

0040-4039(95)00875-6

Chemoselective Deoxygenation of Nitrones and N-Oxides with Tetrathiomolybdate

Palanichamy Ilankumaran and Srinivasan Chandrasekaran^{*} Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012. INDIA

Abstract: Reaction of nitrones and N-oxides with benzyltriethylammonium tetrathiomolybdate $\underline{1}$ in acetonitrile (25°C) yielded the corresponding imines and amines in good yields. Sulfoxides and azoxy benzenes are unaffected.

Deoxygenation of nitrones and N-oxides is a valuable transformation in organic synthesis. This can be effected by various reagents like low valent titanium,¹ phosphorous,² sulfur³ and tellurium⁴ derivatives, tributyltinhydride⁵ and Pd/C.⁶ In general most of these reactions involve harsh reaction conditions, tedious work up and offer poor chemoselectivity.

In continuation of our work on the use of benzyltriethylammonium tetrathiomolybdate $(PhCH_2NEt_3)_2MoS_4$, <u>1</u> as a reagent in organic synthesis,^{7,8} it was decided to use the chemistry of induced internal redox reactions of <u>1</u> in the presence of electron acceptors.⁹ In the course of this investigation we find that nitrones and N-oxides when treated with tetrathiomolybdate <u>1</u> in CH₃CN at 25°C underwent a smooth deoxygenation to afford the corresponding imines and amines in good yields. The results are summarized in Table <u>1</u>.

As can be gauged from the table, the reagent can tolerate other reducible functional groups like chloro and nitro in the substrate (entries 3 and 4). Although N-oxides undergo deoxgenation with $\underline{1}$, sulfoxide (entry 8) and azoxy derivative (entry 9) remain unaffected under the reaction conditions. While the most commonly used reagents for deoxygenation do not discriminate between N-O and S-O bonds, the chemoselectivity obtainable with this reagent $\underline{1}$ is very unique. Thus, we have been able to demonstrate the utility of easily accessible tetrathiomolybdate $\underline{1}$ as a covenient reagent for effecting chemoselective deoxygenation of nitrones and N-oxides.

Typical Procedure: To a stirred solution of tetrathiomolybdate $\underline{1}$ (1.2 mmol) in CH₃CN (5ml) nitrone or N-oxide (1 mmol) in CH₃CN (2ml) was added at room temperature (25°C). After completion of the reaction, the solvent was evaporated and the residue was extracted with diethylether and filtered through a pad of Celite. Concentration of the ethereal solution gave the corresponding deoxygenated product. Products were purified by crystallisation or by bulb to bulb distillation.

Entry	Substrate	Product®	Time(h)	Yield(%) ^b
1	Ph	Ph	72	86
2	Ph Ph	Ph N Ph	22	60
3	p-CI-C ₆ H ₄ N ^{Ph}	p-CI-C ₆ H ₄ N ^{Ph}	27	72
4	0 p-NO₂-C ₆ H₄ N Ph	p-NO2-C6H4 N Ph	12	88
5	O N ^{Ph}	2-Np ~ N ~ Ph	21	83
6		0 N-CH3	72	74
7		Ph-N <ch3 CH3</ch3 	2	67
8	Ph-S	no reaction	72	-
9	0 ∳ PhN≕N Ph	- do -	72	-

 Table 1

 Deoxygenation of nirtones and N-oxides with tetrathiomolybdate 1

^a All the products gave satisfactory spectral data. ^b Yields refer to isolated products

Acknowledgments: The authors thank the Department of Science and Tecnology, New Delhi for financial support of this investigation.

REFERENCES

- 1. Balicki, R. Chem. Ber., 1990, 123, 647-648.
- (a) Emerson, T. R.; Rees, C. W. J. Chem. Soc., 1962, 1917-1923.
 (b) Howard, E.; Olszewski, W. F. J. Am. Chem. Soc., 1959, 81, 1483-1484.
- 3. Kagami, H.; Motoki, S. J. Org. Chem., 1978, 43, 1267-1268.
- 4. Barton, D. H. R.; Fekih, A.; Lusinchi, X. Tetrahedron Lett., 1985, 26, 4603-4606.
- 5. Kozuka, S.; Akasaka, T.; Furumai, S.; Oae, S. Chem. Ind. (London), 1974, 452-453.
- 6. Balicki, R. Synthesis., 1989, 645-646.
- 7. Ramesha, A. R.; Chandrasekaran, S. Synth Commun., 1992, 22, 3277-3284.
- 8. Ramesha, A. R.; Chandrasekaran, S. J. Org. Chem., 1994, 59, 1354-1357.
- (a) Harmer, M. A.; Halbert, T. R.; Pan, W. H.; Coyle, C. L.; Cohen, S. A.; Stiefel, E. I. Polyhedron., 1986, 5, 341-347.
 - (b) Coyle, C. L.; Harmer, M. A.; George, G. N.; Daage, M.; Stiefel, E. I. Inorg. Chem., 1990, 29, 14-19.

(Received in UK 4 March 1995; accepted 19 May 1995)