One-pot reductive amination of araldehydes by aniline using borohydride with CeCl₃·7H₂O as catalyst Xun Zhu^{a,b*}, Xiuqin Zhou^a andWei Zhang^a

^a Department of Chemical Engineering, Yancheng Institute of Industry Technology, Yancheng 224005, P. R. China

^b School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China

A one-pot, two-step reductive amination of araldehydes or acetophenones with anilines using $NaBH_4$ as a cheap hydride source and catalysed by $CeCl_3$ 7H₂O has been achieved in EtOH at room temperature in good yields.

Keywords: one-pot, reductive amination, cerium(III) chloride

Substituted amines are important building blocks in a multitude of biologically active natural products and pharmaceuticals.^{1,2} For example, they are used as organic intermediates for the synthesis of bactericides, drugs, herbicides, rubber accelerators, corrosion inhibitors, and surface-active agents. Owing to the immense importance of amines, their synthesis is an active field in medicinal chemistry and modern organic synthesis.^{3,4} As a consequence, various methods for the efficient formation of a C-N bond have been widely investigated. As one of the most important and effective C-N bond-forming processes, reductive amination is a fundamental transformation both in laboratory synthesis and industrial production.5-7 Direct reductive amination of carbonyl compounds remain the simplest approach.⁸⁻¹⁰ Typically, reductive amination of aldehydes or ketones, in which a mixture of a carbonyl compound and an amine is treated with a reductant in a "one-pot" fashion, is one of the most useful methods for the preparation of secondary or tertiary amines which avoids the isolation of an unstable imine or iminium intermediate.¹¹⁻¹³ As shown in Scheme 1, one of the synthetic methods to N-benzyl-N-phenylamines 3 utilized condensation between aldehydes 1 and anilines 2 followed by reduction of the imine intermediate 4. Several hydrogen sources such as sodium cyanoborohydride,14 sodium triacetoxyborohydride,¹⁵ sodium- or zinc borohydride¹⁶ in the presence of Brønsted or Lewis acids^{17,18} have been utilised to form the intermediate imines and to activate these C=N intermediates for a preferential reduction. However, these various borohydride derivatives suffer from limitations such as expense, high toxicity and low selectivity,19 which limit the scope of these methods. For this reason, wide commercial availability of substrates, generally mild reaction conditions and in some cases exceptionally high functional group tolerance which promotes efficient one-pot synthesis has become an important research area in organic chemistry.²⁰ Several methods which effect direct reductive amination have

been recently developed, such as $ZnCl_2-NaBH_{4}$,²¹ Ni Cl_2-NaBH_{4} ,²² Ti $(OiPr)_4$ -polymethylhydrosiloxane,²³ Ti $(OiPr)_4$ -NaBH₄,²⁴ silica gel-ZnBH₄,²⁵ trifluoro acetic acid-Et₃SiH²⁶ and pyridine-BH₃.²⁷

In previous work, we found that a Lewis acid can not only promote the formation of a C–C bond, but can also promote the formation of an imine.²⁸⁻³⁰ Since imine formation is the ratedetermining step for *in situ* reductive aminations, addition of a mild Lewis acid as catalyst can increase the rate. Ravishankar *et al.*³¹ have recently reported a one-pot, solvent-free reductive amination of cinnamaldehydes and araldehydes by anilines using sodium borohydride and catalysed by CeCl₃7H₂O.³¹ We now report that, using NaBH₄ with CeCl₃7H₂O as catalyst in solvent ethanol at room temperature, aldehydes and acetophenones can be reductively aminated by anilines with higher efficiency.

Results and discussion

Initially, we studied the influence of $CeCl_37H_2O$ on the condensation reaction of benzaldehyde with aniline. The condensation reaction was carried out with NaBH₄ in EtOH at room temperature and the results are summarised in Table 1. Clearly $CeCl_37H_2O$ plays an important role in catalysing the reaction, as without any catalyst, the yield of *N*-benzyl-*N*-phenylamine was very low and benzyl alcohol (45%) was obtained as the main product (entry 1). When $CeCl_37H_2O$ was added, reduction of benzaldehyde to benzyl alcohol was observed; 1, 2, 5 and 7 mol% of Catalyst was investigated (entries 2–7) and that 5 mol% of $CeCl_37H_2O$ was sufficient to catalyse the reaction. Among the solvents screened, including EtOH, MeOH, CH_2Cl_2 and AcOEt, EtOH was the best solvent which afforded the amine in 93% yield using 2 equiv. NaBH₄ at room temperature (entry 6).

* Correspondent. E-mail: xunzhu.yiit@gmail.com

The influence of several hydride sources on the reaction outcome was studied. In general, the hydride sources were found to be most active at 70°C in EtOH (Table 2). No reaction was observed at room temperature (entry 5). By comparison of the yields when using different hydride sources, such as NaBH₄, PhSiH₂, Ph₂SiH₂ and Ph₂SiH, we found that Et₂SiH gave the N-benzyl-N-phenylamine in very low yield (entry 4). However, further studies were performed with NaBH,, because of its great availability, low price and ready reaction at room temperature.

To explore the scope and limitations of the present catalyst system, reductive aminations of various carbonyl compounds and amines were performed. The reaction was in EtOH in the presence of 5 mol% of CeCl, 7H₂O under air for 8 h, as can be seen in Table 3. Excellent yields were obtained when benzaldehydes were substituted with electron-withdrawing as well as electron-donating groups (entries 1-9), while difficulties arose with nitro groups in an o-position or a *m*-position (entries 10 and 11). Functional groups such as -Cl, -Br, -I, -NO₂, and C=C present on the aldehyde remained unaffected.

Next we investigated the influence of the amine component in combination with benzaldehyde. The reactions of an aniline containing an electron-withdrawing group decreases the reaction yield (entry 12), wheras an aniline containing an electron-donating group increased product yield slightly (entry 13).

Table 1 Optimisation of the amounts of NaBH₄, catalyst and solvent in the reductive amination of benzaldehyde (1, $R^{1^4} = H$) with aniline (2, $R^2 =$ H) (Scheme 1) a

Entry	$CeCl_3$ 7H ₂ 0 /mol%	Solvent	NaBH ₄ /equiv.	Conversion $/\%^{b}$
1	0	EtOH	1	10 (45 °)
2	1	EtOH	1	50
3	2	EtOH	1	54
4	5	EtOH	1	60
5	5	EtOH	1.2	67
6	5	EtOH	2	93
7	7	EtOH	2	94
8	5	MeOH	2	90
9	5	CH ₂ Cl ₂	2	78
10	5	AcOEt	2	72

^aReaction conditions: benzaldehyde (1 mmol), aniline (1.2 mmol), CeCl₂ 7H₂O (mol%), and NaBH, in solvent (5 mL), 8 h, at room temperature.

^bYield determined by GC.

°Yield of benzyl alcohol.

^b Yield of isolated product.

(Scheme 1)

Entry	Lewis acid		Hydride source	Time /h	Temp /°C	Solvent	Yield/% ^a
1	CeCl ₃ ·7H ₂ 0	(5 mol%)	PhSiH ₃ (2 equiv.)	4	0	EtOH	95
2	CeCl ₃ ·7H ₂ 0	(5 mol%)	Ph_2SiH_2 (2 equiv.)	4	70	EtOH	92
3	CeCl ₃ ·7H ₂ 0	(5 mol%)	Ph ₃ SiH (2 equiv.)	4	70	EtOH	67
4	CeCl ₃ ·7H ₂ O	(5 mol%)	Et ₃ SiH (2 equiv.)	4	70	EtOH	35
5	AICI	(5 mol%)	Poly (methylhydro-siloxane) (2 equiv.)	12	rt	EtOH	NR 33
6	AICI	(5 mol%)	Poly (methylhydro-siloxane) (2 equiv.)	12	70	EtOH	99 ³³
7	Zn(OTf) ₂	(5 mol%)	PhSiH ₃ (1.5 equiv.)	4	60	THF	95 ¹⁷
8	ZnCl ₂	(5 mol%)	NH ₃ BH ₃ (1.5 equiv.)	10	rt	THF	88 ¹⁹
9	CeCl ₃ ·7H ₂ 0	(5 mol%)	$NaBH_4$ (2 equiv.)	8	rt	Et0H	93

^a Yield was determined by GC-MS. NR= less than 5% conversion.

One of the major advantages of the present method is that it can be used for the reductive amination of acetophenones, which are considered difficult substrates for this reaction.²⁴ The reductive amination of acetophenone was found to require higher quantities of the catalyst and the yields of the products are low.32 Using our optimal conditions for the longer time of 12 h, the reductive amination of acetophenone with amines afforded the desired products in good yields (entries 14–16).

Reductive amination of propinaldehyde with aniline reactions was carried out in the presence of 5 mol% CeCl₂7H₂O affording the corresponding secondary amine in a moderate yield (entry 17). An excellent yields was obtained when benzaldehyde was reductively aminated with an aliphatic amines (entry 18).

Table 3 Yields of reductive aminations of various araldehydes and acetophenones by anilines using NaBH, and CeCl, •7H,O under the optimised conditions^a

(3	CeCl ₃ ·7H ₂ (5 mol%	20)	R^2
R ¹	$R^2 + R^2$	-NH	² EtOH, Na	BH ₄ R ¹	Λ _N -R° H
	1	2			3
Entry	R ¹	R ²	R ³	Product	Yield/% ^b
1	<i>p</i> -NO ₂ C ₆ H ₅	Н	C ₆ H ₅	3a	92
2	p-CIC ₆ H ₅	Н	C_6H_5	3b	92
3	<i>p</i> -BrC ₆ H ₅	Н	C_6H_5	3c	89
4	$p-IC_6H_5$	Н	C_6H_5	3d	88
5	C ₆ H ₅ CH=CH	Н	C_6H_5	3e	91
6	<i>p</i> -CH ₃ C ₆ H ₅	Н	C_6H_5	3f	85
7	C_6H_5	Н	C_6H_5	3g	88
8	<i>p</i> -0CH ₃ C ₆ H ₅	Н	C_6H_5	3h	82
9	<i>p</i> -HOC ₆ H ₅	Н	C_6H_5	3i	83
10	<i>m</i> -NO ₂ C ₆ H ₅	Н	C_6H_5	3j	62
11	<i>o</i> -NO ₂ C ₆ H ₅	Н	C_6H_5	3k	70
12	C ₆ H ₅	Н	p-BrC ₆ H ₅	31	83
13	C_6H_5	Н	<i>p</i> -0CH ₃ C ₆ H ₅	3m	90
14	C_6H_5	CH_3	C ₆ H ₅	3n	75 °
15	C_6H_5	CH_3	p-BrC ₆ H ₅	30	70 °
16	C_6H_5	CH ₃	<i>p</i> -0CH ₃ C ₆ H ₅	3p	79 °
17	$C_{3}H_{7}$	Н	C_6H_5	3q	60
18	C_6H_5	Н	C_4H_9	3r	91

^aReaction conditions: araldehyde (1 mmol), aniline (1.2 mmol), CeCl₂ 7H₂O (5 mol%), and NaBH, (2 mmol) in EtOH (5 mL), 8 h, at room temperature.

° Reaction time was 12 h.

Table 2 Influence of the hydride source and the Lewis acid on the yield of the reductive amination of benzaldehyde (1, R¹ = H) with aniline (2, R² = H)

Experimental

All chemicals (AR grade) were obtained from commercial sources and used without further purification. Gas chromatography analysis was performed on an Agilent GC-6820 chromatograph equipped with a 30 m×0.32 mm×0.5 µm HP-Innowax capillary column and a flame ionisation detector. GC-MS spectra were recorded on Thermo Trace DSQ GC-MS spectrometer using TRB-5MS (30 $m{\times}0.25$ mm×0.25 µm) column. Melting points were determined using a XT-4 apparatus and are not corrected. 1H NMR spectra were obtained on a Bruker Avance III 400 (400 MHz) spectrometer in DMSO-d₆ using TMS as internal standard. Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz. Progress of the reactions was followed by TLC using silica-gel polygrams SIL G/UV 254 plates. Column chromatography was performed using Silicycle (40-60 mm) silica gel. All products are known compounds and were characterised by comparison of their physical and spectral properties with literature data.

Synthesis of secondary amines catalysed by the $CeCl_3$:7 H_2O -NaBH₄ system; general procedure

Benzaldehyde (1.0 mmol), amine (1.2 mmol) and CeCl₃·7H₂O (0.02 mmol) in ethanol (5 mL) were stirred for 20 min at room temperature, then NaBH₄ (2 mmol) was added. On completion of the reaction (as monitored by TLC), the reaction mixture was dried under vacuum and the product was extracted with ethyl acetate (3 × 10 mL). Evaporation of the solvent gave a crude product which was purified on a small silica gel column with EtOAc: petroleum ether (10:1) as eluent.

N-(4-Nitrobenzyl)-aniline (**3a**): White solid (209 mg, 92%), m.p. 66–68 °C (EtOH) (lit.¹³ 67–68 °C); ¹H NMR: δ 7.78–7.74 (m, 2H),7.66–7.62 (m, 2H), 6.77–6.73 (m, 2H), 6.63–6.61 (m, 2H), 6.56–6.52 (m, 1H), 6.26 (s, 1H), 4.26 (s, 2H).

N-(*4-Chlorobenzyl*)-*aniline* (**3b**): Yellow oil (200 mg, 92%); ¹H NMR: δ 7.30–7.30 (m, 4H), 7.07–7.03 (m, 2H), 6.58–6.51 (m, 3H), 6.26 (s, 1H), 4.26 (s, 2H).

N-(*4-Bromobenzyl*)-*aniline* (**3c**): Yellow solid (224 mg, 89%), m.p. 51–53 °C (EtOH) (lit.³⁸ 51–52 °C). ¹H NMR: δ 7.40–7.35 (m, 4H), 7.07–7.03 (m, 2H), 6.58–6.51 (m, 3H), 6.26 (s, 1H), 4.26 (s, 2H).

N-(*4-Iodobenzyl*)-aniline (**3d**): Yellow solid (253 mg, 88%), m.p. 52–54 °C (EtOH) (lit.³⁷ 52–53 °C); ¹H NMR: δ 7.58–7.49 (m, 4H), 7.07–7.03 (m, 2H), 6.58–6.51 (m, 3H), 6.26 (s, 1H), 4.26 (s, 2H).

N-*Styryl-aniline* (**3e**): White solid (190 mg, 91%), m.p. 135–138 °C (EtOH) (lit.¹³ 137–138 °C); ¹H NMR: δ 7.40–7.38 (m, 2H), 7.31–7.29 (m, 2H), 7.20–7.18 (m, 1H), 6.98–6.96 (m, 2H), 6.62 (s, 1H), 6.50–6.43 (m, 3H), 6.27 (s, 1H), 6.11 (s, 1H), 4.41 (d, *J*=8 Hz, 2H).

N-(4-Methylbenzyl)-aniline (**3f**): Colourless oil (167 mg, 85%); ¹H NMR: δ 7.41–7.31 (m, 4H), 7.08–7.05 (m, 2H), 6.62–6.61 (m, 2H), 6.56–6.52 (m, 1H), 6.24 (s, 1H), 4.29 (s, 2H), 2.20 (s, 3H).

N-*Benzyl-aniline* (**3g**): Colourless oil (161 mg, 88%); ¹H NMR: δ 7.40–7.38 (m, 2H), 7.35–7.31 (m, 2H), 7.25–7.22 (m, 1H), 7.09–7.04 (m, 2H), 6.63–6.61 (m, 2H), 6.56–6.52 (m, 1H), 6.24 (s, 1H), 4.29 (s, 2H).

N-(4-Methoxybenzyl)-aniline (**3h**): White solid (174 mg, 82%), m.p. 60–62 °C (EtOH) (lit.⁴⁰ 61–62 °C); ¹H NMR: δ 7.29–7.21(m, 4H), 7.08–7.06 (m, 2H), 6.63–6.61 (m, 2H), 6.54–6.52 (m, 1H), 6.24 (s, 1H), 4.29 (s, 2H), 3.59 (s, 3H).

N-(4-Hydroxylbenzyl)-aniline (**3i**): White solid (165 mg, 83%), m.p. 112–115 °C (EtOH) (lit.³⁸ 51–52 °C); ¹H NMR: δ 7.37–7.30 (m, 4H), 7.08–7.04 (m, 2H), 6.63–6.52 (m, 3H), 6.24 (s, 1H), 5.81 (s, 1H), 4.29 (s, 2H).

N-(2-Nitrobenzyl)-aniline (**3j**): Yellow oil (166 mg, 73%); ¹H NMR: δ 7.63–7.61 (m, 1H), 7.52–7.50 (m, 2H), 7.38–7.34 (m, 1H)), 7.04–7.02 (m, 2H), 6.91–6.90 (m, 2H), 6.70–6.66 (m, 1H), 6.21 (s, 1H), 4.22 (s, 2H).

N-(*3-Nitrobenzyl*)-aniline (**3k**): White solid (159 mg, 70%), m.p. 83–85 °C (EtOH) (lit.³⁹ 82–84 °C); ¹H NMR: δ 7.41–7.35 (m, 4H), 7.25–7.23 (m, 2H), 6.77–6.66 (m, 3H)), 5.90 (s, 1H), 4.25 (s, 2H).

N-Benzyl-4-bromoaniline (**3l**): Yellow solid (209 mg, 83%), m.p. 51–53 °C (EtOH) (lit.³⁴ 52–53 °C]; ¹H NMR: δ 7.40–7.35 (m, 4H), 7.18–7.14 (m, 1H), 6.74–6.72 (m, 2H), 6.58–6.56 (m, 2H), 6.26 (s, 1 H), 4.26 (s, 2H).

N-Benzyl-4-methoxyanilines (**3m**): White solid (191 mg, 90%), m.p. 47–50 °C (EtOH) (lit.³⁵ 48 - 50 °C); ¹H NMR: δ 7.40–7.38 (m, 2H), 7.35–7.31 (m, 2H), 7.25–7.22 (m, 1H), 6.69–6.61 (m, 4H), 6.24 (s, 1 H), 4.29 (s, 2H), 3.55 (s, 3H).

N-(*1-Phenylethyl*) aniline (**3n**): Colourless oil (147 mg, 75%); ¹H NMR: δ 7.38–7.36 (m, 2H), 7.31–7.27 (m, 2H), 7.19–7.16 (m, 1H), 6.99–6.95 (m, 2H), 6.50–6.43 (m, 3H), 6.11 (s, 1H), 4.46–4.44 (t, *J*=8 Hz, 1H), 1.42 (d, *J*=8 Hz, 3H).

4-Bromo-N-(1-phenylethyl) aniline (**3**°): Yellow oil (162 mg, 70%); ¹H NMR: δ 7.39–7.35 (m, 2H), 7.30–7.26 (m, 2H), 7.20–7.16 (m, 2H), 7.08–7.00 (m, 3H), 6.11 (s, 1H), 4.45–4.43 (t, *J*=8 Hz, 1H), 1.42 (d, *J*=8 Hz, 3H).

4-Methoxy-N-(*l*-phenylethyl) aniline (**3p**): White solid (179 mg, 79%), m.p. 61–63 °C (EtOH) (lit.³⁶ 61–62 °C); ¹H NMR: δ 7.38–7.27(m, 5H), 6.77–6.73 (m, 2H), 6.65–6.62 (m, 2H), 6.11 (s, 1H), 4.45–4.45 (m, 1H), 3.57 (s, 3H), 1.42 (d, *J*=8 Hz, 3H).

N-*Butyl-anilines* (**3q**): Colourless oil (0.089 mg, 60%); [']H NMR: δ 7.09–7.06 (m, 2H), 6.81–6.78 (m, 1H), 6.63–6.60 (m, 2H), 6.08 (s, 1H), 4.08–4.06 (t, *J*=8 Hz, 2H), 2.81 (m, 2H), 1.99–1.91 (m, 2H), 1.10 (t, *J*=8 Hz, 3H).

We are grateful to JiangSu Provincial Natural Science Foundation of China (no BK20141260) and Six Talented Summit funding of Jiangsu Province of P. R. China (no 2011-JZ-017) for financial support.

Received 8 May 2015; accepted 10 June 2015 Paper 1503354 <u>doi: 10.3184/174751915X14356747417290</u> Published online: 9 July 2015

References

- 1 X. Zhu, D.-S. Xiang and W.-Y. Shi. J. Struct. Chem., 2013, 54, 1107.
- 2 T. C. Nugent and M. El-Shazly, Adv. Synth. Catal., 2010, 352, 753.
- 3 N. Fleury-Bregeot, D. L. V. Fuente, S. Castillon and C. Claver, *ChemCatChem.*, 2010, **2**, 1346.
- 4 J. H. Xie, S. F. Zhu and Q. L. Zhou, Chem. Rev., 2011, 111, 1713.
- 5 V. I. Tararov and A. Borner, Synlett, 2005, 203.
- 6 D. Menche, J. Hassfeld, J. Li, G. Menche, A. Ritter and S. Rudolph, <u>Org.</u> Lett., 2006, 8, 741.
- 7 L. Rubio-Perez, F. J. Perez-Flores, P. Sharma, L. Velasco and A. Cabrera, Org. Lett., 2009, 11, 265.
- 8 Q. P. B. Nguyen and T. H. Kim, *Tetrahedron*, 2013, **69**, 4938.
- 9 Q. P. B. Nguyen and T. H. Kim, Tetrahedron Lett., 2011, 52, 5004.
- 10 P. V. Ramachandran, P. D. Gagare, K. Sakavuyi and P. Clark, *Tetrahedron Lett.*, 2010, 51, 3167.
- 11 S. C. A. Sousa and A. C. Fernandes, Adv. Synth. Catal., 2010, 352, 2218.
- 12 S. Gomez, J. A. Peters and T. Maschmeyer, Adv. Synth. Catal., 2002, 344, 1037.
- 13 R. Apodaca and W. Xiao, Org. Lett., 2001, 3, 1745.
- 14 C. F. Lane, Synthesis, 1975, 135.
- 15 C. D. Gutierrez, V. Bavetsias and E. McDonald, *Tetrahedron Lett.*, 2005, 46, 3595.
- M. D. Bomann, I. C. Guch and M. J. DiMare, *Org. Chem.*, 1995, **60**, 5995.
 S. Enthaler, *Catal. Lett.*, 2011, **141**, 55.
- 18 S. C. A. Sousaa and A. C. Fernandes, Adv. Synth. Catal., 2010, 352, 2218.
- 19 P. V. Ramachandran, P. D. Gagare, K. Sakavuyi and P. Clark, *Tetrahedron Lett.*, 2010, 51, 3167.
- 20 J. Deng, L.-P. Mo, F.-Y. Zhao, L.-L. Hou, L. Yang and Z.-H. Zhang, Green Chem., 2011, 13, 2576.
- 21 S. Bhattacharyya, Synth. Commun., 1997, 27, 4265.
- 22 I. Saxena, R. Borah and J. C. Sarma, J. Chem. Soc., Perkin Trans. 1, 2000, 503.
- 23 S. Chandrasekhar, C. R. Reddy and M. Ahmed, Synlett, 2000, 1655.
- 24 S. Bhattacharyya, K. A. Neidigh, M. A. Avery and J. S. Williamson, Synlett, 1999, 1781.
- 25 B. C. Ranu, A. Majee and A. Sarkar, J. Org. Chem., 1998, 63, 370.
- 26 B.-C. Chen, J. E. Sundeen, P. Guo, M. S. Bednarz and Zhao, R. Tetrahedron Lett., 2001, 42, 1245.
- 27 M. D. Bomann, I. C. Guch and M. DiMare, J. Org. Chem., 1995, 60, 5995.

- 28 X. Zhu, W. Ge and Y. Wei, Poly. Arom. Comp., 2013, 33, 467.
- 29 X. Zhu and Y. Wei, J. Chem. Res., 2013, 37,119.
- 30 X. Zhu, X. Zhou and D. Xiang, *Heterocycles*, 2015, 91, doi: 10.3987/ COM-15-13248.
- 31 R. Lokhande, J. Sonawane, A. Roy and L. Ravishankar, *Green Chem.* Lett. Rev., 2011, 4, 69.
- 32 B. T. Cho and S. K. Kang, Tetrahedron, 2005, 61, 5725.
- 33 V. Kumar, S. Sharma, U. Sharma, B. Singh and N. Kumar, *Green Chem.*, 2012, **14**, 3410.
- 34 H. Zhang, Q. C. Qian, and D. Ma, <u>J. Org. Chem.</u>, 2005, **70**, 5164.
- 35 P. R. Likhar, R. Arundhathi, M. L. Kantam and P. S. Prathima, *Eur. J. Org. Chem.*, 2009, 5383.
- 36 S. E. Denmark, N. Nakajima, C. M. Stiff, O. J. C. Nicaise and M. M. Kranz, Adv. Synth. Catal., 2008, 350, 1023.
- 37 J. Deng, L.-P. Mo, F.-Y. Zhao, L.-L. Hou, L. Yang and Z.-H. Zhang, *Green Chem.*, 2011, 13, 2576.
- 38 W.V.Liao, Y. Chen, Y. Liu, H. Duan, J. L. Petersen and X. Shi, *Chem. Commun.*, 2009, **42**, 6436.
- 39 M. M. Joseph and D. E. Jacob, Indian J. Chem., Sect B, 2004, 43, 432.
- 40 V. V. Kouznetsov, L. Astudillosaavedra, L. Y. V. Mendez and M. E. C. Ramirez, J. Chil. Chem. Soc., 2004, 49, 319.