) (Scheme II). The reaction of (8_{a-c}) with equimolar ratios of chloroacetylchloride in ethanol in the presence of triethylamine as catalyst afforded β -lactam derivatives (10_{a-c}) (Scheme II).

EXPERIMENTAL

All melting points were uncorrected. IR spectra were recorded on a Pye Unicam SP 1100 spectrophotometer using KBr disc. ¹H-NMR spectra were recorded on a Varian EM-390 MH_Z Spectrophotometer using DMSO d₆ as a solvent and TMS as an internal standard. Chemical shifts are expressed as ppm, units. Mass spectra were recorded on an HP Ms 6988 spectrometer. Analytical data were determined with a CE 440 Elemental Analyzer-Automatic Injector at Cairo University.

Synthesis of 3-acetyl benzpyrid-4-imino-2-oxime (1)

A mixture of benzpyrid-4-one-2-oxime and acetamide were heated in an oil bath at (200-220) for 2 hours and kept over night in a refrigerator.¹⁵ The semi-solid mass was extracted with benzene and purified from ethanol to give 3-acetyl benzpyrid-4-imino-2-oxime (c.f. Table 2).

Synthesis of N-Chalcone benzpyrid-4-imino-2-oxime derivatives (2_{a-e})

To a solution of **1** (2.17 g, 0.01 mol) and aromatic aldehydes (1.06 g-1.51 g, 0.01 mol) in absolute ethyl alc, two drops of piperidine were added. The reaction mixture was refluxed for 6-8 hrs then left to cool and poured on cold water. The solid product so formed was collected by filtration and crystallized from ethanol to give (2_{a-e}) (c.f. Tables 1, 2).

Synthesis of N-acetyl pyrazolino-benzpyrid derivatives $(\mathbf{3}_{a-e})$

To a solution of chalcones (2_{a-e}) (3.05 g - 3.51 g, 0.01 mol) in ethanol as solvent, hydrazine hydrate (0.01 mol) was added followed by glacial acetic acid (10 mL), and the reaction mixture was refluxed for (8-10) hrs. The reaction mixture was concentrated and coold. These materials were triturated with water, precipitates were separated, filtrated, washed several times with water and crystallized from ethanol to give (3_{a-e}) (c.f. Tables 1, 2).

Synthesis of N-phenylpyrazolino-benzpyrid derivatives (4_{a-e})

To a solution of chalcones (2_{a-e}) (3.05 g - 3.51 g, 0.01

Scheme I

Comp.	Colour	m.p. °C	Yield %	Mol. Formula	Analys			
No.					С	Н	Ν	- MS (<i>m</i> / <i>z</i>)
1	Pale yellow	165-167	65	$C_{11}H_{11}N_3O_2$	60.82 (60.75)	5.06	19.35	217
2a	Yellow	200-202	74	$C_{18}H_{15}N_3O_2$	70.81	4.91	13.77	305
2b	Brown	169-171	68	C19H15N2O2	(7.57) 67.28	(4.81) 4.67	(13.80) 13.08	321
				- 1815- 55 - 5	(67.06)	(4.37)	(13.07)	
2c	Yellow	178-180	73	$C_{18}H_{14}N_3O_2Cl$	63.62	4.12	12.37	339.5
24	Creanish vallary	100 201	75		(63.50)	(4.10)	(12.33)	225
20	Greenish yellow	199-201	75	$C_{18}\Pi_{17}\Pi_{3}O_{3}$	(64.47)	(5.07)	(12.55)	555
2e	Brown	187-189	65	$C_{18}H_{14}N_4O_4$	61.71	4.00	16.00	350
				10 11 1 1	(61.51)	(4.04)	(16.05)	
3a	Pale brown	186-188	63	$C_{20}H_{19}N_5O_2$	66.48	5.26	19.39	361
21	D	170 100	22	CUNO	(66.27)	(5.26)	(19.38)	270
30	Brown	1/8-180	33	$C_{20}H_{20}N_5O_3$	(63.30)	(5.01)	(19.38	5/8
3c	Pale vellow	168-170	31	C ₂₀ H ₁₈ N ₅ O ₂ Cl	60.75	4.55	18.51	395.5
				- 20 18 5 - 2 -	(60.54)	(4.57)	(18.53)	
3d	Brown	162-164	45	$C_{21}H_{21}N_5O_3$	64.45	5.37	17.69	391
			10	a a	(64.25)	(5.36)	(17.68)	10.4
3e	Dark brown	165-167	48	$C_{20}H_{18}N_6O_4$	59.11	4.43	21.48	406
4a	Dark vellow	188-190	62	CarHarN-O	(38.93) 72.91	(4.43)	(21.44)	395
τa	Dark yellow	100-170	02	02411211150	(72.75)	(5.31)	(17.71)	575
4b	Pale brown	189-191	71	$C_{24}H_{21}N_5O_2$	70.07	5.10	17.03	411
					(69.92)	(5.14)	(17.05)	
4c	Brown	186-188	65	$C_{24}H_{20}N_5OCl$	67.05	4.66	16.29	429.5
4d	Dala brown	140 151	68	СНИО	(66.96)	(4.65)	(16.27)	125
40	I ale blown	147-131	08	$C_{25}\Pi_{23}\Pi_{5}O_{2}$	(70.38)	(5.25)	(16.45)	423
4e	Orange	185-187	43	$C_{24}H_{20}N_6O_3$	65.45	4.55	19.09	440
	C				(65.33)	(4.55)	(19.06)	
5a	Brown	182-184	58	$C_{18}H_{16}N_4O_2$	67.50	5.00	17.50	320
5h	Droum	240 242	20	СНИО	(67.27)	(5.10)	(17.54)	226
50	DIOWII	240-242	20	$C_{18}\Pi_{16}\Pi_4 O_3$	(64.08)	(4.75)	(16.00)	550
5c	Yellow	164-166	68	$C_{18}H_{15}N_4O_2Cl$	60.93	4.23	15.79	354.5
				10 10 1 2	(60.55)	(4.20)	(15.75)	
5d	Pale brown	158-160	65	$C_{19}H_{18}N_4O_3$	65.14	5.14	16.00	350
5.	D	100 100	25	CUNO	(65.10)	(5.14)	(16.04)	240
Se	Brown	180-182	25	$C_{18}H_{15}N_5O_3$	(61.89)	4.29	(20.05)	349
6a	Pale brown	236-238	65	$C_{10}H_{17}N_5O_2$	65.70	4.89	20.17	347
				-19175-2	(65.76)	(4.89)	(20.15)	• • •
6b	Yellowish green	251-253	42	$C_{19}H_{17}N_5O_3$	62.82	4.68	19.28	363
	2			a a ai	(62.76)	(4.68)	(19.25)	2 04 7
6c	Orange	191-193	51	$C_{19}H_{16}N_5O_2Cl$	59.76	4.19	18.34	381.5
6d	Pale vellow	246-248	46	CaoHaoN-Oa	(39.71)	(4.19) 5 31	(18.52)	377
Ju	I are yenow	270-240	υ	C20112011502	(63.61)	(5.31)	(18.51)	511
6e	Pale brown	234-236	65	$C_{19}H_{16}N_6O_4$	58.20	4.08	21.42	392
				· -	(58.27)	(4.08)	(21.41)	
7a	Yellow	245-247	53	$C_{19}H_{17}N_5OS$	62.82	4.68	19.28	363
							/1/2 2 2 2	
7h	Dark brown	107 100	32	C.H.NOS	(62.76) 60.18	(4.69)	(19.33)	370

Table 1. Characterization of compounds (1-10)

122 J. Chin. Chem. Soc., Vol. 52, No. 1, 2005

7c	Pale yellow	204-206	42	C ₁₉ H ₁₆ N ₅ OSCl	57.35	4.02	17.61	397.5
					(57.30)	(4.02)	(17.63)	
7d	Pale yellow	210-212	48	$C_{20}H_{19}N_5O_2S$	61.06	4.83	17.81	393
					(61.17)	(4.80)	(17.80)	
7e	Brown	200-202	61	$C_{19}H_{16}N_6O_3S$	55.88	3.92	20.58	408
					(55.82)	(3.92)	(20.53)	
8a	Black	195-197	73	$C_{17}H_{14}N_4O_3$	63.34	4.34	17.39	322
					(63.22)	(4.32)	(17.38)	
8b	Dark violet	131-133	75	$C_{21}H_{18}N_4O_3$	67.74	4.83	15.06	372
					(67.59)	(4.83)	(15.02)	
8c	Violet	158-160	68	$C_{21}H_{18}N_4O_3$	67.74	4.83	15.06	372
					(67.65)	(4.83)	(15.02)	
9a	Greenish black	205-207	54	$C_{19}H_{16}N_4O_4S$	57.61	4.04	14.14	396
					(57.53)	(4.03)	(14.13)	
9b	Reddish violet	138-140	48	$C_{23}H_{20}N_4O_4S$	61.92	4.48	12.55	446
					(61.78)	(4.48)	(12.51)	
9c	Pale violet	162-164	75	$C_{23}H_{20}N_4O_4S$	61.92	4.48	12.55	446
					(61.72)	(4.48)	(12.52)	
10a	Black	> 300	43	$C_{19}H_{15}N_4O_4Cl$	57.88	3.76	14.05	398.5
					(57.72)	(3.76)	(14.04)	
10b	Reddish violet	150-152	56	$C_{23}H_{19}N_4O_4Cl$	61.58	4.23	12.48	448.5
					(61.45)	(4.23)	(12.32)	
10c	Dark violet	145-147	58	$C_{23}H_{19}N_4O_4Cl$	61.58	4.23	12.48	448.5
					(61.51)	(4.23)	(12.44)	

mol) in ethanol as solvent phenylhydrazine (0.01 mol) was added in the presence of a few drops of piperidine as catalyst, and the reaction mixture was refluxed for (8-10) hrs. The reaction mixture was concentrated, triturated with cold water; the crystals were separated. It was filtrated, washed several times with water, and crystallized from ethanol to give (4_{a-e}) (c.f. Tables 1, 2).

Synthesis of N-isooxazolino-benzpyrid derivatives (5_{a-e})

Chalcones (2_{a-e}) (3.05 g - 3.51 g, 0.01 mol) were refluxed with hydroxylamine hydrochloride (0.069 g, 0.01 mol) in the presence of sodium hydroxide as catalyst and ethanol as solvent for (2-3) hrs. The reaction mixture was filtrated from unreacted materials; the filtrate was triturated with cold water whereby the products were separated, filtrated, washed several times with water, and crystallized from ethanol give (5_{a-e}) (c.f. Tables 1, 2).

Synthesis of N-pyrimidino benzpyrid derivatives (6a-e)

Chalcones (2_{a-e}) (3.05 g - 3.51 g, 0.01 mol) were refluxed with urea (0.6 g, 0.01 mol) in the presence of sodium hydroxide as catalyst and ethanol as solvent for (6-8) hrs. The reaction mixture was filtrated from unreacted materials; the filtrate was concentrated to one - third of its volume and triturated with water, whereby the products were separated, filtrated, washed several times with water, and crystallized from ethanol to give (6_{a-e}) (c.f. Tables 1, 2).

Synthesis of N-thiopyrimidino benzpyrid derivatives (7_{a-e})

Chalcones (2_{a-e}) (3.05 g - 3.51 g, 0.01 mol) were refluxed with thiourea (0.76 g, 0.01 mol) in the presence of sodium hydroxide as catalyst and ethanol as solvent for (6-8) hrs. The reaction mixture was filtrated from unreacted materials; the filtrate was concentrated to one - third of its volume triturated with water. Where by the products were separated, filtrated, washed several times with water and crystallized from ethanol to give (7_{a-e}) (c.f. Tables 1, 2).

Synthesis of N-azaryl benzpyrid-4-imino-2-oxime derivatives (8_{a-c})

Compound 1 (2.17 g, 0.01 mol) and nitroso compounds (1.23 g - 1.73 g, 0.01 mol) in equimolar ratios were dissolved in ethanol, and a few drops of piperidine as catalyst were added; the mixture was refluxed about 10 h. The reaction mixture was allowed to cool at room temperature then filtrated, washed several times with water, dried and collected, and crystallized from methanol to give (8_{a-c}) (c.f. Tables 1, 2).

Synthesis of N-thiazol benzpyrid-4-imino-2-oxime derivatives (9_{a-c})

A solution was made of (8_{a-c}) (3.22 g - 3.72 g, 0.01 mol) and thioglycolic acid (0.92 g, 0.01 mol) in ethanol in the presence of few drops of piperidine. The mixture was refluxed for 8-10 hrs. The filtrate was evaporated to one - third of its vol-

Comp. No.	IR (cm) ⁻¹	¹ H-NMR (δ-ppm)
1	3654 (OH), 3093 (NH), 1699 (C=O), 1656 (C=NOH)	2.1 (S, 1H, CH sat; 3H, COCH ₃), 7.1-8.5 (m, 5H, aromatic protons; C=NH), 11 (S, 1H, NH; 1H, N=OH)
2a	3053-3481 (OH, NH), 1698 (C=O), 1652 (C=NOH)	2.3 (S, 1H, CH sat), 7-8.7 (m, 12H aromatic protons; olefinic protons; C=NH), 9.9 (S 1H NOH) 11 (S 1H NH)
2b	3053-3481 (OH, NH), 1698 (C=O), 1652 (C=NOH)	2.3 (S, 1H, CH sat), 7-8.7 (m, 11H aromatic protons; olefinic protons; C=NH), 9.9 (S 2H OH) 11 (S 1H NH)
2c	3053-3481 (OH, NH), 1698 (C=O), 1652 (C=NOH)	(3, 21, 01), 11 (3, 11, 11) 2.3 (S, 1H, CH sat), 7-8.7 (m, 11H aromatic protons; olefinic protons; C=NH), 9.9 (S, 1H, NOH), 11 (S, 1H, NH)
2d	3053-3481 (OH, NH), 1698 (C=O), 1652 (C=NOH)	2.3 (S, 1H, CH sat; 3H, OCH ₃), 7-8.7 (m, 11H, aromatic protons; olefinic protons; C=NH) 0.9 (S, 1H, NOH) 11 (S, 1H, NH)
2e	3053-3481 (OH, NH), 1698 (C=O), 1652 (C=NOH)	2.3 (S, 1H, CH sat), 7-8.7 (m, 11H aromatic protons; olefinic protons; C=NH), 9.9 (S, 1H, NOH), 11 (S, 1H, NH)
3a	3428 (OH), 3093 (NH), 1686 (C=O), 1590, 1423 (C=N)	1.1 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 3.32 (S, 3H, COCH ₃), 7.1-8.4 (m, 10H aromatic protons; C=NH), 10 (S, 1H, NOH), 11.7 (S, 1H, NH)
3b	3428 (OH), 3093 (NH), 1686 (C=O), 1590, 1423 (C=N)	1.1 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 3.32 (S, 3H, COCH ₃), 7.1-8.4 (m, 9H aromatic protons; C=NH), 10 (S, 2H, OH), 11.7 (S, 1H, NH)
3c	3428 (OH), 3093 (NH), 1686 (C=O), 1590, 1423 (C=N)	1.1 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 3.32 (S, 3H, COCH ₃), 7.1-8.4 (m, 9H aromatic protons; C=NH), 10 (S, 1H, NOH), 11.7 (S, 1H, NH)
3d	3428 (OH), 3093 (NH), 1686 (C=O), 1590, 1423 (C=N)	1.1 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 3.32 (S, 3H, COCH ₃), 3.7 (S, 3H OCH ₃), 7.1- 8.4 (m, 9H aromatic protons; C=NH), 10 (S, 1H, NOH), 11.7 (S, 1H, NH)
3e	3428 (OH), 3093 (NH), 1686 (C=O), 1590, 1423 (C=N)	1.1 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 3.32 (S, 3H, COCH ₃), 7.1-8.4 (m, 9H aromatic protons; C=NH), 10 (S, 1H, NOH), 11.7 (S, 1H, NH)
4a	3160-3570 (OH, NH), 1670 (C=O), 1640, 1430 (C=N)	1.3 (S, 2H, CH ₂), 2.4 (S, 2H, CH sat), 7.1-8.4 (m, 15H aromatic protons; C=NH), 10.2 (S, 1H, NOH), 11.7 (S, 1H, NH)
4b	3160-3570 (OH, NH), 1670 (C=O), 1640, 1430 (C=N)	1.3 (S, 2H, CH ₂), 2.4 (S, 2H, CH sat), 7.1-8.4 (m, 14H aromatic protons; C=NH), 10.2 (S, 2H, OH), 11.7 (S, 1H, NH)
4c	3160-3570 (OH, NH), 1670 (C=O), 1640, 1430 (C=N)	1.3 (S, 2H, CH ₂), 2.4 (S, 2H, CH sat), 7.1-8.4 (m, 14H aromatic protons; C=NH), 10.2 (S, 1H, NOH), 11.7 (S, 1H, NH)
4d	3160-3570 (OH, NH), 1670 (C=O), 1640, 1430 (C=N)	1.3 (S, 2H, CH ₂), 2.4 (S, 2H, CH sat), 3.4 (S, 3H, OCH ₃), 7.1-8.4 (m, 14H aromatic protons; C=NH), 10.2 (S, 1H, NOH), 11.7 (S, 1H, NH)
4e	3160-3570 (OH, NH), 1670 (C=O), 1640, 1430 (C=N)	1.3 (S, 2H, CH ₂), 2.4 (S, 2H, CH sat), 7.1-8.4 (m, 14H, aromatic protons; C=NH), 10.2 (S, 1H, NOH), 11.7 (S, 1H, NH)
5a	3447 (OH), 3250 (NH), 1684 (C=O), 1651, 1588 (C=N)	1.2 (S, 2H, CH ₂), 2.3 (S, 2H, CH sat), 7.1-8.4 (m, 10H, aromatic protons; C=NH), 9.8 (S, 1H, NOH), 11.3 (S, 1H, NH)
5b	3447 (OH), 3250 (NH), 1684 (C=O), 1651, 1588 (C=N)	1.2 (S, 2H, CH ₂), 2.3 (S, 2H, CH sat), 7.1-8.4 (m, 9H, aromatic protons; C=NH), 9.8 (S, 2H, OH), 11.3 (S, 1H, NH)
5c	3447 (OH), 3250 (NH), 1684 (C=O), 1651, 1588 (C=N)	(S, 2H, OH), 11.5 (S, 1H, 1H) 1.2 (S, 2H, CH ₂), 2.3 (S, 2H, CH sat), 7.1-8.4 (m, 9H, aromatic protons; C=NH), 9.8 (S, 1H, NOH), 11.3 (S, 1H, NH)
5d	3447 (OH), 3250 (NH), 1684 (C=O), 1651, 1588 (C=N)	1.2 (S, 2H, CH ₂), 2.3 (S, 2H, CH sat), 3.3 (S, 3H, OCH ₃), 7.1-8.4 (m, 9H, aromatic protons; C=NH), 9.8 (S, 1H, NOH), 11.3 (S, 1H, NH)
5e	3447 (OH), 3250 (NH), 1684 (C=O), 1651, 1588 (C=N)	1.2 (S, 2H, CH ₂), 2.3 (S, 2H, CH sat), 7.1-8.4 (m, 9H, aromatic protons; C=NH), 9.8 (S, 1H, NOH), 11.3 (S, 1H, NH)
6а	3428 (OH), 3250 (NH), 1684 (C=O), 1528, 1590 (C=N)	1.1 (S, 2H, CH ₂), 2.1(S, 2H, CH sat), 7-8.6 (m, 10H, aromatic protons; 1H, NH; C=NH), 10 (S, 1H, NOH), 11.7 (S, 1H, NH)
6b	3428 (OH), 3250 (NH), 1684 (C=O), 1528, 1590 (C=N)	1.1 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 7-8.6 (m, 9H, aromatic protons; 1H, NH; C=NH), 10 (S, 2H, OH), 11.7 (S, 1H, NH)
бс	3428 (OH), 3250 (NH), 1684 (C=O), 1528, 1590 (C=N)	1.1 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 7-8.6 (m, 9H, aromatic protons; C=NH), 10 (S, 1H, NOH), 11.7 (S, 1H, NH)
6d	3428 (OH), 3250 (NH), 1684 (C=O), 1528, 1590 (C=N)	1.1 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 3.4 (S, 3H, OCH ₃), 7-8.6 (m, 9H, aromatic protons: 1H NH: C=NH) 10 (S 1H NOH) 11 7 (S 1H NH)
6e	3428 (OH), 3250 (NH), 1684 (C=O), 1528, 1590 (C=N)	1.1 (S, 2H, CH_2), 2.1 (S, 2H, CH sat), 7-8.6 (m, 9H, aromatic protons; 1H, NH; C=NH) 10 (S, 1H, NOH) 11.7 (S, 1H, NH)
7a	3447 (OH), 3250 (NH), 1684 (C=O), 1588, 1651 (C=N)	1.2 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 7-8.6 (m, 10H, aromatic protons; 1H, NH; C=NH), 9.8 (S, 1H, NOH), 11.5 (S, 1H, NH)

Table 2. IR, ¹H-NMR spectral data of compounds (1-10) 1

7b	3447 (OH), 3250 (NH), 1684 (C=O),	1.2 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 7-8.6 (m, 9H, aromatic protons; 1H, NH;
	1588, 1651 (C=N)	C=NH), 9.8 (S, 2H, OH), 11.5 (S, 1H, NH)
7c	3447 (OH), 3250 (NH), 1684 (C=O),	1.2 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 7-8.6 (m, 9H, aromatic protons; 1H, NH;
	1588, 1651 (C=N)	C=NH), 9.8 (S, 1H, NOH), 11.5 (S, 1H, NH)
7d	3447 (OH), 3250 (NH), 1684 (C=O),	1.2 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 3.3 (S, 3H, COCH ₃), 7-8.6 (m, 9H, aromatic
	1588, 1651 (C=N)	protons; 1H, NH; C=NH), 9.8 (S, 1H, NOH), 11.5 (S, 1H, NH)
7e	3447 (OH), 3250 (NH), 1684 (C=O),	1.2 (S, 2H, CH ₂), 2.1 (S, 2H, CH sat), 7-8.6 (m, 9H, aromatic protons; 1H, NH;
	1588, 1651 (C=N)	C=NH), 9.8 (S, 1H, NOH), 11.5 (S, 1H, NH)
8a	3652 (OH), 3183 (NH), 1694 (C=O),	2.7 (S, 1H, CH sat), 4.2 (S, 1H, CH=N), 6.6-8.3 (m, 9H, aromatic protons; C=NH), 9,
	1584, 1652 (C=N)	8.9 (S, 2H, OH), 11 (S, 1H, NH)
8b	3652 (OH), 3183 (NH), 1694 (C=O),	2.7 (S, 1H, CH sat), 4.2 (S, 1H, CH=N), 6.6-8.3 (m, 11H, aromatic protons; C=NH),
	1584, 1652 (C=N)	9, 8.9 (S, 2H, OH), 11 (S, 1H, NH)
8c	3652 (OH), 3183 (NH), 1694 (C=O),	2.7 (S, 1H, CH sat), 4.2 (S, 1H, CH=N), 6.6-8.3 (m, 11H, aromatic protons; C=NH),
	1584, 1652 (C=N)	9, 8.9 (S, 2H, OH), 11 (S, 1H, NH)
9a	3580 (OH), 3223 (NH), 1682 (C=O),	2.6 (S, 1H, CH sat), 3.5 (S, 2H, CH ₂), 3.8 (S, 1H, CH=N), 6.5-8 (m, 9H, aromatic
	1560, 1640 (C=N)	protons; C=NH), 9.5, 9 (S, 2H, OH), 11 (S, 1H, NH)
9b	3580 (OH), 3223 (NH), 1682 (C=O),	2.6 (S, 1H, CH sat), 3.5 (S, 2H, CH ₂), 3.8 (S, 1H, CH=N), 6.5-8 (m, 11H, aromatic
	1560, 1640 (C=N)	protons; C=NH), 9.5, 9 (S, 2H, OH), 11 (S, 1H, NH)
9c	3580 (OH), 3223 (NH), 1682 (C=O),	2.6 (S, 1H, CH sat), 3.5 (S, 2H, CH ₂), 3.8 (S, 1H, CH=N), 6.5-8 (m, 11H, aromatic
	1560, 1640 (C=N)	protons; C=NH), 9.5, 9 (S, 2H, OH), 11 (S, 1H, NH)
10a	3492 (OH), 3250 (NH), 1675 (C=O),	2.4 (S, 1H, CH sat), 3.6 (S, 2H, CH ₂), 3.8 (S, 1H, CH=N), 6.7-8 (m, 9H, aromatic
	1543, 1631 (C=N)	protons; C=NH), 9.5, 9 (S, 2H, OH), 11 (S, 1H, NH)
10b	3492 (OH), 3250 (NH), 1675 (C=O),	2.4 (S, 1H, CH sat), 3.6 (S, 2H, CH ₂), 3.8 (S, 1H, CH=N), 6.7-8 (m, 11H, aromatic
	1543, 1631 (C=N)	protons; C=NH), 9.5, 9 (S, 2H, OH), 11 (S, 1H, NH)
10c	3492 (OH), 3250 (NH), 1675 (C=O),	2.4 (S, 1H, CH sat), 3.6 (S, 2H, CH ₂), 3.8 (S, 1H, CH=N), 6.7-8 (m, 11H, aromatic
	1543, 1631 (C=N)	protons; C=NH), 9.5, 9 (S, 2H, OH), 11 (S, 1H, NH)

ume; ice-water was added, whereby the product was separated, filtrated, washed several times with water and crystallized from methanol to give (9_{a-c}) (c.f. Tables 1, 2).

Synthesis of N- β -lactam benzpyrid-4-imino-2-oxime derivatives (10_{a-c})

A solution was made of (8_{a-c}) (3.22 g - 3.72 g, 0.01 mol) chloroacetylchloride (1.12 g, 0.01 mol) in ethanol in the presence of a few drops of triethylamine. The mixture was refluxed for 8-10 h. The filtrate was evaporated to one - third of its volume; ice-water was added, whereby the product was separated, filtrated, washed several times with water, and crystallized from methanol to give (10_{a-c}) (c.f. Tables 1, 2).

Received February 20, 2004.

REFERENCES

- Khalafallah, A. K.; Hassan, M. E.; Soleiman, H. A. Indian Chem. Soc. 1992, 69, 318.
- Khalafallah, A. K.; Selim, M. A.; Abu-Elhamd, R. M.; El-Magharby, M. A.; Soleiman, H. A.; Raslam, M. A. *Indian J. Chem.* 1995, *34B*, 1066.

- El-Maghraby, M. A.; Khalafallah, A. K.; Hassan, M. E.; Soleiman, H. A. J. Chin. Chem. Soc. 1988, 35, 278.
- El-Maghraby, M. A.; Khalafallah, A. K.; Hassan, M. A.; Soleiman, H. A. J. Chin. Chem. Soc. 1986, LXIII, 910.
- Solieman, H. A.; Khalafallah, A. K.; Abdelzaher, H. M. J. Chin. Chem. Soc. 2000, 47, 1267.
- Solieman, H. A.; AbdEl-latif, F. M.; Khalil, M. A.; Elazab, I. H. *Phosphorus, Sulfur and Silicon* 2002, *177*, 1001.
- 7 Solieman, H. A.; Khalafallah, A. K.; Shindy, H. A. *Indian J. Chem.* **2003**, *42B*, 1159.
- 8 Taylor, E. C. J. Heterocycl. Chem. 1990, 27, 1.
- Tominaga, Y.; Kohra, S.; Honkawa, H.; Hosomi, A. J. *Heterocycles* 1989, 29, 1409.
- Tominaga, Y.; Motokwa, S.; Shiroshita, Y.; Hosomi, A. J. Heterocycl. Chem. 1987, 24, 1365.
- Robins, R. K.; Stivastava, P. C.; Revankar, G. R. Lectures in Heterocyclic Chemistry VI: Novel Nitrogen Heterocycles as Potential Medicinal Agents; Hetero Corporation: Tampa, FL 1982; p. 93.
- Tominaga, Y.; Koyhra, S.; Okuda, H.; Ushirogouchi, A.; Matsuda, Y.; Kobayshi, G. *Chem. Pharm, Bull.* 1984, 32, 122.
- Yam, Z. Sligehoru, Japan koka; 1975, 75, 158, 542, *Appl.* 1994, 74, 65, 99.
- 14. Soleiman, H. A.; Koraiem, A. I. M.; Mahmoud, N. Y. J. Chin. Chem. Soc. 2004, 51(3), 553.
- 15. Mohanty, S. K.; Sridhar, R.; Padmanvan, S. Y. Indian. J. Chem. 1977, 158, 1146.