[CONTRIBUTION FROM THE JOHN HARRISON LABORATORY OF CHEMISTRY, UNIVERSITY OF PENNSYLVANIA]

The Preparation of Methoxysilanes by the Interaction of Monosilane and Methanol¹

BY BURT STERNBACH AND ALAN G. MACDIARMID

RECEIVED FEBRUARY 3, 1959

Monosilane and methanol have been found to react at room temperature to produce di-, tri- and tetramethoxymonosilanes. Infrared spectra and other physical properties of the above substances have been measured.

Introduction

Of the four possible methoxymonosilanes only $Si(OCH_3)_4$ and $HSi(OCH_3)_3$ previously have been reported. $Si(OCH_3)_4$, which has been completely characterized, can be prepared readily from SiCl₄ and CH₃OH.² Helferich and Hausen³ reported the formation of $HSi(OCH_3)_3$ (b.p. 104–106°) by the interaction of HSiCl₃ and CH₃OH. Reuther⁴ also prepared HSi(OCH₃)₃ by this reaction, but reported a boiling point of 84° for the material.

It has been stated previously that SiH4 and CH3-OH do not react even in the presence of LiOCH₃.⁵ However, since recent work⁶ indicates that the reaction of an Si-H bond with an alcohol is catalyzed by copper metal the present investigation was performed in order to study the reaction of SiH4 with CH₃OH both in the presence and absence of copper metal catalyst in order to attempt to prepare and thoroughly characterize the mono-, di- and trimethoxysilanes.

Experimental

Apparatus .- All work was carried out in a Pyrex glass vacuum system. Melting points were determined by means of a magnetic plunger apparatus.⁷ All temperatures below 0° were measured by an iron-constantan thermocouple, standardized by the National Bureau of Standards. Tem-peratures above 0° were measured by a mercury-in-glass thermometer also standardized by the National Bureau of Standards.

Monosilane.-This was prepared from SiCl4 and LiAlH4. Its purity was checked by measuring its molecular weight (found 32.0, calcd. 32.1) and by comparison of its infrared spectrum with that of a published infrared spectrum.8

Methanol .--- Analytical grade methanol was used. purity was checked by means of a vapor pressure determination at 0° (found, 30.0 mm., literature value⁹ 29.7 mm.)

Interaction of Monosilane with Methanol.-The experimental results are summarized in Table I.

Experiment 1.-The reactants were combined in a 500ml. bulb to which had been added 0.1061 g. of electrolytic dust grade Cu powder and a mixture of 0.8 g. of Cu wire and foil which previously had been washed with dilute HNO3 and water and then dried. Reaction commenced immediately, at, or slightly below room temperature as evidenced by gas evolution from the small amount of liquid phase which was in contact with some of the copper. After removal of hy-drogen and unreacted SiH_4 , $HSi(OCH_3)_3$ was identified by molecular weight (found, 122.3, calcd., 122.2) and by analy-

(1) This report is based on portions of a thesis to be submitted by Burt Sternbach to the Graduate School of the University of Pennsylvania in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

(2) D. F. Peppard and W. C. Johnson, THIS JOURNAL, 68, 70 (1946).

(3) B. Helferich and J. Hausen, Ber., 57, 795 (1924).

(4) H. Reuther, Chem. Tech. Berlin, 2, 331 (1950).
(5) J. S. Peake and W. H. Nebergall, THIS JOURNAL, 74, 1526 (1952).

(6) W. H. Nebergall and J. S. Peake, ibid., 79, 5604 (1957).

(7) A. Stock, "Hydrides of Boron and Silicon," Cornell University Press, Ithaca, N. Y., 1933, p. 184.

(8) J. W. Straley and H. H. Nielsen, Phys. Rev., 62, 151 (1942).

(9) B. Pesce and V. Evdokimoff, Gazz. chim. ital., 70, 712 (1940).

sis,¹⁰ (C found, 29.24%, calcd., 29.49%; H found, 8.45%, calcd., 8.25%; Si found, 23.35%, calcd., 22.97%). The infrared spectrum of the Si(OCH₃)₄ and its molecular weight (found 134; mol. wt. Si(OCH₃)₄, 152; CH₃OH, 32.0) indicated that it was contaminated with a small quantity of unreacted CH₃OH from which it could not be separated.

Experiment 2.-During the course of the experiment the CH3OH vapor was allowed to pass slowly into a 3-liter reaction vessel containing the SiH4. The reaction vessel contained Cu similar to that described in experiment 1. At no time during the experiment could a liquid phase be observed in during the experiment could a liquid phase be observed in the reaction vessel. The products isolated after removal of hydrogen, unreacted SiH₄ and CH₃OH were identified as reported: H₂Si(OCH₃)₂ (mol. wt. found, 91.3, calcd. 92.2; C found, 25.94%, calcd., 26.07%; H found, 8.76%, calcd., 8.85%); HSi(OCH₃)₂ (mol. wt. found, 121.2, calcd., 122.2; C found, 29.65%, calcd., 29.49%; H found, 8.35%, calcd., 8.25%); Si(OCH₃)₄ (mol. wt. found, 148, calcd., 152; C, found, 31.77%, calcd., 31.56%; H found, 8.10%, calcd., 7.95%; vapor pressure at 0°, 2.5 mm.). Experiment 3.—The reaction was carried out in a 500-ml. bulb. The products were separated from hydrogen and un-reacted SiH₄ and were identified as Si(OCH₃)₄ (mol. wt.

build not be separated. Molecular weight (mol. wt. 49.3), conduct the separated for the separate for the separate for the separate for the separate separat vapor pressure and infrared measurements indicated that this was probably a mixture of unreacted CH₃OH and HSi-(OCH₃)₃.

Infrared Absorption Spectra .- These were made by means of a Perkin-Elmer model 21 double beam recording spectrophotometer with a sodium chloride prism. Spectra were made at approximately 20° in a 10 cm. cell having potassium bromide windows. The absorption maxima are listed in Table II.

Properties of Trimethoxy- and Dimethoxysilane.-Vapor pressure data on trimethoxysilane and dimethoxysilane are given in Table III.

The data for HSi(OCH₂)₃ are represented by the equation

$$\log P_{\rm mm} = \frac{-1919}{T} + 8.297$$

which gives an extrapolated boiling point of $81.1 \pm 0.3^{\circ}$, a molar heat of vaporization of 8,782 cal./mole and a Trouton's constant of 24.8. The above boiling point is considered to be more reliable than that of 84° reported by Reuther⁴ which was determined on material whose purity had not been confirmed by analysis.

A sample of $HSi(OCH_3)_3$, (vapor pressure at 0°, found 18.4 mm., pure $HSi(OCH_3)_3$, 18.7 mm. (Table III)), melted sharply at $-114.8 \pm 0.2^\circ$.

The data for $H_2Si(OCH_3)_2$ are represented by the equation

$$\log P_{\rm mm} = \frac{-1645}{T} + 8.243$$

which gives an extrapolated boiling point of $33.5 \pm 0.2^{\circ}$, a molar heat of vaporization of 7,528 cal./mole and a Trouton's constant of 24.8. A sample of this material melted sharply at $-99.8 \pm 0.2^{\circ}$.

Discussion

Contrary to a previous report⁵ it has been demonstrated that SiH_4 and CH_3OH react slowly at room temperature to produce methoxymonosilanes and

(10) All carbon, hydrogen and silicon analysis performed by Galbraith Laboratories, Knoxville, Tenn.

Т	ABLE	I	

Expt.	time at room temp. (hr.)	Reactant SiH4	s, g. CH3OH	SiH4	CH3OH Ma	iterials recovered Si(OCH3)4	, g. HSi(OCH3)8	H2Si(OCH3)2
1	63	0.4838	0.4834	0.3167	Nil	0.0374	0.5080	Nil
2	90	1.004	.3260	. 8559	0.0149	.0429	. 2261	0.0397
3	14 0	0.4ª	$.4^{a}$. 3260	ь	.2202	ь	Nil
		ATT NO IN						

^a Approximate values. ^b Identification not confirmed.

TABLE II

INFRARED ABSORPTION SPECTRA OF Si(OCH₃)₄, HSi(OCH₃)₅ AND H₂Si(OCH₃)₂

112DI (0 0113)2								
Si(OCH ₈) ₄ , ^{<i>a</i>} cm. ⁻¹	HSi(OCH ₃) ₃ , b cm. ⁻¹	H ₂ Si(OCH ₈) ₂ , c cm. ⁻¹	Designation					
2980 medium	2955 weak	2890 very weak	O II - torototo					
2875 medium	2870 weak	2860 very weak∫	C-H stretch					
	2210 weak	2180 weak	Si-H stretch					
1472 very weak	1470 very weak		CH₃ deformation					
1195 medium	1195 medium	1190 very weak	CH₂ rocking					
1097 strong	1097 strong	1097 medium	Si-O-C stretch					
		933 strong	SiH₂ deformation					
888 weak	880 strong							
848 strong	785 very weak	792 very weak)	Unidentified					
	703 very weak	691 weak	Unidentified					

^a Pure gaseous Si(OCH₃)₄ at 5 mm. pressure—sample from experiment 2. ^b Pure gaseous HSi(OCH₃)₃ at 5 mm. pres-sure—sample from experiment 2. The spectrum was iden-tical to that of the HSi(OCH₃)₅ prepared in experiment 1. ^c Pure gaseous H₂Si(OCH₃)₂ at 4 mm. pressure.

hydrogen. The rate of the reaction is increased considerably by copper metal, in the presence of which monosilane and methanol react in the vapor phase at room temperature to produce di-, triand tetramethoxysilanes. A large excess of monosilane and a slow addition of methanol to the reaction system favor the formation of less highly substituted silane derivatives but under the con-

VAPOR PRESSURE OF HSi(OCH ₂) ₃								
<i>T</i> , °C.	0.0	0.0	26.5	30.0	31.3	34.6	42.6	43, 4
Pmm								
(expt.)	18.7	19.0^a	79.3	92.7	100.8	116.6	164.6	173.1
Pmm								
(calcd.)	18.8	18.8	78.7	92.9	99.1	116	167	173
Vafor Pressure of $H_2Si(OCH_3)_2$								
<i>T</i> , °C.		5	4.2 .	-40.8	-31.8	-24.3	2 -14	. 4
Pmm	(expt.)		5.4	14.5	27.0	43.4	4 77	. 6
Pmm	(calcd.))	5.4	14.6	26.9	43.4	4 77	.5

^a Vapor pressure at end of experiment.

ditions of the experiments performed, no monomethoxysilane is formed.

It may therefore be concluded that the rate of reaction of an Si-H bond with methanol increases when the silicon atom has methoxy groups attached. The inductive effect of the attached methoxy group would tend to make the silicon more positive and hence increase the ease of nucleophilic attack of the silicon by an approaching methanol molecule. This effect apparently more than compensates for any decrease in reaction rate caused by steric effects due to the presence of relatively bulky methoxy groups.

PHILADELPHIA, PA.

Reaction