This article was downloaded by: [Universite Laval] On: 29 December 2014, At: 10:12 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



# Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsyc20</u>

# SELECTIVE AND EFFICIENT OXIDATIVE DEPROTECTION OF TRIMETHYLSILYL AND TETRAHYDROPYRANYL ETHERS, ETHYLENE ACETALS AND KETALS WITH n-BUTYLTRIPHENYLPHOSPHONIUM PEROXODISULFATE (Bu <sup>n</sup> PPh<sub>3</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>

1113/25208

I. Mohammadpoor-Baltork  $^{\rm a}$  , A. R. Hajipour  $^{\rm b}$  & M. Aghajari  $^{\rm b}$ 

<sup>a</sup> Department of Chemistry, Isfahan University, Isfahan, 81744, Iran

<sup>b</sup> College of Chemistry , Isfahan University of Technology , Isfahan, 84156, Iran Published online: 17 Aug 2006.

To cite this article: I. Mohammadpoor-Baltork , A. R. Hajipour & M. Aghajari (2002) SELECTIVE AND EFFICIENT OXIDATIVE DEPROTECTION OF TRIMETHYLSILYL AND TETRAHYDROPYRANYL ETHERS, ETHYLENE ACETALS AND KETALS WITH n-BUTYLTRIPHENYLPHOSPHONIUM PEROXODISULFATE (Bu<sup>n</sup> PPh<sub>3</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 32:9, 1311-1317, DOI: <u>10.1081/SCC-120003626</u>

To link to this article: http://dx.doi.org/10.1081/SCC-120003626

## PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <a href="http://www.tandfonline.com/page/terms-and-conditions">http://www.tandfonline.com/page/terms-and-conditions</a>

## SELECTIVE AND EFFICIENT OXIDATIVE DEPROTECTION OF TRIMETHYLSILYL AND TETRAHYDROPYRANYL ETHERS, ETHYLENE ACETALS AND KETALS WITH *n*-BUTYLTRIPHENYLPHOSPHONIUM PEROXODISULFATE (Bu<sup>n</sup>PPh<sub>3</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>

### I. Mohammadpoor-Baltork,<sup>1,\*</sup> A. R. Hajipour,<sup>2</sup> and M. Aghajari<sup>2</sup>

<sup>1</sup>Department of Chemistry, Isfahan University, Isfahan 81744, Iran <sup>2</sup>College of Chemistry, Isfahan University of Technology, Isfahan 84156, Iran

### ABSTRACT

*n*-Butyltriphenylphosphonium peroxodisulfate in refluxing acetonitrile transforms trimethylsilyl (TMS) and tetrahydropyranyl (THP) ethers, ethylene acetals and ketals to their corresponding carbonyl compounds in excellent yields. Selective oxidative deprotection of TMS and THP ethers in the presence of ethylene acetals (ketals) is of additional importance in this method.

1311

Copyright © 2002 by Marcel Dekker, Inc.

www.dekker.com

<sup>\*</sup>Corresponding author.

#### 1312 MOHAMMADPOOR-BALTORK, HAJIPOUR, AND AGHAJARI

The protection of hydroxyl groups as their trimethylsilyl and tetrahydropyranyl ethers is an important reaction in organic chemistry.<sup>1–7</sup> Oxidative deprotection of the above mentioned ethers to their corresponding carbonyl compounds under mild and aprotic conditions is also of synthetic value.<sup>8–11</sup>

The protection of aldehydes and ketones by the formation of ethylene acetals and ketals is important in the preparation of a variety of multifunctional organic molecules.<sup>12–14</sup> Transformation of ethylene acetals and ketals to their parent carbonyl compounds under neutral, aprotic and non-aqueous conditions is of interest to synthetic organic chemists and several methods have been reported for this purpose.<sup>15–17</sup> However, some of the reported methods for the oxidative deprotection of trimethylsilyl and tetrahydropyranyl ethers, ethylene acetals and ketals show limitations such as strong protic and aqueous conditions, long reaction times, low yields of the products, tedious work-up and expensive reagents. Therefore, introduction of a milder, more selective and inexpensive reagent for the conversion of the above mentioned derivatives to their corresponding carbonyl compounds is desirable.

Recently, we have reported new methods for the oxidative deprotection of trimethylsilyl and tetrahydropyranyl ethers, ethylene acetals and ketals.<sup>18–20</sup> In continuation of our research in this area, we were interested to find a more efficient, more selective and inexpensive method for the oxidative deprotection of these functional groups. In this respect, we wish to report that *n*-butyltriphenylphosphonium peroxodisulfate is able to convert TMS and THP ethers, ethylene acetals and ketals to their corresponding carbonyl compounds efficiently in refluxing acetonitrile. This reagent is an inexpensive and stable oxidizing agent and has been used for the cleavage of carbon–nitrogen double bonds under non-aqueous conditions.<sup>21</sup>

The treatment of a variety of trimethylsilyl and tetrahydropyranyl ethers with *n*-butyltriphenylphosphonium peroxodisulfate gave the corresponding carbonyl compounds in excellent yields (Table 1). Deprotection of ethylene acetals and ketals was also investigated with this reagent and the corresponding aldehydes and ketones were obtained in excellent yields (Table 2). Interestingly, overoxidation of the products was not observed in this method. It is noteworthy that the reaction medium was almost neutral, so that some of the sensitive functionalities such as the carbon–carbon double bond remained intact (Table 1, Entries 7, 22 and Table 2, Entry 6).

In order to show the better chemoselectivity of the described method, we have also performed several competitive oxidative deprotection reactions. The experimental results show that trimethylsilyl and

#### OXIDATIVE DEPROTECTION OF TMS AND THP

*Table 1.* Oxidative Deprotection of TMS and THP Ethers with  $(Bu''PPh_3)_2S_2O_8$ 

| Run | Substrate                                                            | Product                                              | Time (min) | Yield (%) <sup>a</sup> |
|-----|----------------------------------------------------------------------|------------------------------------------------------|------------|------------------------|
| 1   | PhCH <sub>2</sub> OTMS                                               | PhCHO                                                | 10         | 98                     |
| 2   | 2-MeOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTMS              | 2-MeOC <sub>6</sub> H <sub>4</sub> CHO               | 30         | 96                     |
| 3   | 3-MeOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTMS              | 3-MeOC <sub>6</sub> H <sub>4</sub> CHO               | 10         | 96                     |
| 4   | 4-MeOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTMS              | 4-MeOC <sub>6</sub> H <sub>4</sub> CHO               | 10         | 98                     |
| 5   | 4-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTMS | 4-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> CHO  | 30         | 97                     |
| 6   | Ph(CH <sub>2</sub> ) <sub>3</sub> OTMS                               | Ph(CH <sub>2</sub> ) <sub>2</sub> CHO                | 10         | 97                     |
| 7   | PhCH=CHCH2OTMS                                                       | PhCH=CHCHO                                           | 10         | 98                     |
| 8   | PhCH(Me)OTMS                                                         | PhCOMe                                               | 20         | 96                     |
| 9   | Ph <sub>2</sub> CHOTMS                                               | Ph <sub>2</sub> CO                                   | 20         | 98                     |
| 10  | PhCH(OTMS)CH <sub>2</sub> Ph                                         | PhCOCH <sub>2</sub> Ph                               | 25         | 98                     |
| 11  | 4-ClC <sub>6</sub> H <sub>4</sub> CH(Me)OTMS                         | 4-ClC <sub>6</sub> H <sub>4</sub> COMe               | 15         | 98                     |
| 12  | 4-PhC <sub>6</sub> H <sub>4</sub> CH(Me)OTMS                         | 4-PhC <sub>6</sub> H <sub>4</sub> COMe               | 15         | 99                     |
| 13  | α-TetralolTMS                                                        | α-Tetralone                                          | 30         | 97                     |
| 14  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> OTMS                 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CHO  | 30         | 93                     |
| 15  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> OTMS                 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> CHO  | 30         | 95                     |
| 16  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CH(Me)OTMS           | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> COMe | 30         | 96                     |
| 17  | PhCH <sub>2</sub> OTHP                                               | PhCHO                                                | 15         | 95                     |
| 18  | 2-MeOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTHP              | 2-MeOC <sub>6</sub> H <sub>4</sub> CHO               | 30         | 96                     |
| 19  | 3-MeOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTHP              | 3-MeOC <sub>6</sub> H <sub>4</sub> CHO               | 15         | 97                     |
| 20  | 4-MeOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTHP              | 4-MeOC <sub>6</sub> H <sub>4</sub> CHO               | 15         | 99                     |
| 21  | 4-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTHP | 4-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> CHO  | 15         | 92                     |
| 22  | PhCH=CHCH <sub>2</sub> OTHP                                          | PhCH=CHCHO                                           | 20         | 96                     |
| 23  | PhCH(Me)OTHP                                                         | PhCOMe                                               | 30         | 98                     |
| 24  | 4-ClC <sub>6</sub> H <sub>4</sub> CH(Me)OTHP                         | 4-ClC <sub>6</sub> H <sub>4</sub> COMe               | 20         | 97                     |
| 25  | α-TetralolTHP                                                        | α-Tetralone                                          | 20         | 98                     |
| 26  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> OTHP                 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CHO  | 30         | 94                     |
| 27  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> OTHP                 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> CHO  | 30         | 96                     |

<sup>a</sup>Isolated yield.

tetrahydropyranyl ethers are oxidized selectively in the presence of ethylene acetals and ketals (Table 3). These selectivities are useful achievements in organic synthesis.

We have also shown the general applicability and efficiency of the presented method in comparison with some of those reported with 3-carboxypyridinium chlorochromate  $(CPCC)^{18}$  and silver bromate/aluminium chloride<sup>10,20</sup> (Table 4).

Even though the reaction mechanism is interesting, at the present time it is obscure to us, and we have not been able to assign any reasonable mechanism for them in our studies.

### 1314 MOHAMMADPOOR-BALTORK, HAJIPOUR, AND AGHAJARI

Table 2. Oxidative Deprotection of Ethylene Acetals and Ketals with (Bu<sup>n</sup>PPh<sub>3</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>

| Run | Substrate                            | Product               | Time<br>(h) | Yield<br>(%) <sup>a</sup> |
|-----|--------------------------------------|-----------------------|-------------|---------------------------|
| 1   | Benzaldehydeethylene acetal          | Benzaldehyde          | 1.5         | 97                        |
| 2   | 2-Methoxybenzaldehydeethylene acetal | 2-Methoxybenzaldehyde | 2           | 95                        |
| 3   | 4-Methoxybenzaldehydeethylene acetal | 4-Methoxybenzaldehyde | 1.5         | 98                        |
| 4   | 2-Nitrobenzaldehydeethylene acetal   | 2-Nitrobenzaldehyde   | 2.5         | 96                        |
| 5   | 4-Nitrobenzaldehydeethylene acetal   | 4-Nitrobenzaldehyde   | 2           | 98                        |
| 6   | Cinnamaldehydeethylene acetal        | Cinnamaldehyde        | 1           | 97                        |
| 7   | Acetophenoneethylene ketal           | Acetophenone          | 1.5         | 97                        |
| 8   | 4-Chloroacetophenoneethylene ketal   | 4-Chloroacetophenone  | 1.5         | 98                        |
| 9   | 4-Phenylacetophenoneethylene ketal   | 4-Phenylacetophenone  | 2.5         | 99                        |
| 10  | Cyclohexanoneethylene ketal          | Cyclohexanone         | 2.5         | 94                        |

<sup>a</sup>Isolated yield.

*Table 3.* Competitive Oxidative Deprotection of TMS (THP) Ethers and Ethylene Acetals (Ketals) with  $(Bu^n PPh_3)_2S_2O_8$ 

| Run | Substrate <sup>a</sup>                                               | Product                                | Time<br>(min) | Yield<br>(%) <sup>b</sup> |
|-----|----------------------------------------------------------------------|----------------------------------------|---------------|---------------------------|
| 1   | PhCH <sub>2</sub> OTMS                                               | PhCHO                                  |               | 98                        |
|     | 4-Chloroacetophenoneethylene ketal                                   | 4-Chloroacetophenone                   | 10            | 0                         |
| 2   | Ph(CH <sub>2</sub> ) <sub>3</sub> OTMS                               | Ph(CH <sub>2</sub> ) <sub>2</sub> CHO  |               | 96                        |
|     | 4-Methoxybenzaldehydeethylene acetal                                 | 4-Methoxybenzaldehyde                  | 10            | 2                         |
| 3   | PhCH(Me)OTMS                                                         | PhCOMe                                 | 20            | 95                        |
|     | Benzaldehydeethylene acetal                                          | Benzaldehyde                           | 20            | 3                         |
| 4   | 4-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTHP | $4-O_2NC_6H_4CHO$                      |               | 92                        |
|     | 4-Methoxybenzaldehydeethylene acetal                                 | 4-Methoxybenzaldehyde                  | 15            | 3                         |
| 5   | PhCH(Me)OTHP                                                         | PhCOMe                                 | 20            | 97                        |
|     | Benzaldehydeethylene acetal                                          | Benzaldehyde                           | 50            | 2                         |
| 6   | 4-MeOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTHP              | 4-MeOC <sub>6</sub> H <sub>4</sub> CHO |               | 98                        |
|     | 4-Chloroacetophenoneethylene ketal                                   | 4-Chloroacetophenone                   | 15            | 0                         |

<sup>a</sup>Substrates/Oxidant (1:1:1).

<sup>b</sup>GLC yield.

*Table 4.* Comparison of Oxidative Deprotection of Some TMS and THP Ethers with  $(Bu^n PPh_3)_2S_2O_8$  (I), CPCC (II)<sup>18</sup> and Silver Bromate/Aluminium Chloride (III)<sup>10,20</sup>

|     |                                                                      |                                                     | Yield % (Time, min) |          |          |
|-----|----------------------------------------------------------------------|-----------------------------------------------------|---------------------|----------|----------|
| Run | Substrate                                                            | Product                                             | Ι                   | II       | III      |
| 1   | PhCH <sub>2</sub> OTMS                                               | PhCHO                                               | 98 (10)             | 97 (45)  | _        |
| 2   | 2-MeOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTMS              | 2-MeOC <sub>6</sub> H <sub>4</sub> CHO              | 96 (30)             | 93 (45)  | _        |
| 3   | 4-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTMS | 4-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> CHO | 97 (30)             | -        | 83 (30)  |
| 4   | PhCH(Me)OTMS                                                         | PhCOMe                                              | 96 (20)             | 93 (70)  | 92 (20)  |
| 5   | Ph <sub>2</sub> CHOTMS                                               | Ph <sub>2</sub> CO                                  | 98 (20)             | 80 (120) | 98 (25)  |
| 6   | 4-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTHP | $4-O_2NC_6H_4CHO$                                   | 92 (15)             | -        | 78 (150) |
| 7   | 2-MeOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OTHP              | 2-MeOC <sub>6</sub> H <sub>4</sub> CHO              | 96 (30)             | 96 (6)   | 90 (150) |
| 8   | PhCH=CHCH <sub>2</sub> OTHP                                          | PhCH=CHCHO                                          | 96 (20)             | 63 (10)  | -        |

In conclusion, in this study we have introduced *n*-butyltriphenylphosphonium peroxodisulfate as a stable, inexpensive and efficient reagent for the selective oxidative deprotection of TMS and THP ethers, ethylene acetals and ketals.

### **EXPERIMENTAL**

All of the products were characterized by comparison of their physical and spectral data with those of authentic samples. TMS and THP ethers, ethylene acetals and ketals were prepared according to described procedures.<sup>3,4,12</sup> Yields refer to isolated products. *n*-Butyltriphenylphosphonium peroxodisulfate was prepared as described previously.<sup>21</sup>

#### Oxidative Deprotection of TMS and THP Ethers, Ethylene Acetals, and Ketals: General Procedure

To a solution of substrate (1 mmol) in CH<sub>3</sub>CN (15 ml), *n*-butyltriphenylphosphonium peroxodisulfate (0.826 g, 1 mmol) was added and stirred magnetically under reflux condition for the appropriate time according to Tables 1 and 2. The progress of the reaction was monitored by TLC. The reaction mixture was cooled to room temperature and filtered. The solid material was washed with CH<sub>3</sub>CN (20 ml). The filtrates were combined and evaporated. The resulting crude material was purified on a silica gel plate

#### 1316 MOHAMMADPOOR-BALTORK, HAJIPOUR, AND AGHAJARI

with appropriate eluent. Pure carbonyl compounds were obtained in 92–99% yields (Tables 1 and 2).

#### ACKNOWLEDGMENT

We are thankful to the Isfahan University Research Council for partial support of this work.

#### REFERENCES

- Greene, T.W.; Wutz, P.G.M. Protective Groups in Organic Synthesis. 2nd Ed.; John Wiley & Sons: New York, 1991.
- 2. Lalonde, M.; Chan, T.H. Synthesis **1985**, 817 and references cited therein.
- 3. Firouzabadi, H.; Karimi, B. Synth. Commun. 1993, 23, 1633.
- 4. Maity, G.; Roy, S.C. Synth. Commun. 1993, 23, 1667.
- 5. Oskooie, H.A.; Abaszadeh, M.R.; Zamani, F.F.; Heravi, M.M. Synth. Commun. **1998**, *28*, 2281.
- 6. Babu, B.S.; Balasubramanian, K.K. Tetrahedron Lett. 1998, 39, 9287.
- 7. Davis, K.J.; Bhalerao, U.T.; Rao, B.V. Synth. Commun. 1999, 29, 1679.
- 8. Baker, R.; Rao, V.B.; Ravenscroft, P.D.; Swain, C.J. Synthesis 1983, 572.
- 9. Parish, E.J.; Kizito, S.A.; Heidepriem, R.W. Synth. Commun. 1993, 23, 223.
- Firouzabadi, H.; Mohammadpoor-Baltork, I. Synth. Commun. 1994, 24, 1065.
- 11. Firouzabadi, H.; Badparva, H.; Sardarian, A.R. Iran J. Chem. & Chem. Eng. **1998**, *17*, 33.
- 12. Meskens, F.A. J. Synthesis 1981, 501 and references cited therein.
- 13. Kalita, D.J.; Borah, R.; Sarma, J.C. Tetrahedron Lett. 1998, 39, 4573.
- 14. Ballini, R.; Bosica, G.; Frullanti, B.; Maggi, R.; Sartori, G.; Schroer, F. Tetrahedron Lett. **1998**, *39*, 1615.
- 15. Marcantoni, E.; Nobili, F. J. Org. Chem. 1997, 62, 4183.
- 16. Saravanan, P.; Chandrasekhar, M.; Anand, R.V.; Singh, V.K. Tetrahedron Lett. **1998**, *39*, 3091.
- 17. Li, T.S.; Li, S.H. Synth. Commun. 1997, 27, 2299.
- 18. Mohammadpoor-Baltork, I.; Pouranshirvani, Sh. Synthesis 1997, 756.
- 19. Mohammadpoor-Baltork, I.; Kharamesh, B. J. Chem. Res. (S) 1998, 146.

### OXIDATIVE DEPROTECTION OF TMS AND THP

- 20. Mohammadpoor-Baltork, I.; Nourozi, A.R. Synthesis 1999, 487.
- 21. Mohammadpoor-Baltork, I.; Hajipour, A.R.; Haddadi, R. J. Chem. Res. (S) 1999, 102.

Received in Japan December 27, 2000

Downloaded by [Universite Laval] at 10:12 29 December 2014