Accepted Manuscript

Title: BrF₃-KHF₂: An air-stable fluorinating reagent

Author: Toru Shishimi Shoji Hara

PII: S0022-1139(14)00258-9

DOI: http://dx.doi.org/doi:10.1016/j.jfluchem.2014.08.019

Reference: FLUOR 8411

To appear in: FLUOR

 Received date:
 31-7-2014

 Revised date:
 25-8-2014

 Accepted date:
 27-8-2014

Please cite this article as: T. Shishimi, S. Hara, BrF₃-KHF₂: An airstable fluorinating reagent, *Journal of Fluorine Chemistry* (2014), http://dx.doi.org/10.1016/j.jfluchem.2014.08.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

BrF₃-KHF₂: An air-stable fluorinating reagent

Toru Shishimi, Shoji Hara*

Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Keywords: stable fluorinating reagent, KHF₂, BrF₃, desulfurizing fluorination

Abstract

BrF₃-KHF₂, an air-stable solid prepared from BrF₃ and KHF₂, was used in the various

fluorination reactions, including desulfurizing fluorination reactions of benzylic sulfides,

ketone aldehyde dithioacetals, (phenylthio)glycosides, and and trimethyl

trithioorthocarboxylates. As the results, one to three fluorine atoms were selectively

introduced to the substrates.

1. Introduction

Organofluorine compounds are widely used, as medicines, pesticides, functional

materials, and so on [1]. They are generally prepared artificially using fluorinating

reagents because organofluorine compounds are rare in nature. Therefore, the role of the

fluorinating reagent is important for synthesizing desired organofluorine compounds,

and many fluorinating reagents have been produced and used [2]. However, most of

them are sensitive to moisture, and special skills and equipments are required for their

use. Therefore, stable fluorinating reagent is desirable [3]. Recently, we reported the

* Corresponding author.

Tel/Fax: +81(11)7066556

E-mail address: shara@eng.hokudai.ac.jp (S. Hara)

Page 1 of 21

preparation of a new stable fluorinating reagent, IF_5 -pyridine-HF, and its use in various fluorination reactions [4]. BrF_3 has been also used as a fluorinating reagent, and is more reactive than IF_5 [5]. Therefore, we attempted to synthesize a new stable fluorinating reagent from BrF_3 .

2. Results and discussion

BrF₃ is known to make a complex of MBF₄ where M is Cs, Rb, K [6], or Me₄N [7]. However, their ability as a fluorinating reagent has not yet been studied. We attempted to synthesize a stable complex from BrF₃. Addition of BrF₃ to KF in CH₂Cl₂ was performed at -78 °C, and the cooling bath was removed. When the temperature reached room temperature, a violent exothermal reaction took place. As BrF₃ violently reacts with CH₂Cl₂ at room temperature, this result shows that free BrF₃ remains in the mixture and causes the violent reaction. On the other hand, when BrF₃ was added to an excess amount of KHF₂ in CH₂Cl₂, the exothermal reaction did not occur even after reaching room temperature. A slightly reddish supernatant was removed by decantation and the remaining solid was washed with CH₂Cl₂ several times. The remaining solvent was removed by blowing a nitrogen gas to the solid. The resulting pale yellow solid is air-stable and can be stored in a TeflonTM bottle in the refrigerator [8]. We applied this BrF₃-KHF₂ complex in various fluorination reactions.

2.1. Desulfurizing difluorination of benzylic sulfide 1 using BrF₃-KHF₂

Initially, BrF₃-KHF₂ was used in a desulfurizing difluorination reaction of benzylic sulfide. When 2-{4-chlorophenyl)thio}-1,2-diphenyletanone (**1a**) was added to a

suspension of BrF₃-KHF₂ in CH₂Cl₂ at room temperature, the solution color became dark red, and 2,2-difluoro-1,2-diphenylethanone (**2a**) was formed in 88% yield. Although the yield of **2a** was comparable to that obtained by using IF₅-pyridine-HF [4a], the reaction was completed in a shorter time (15 min versus 5 h) (Table 1).

Table 1

Comparison of reactivity of BrF_3 - KHF_2 and IF_5 -pyridine-HF in desulfurizing difluorination of ${\bf 1a}^{\ a}$

$$p$$
-Cl-C₆H₄S p -C

Entry	Fluorinating reagent	Reaction time	Yield of 2a(%) ^b
1	IF ₅ -pyridine-HF	5 h	88
2	BrF ₃ -KHF ₂	15 min	89

^a 2eq of fluorinating reagent to **1a** was used.

In the reaction of BrF₃-KHF₂ with benzylic sulfides containg an electron-withdrawing group (**1b-d**), the corresponding desulfurizing difluorination products (**2a-c**) were obtained in high yields as shown in Table 2.

^bIsolated yield based on **1a** used.

Table 2Desulfurizing difluorination of **1** with BrF₃-KHF₂ ^a

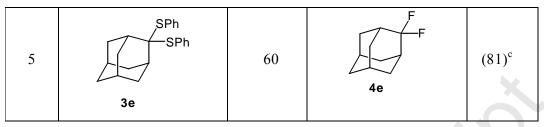
Entry	Substrate 1	Reacion	Product 2	Yield (%) ^b
		time		
1	Ph CO ₂ Bu p-CI-C ₆ H ₄ S 1b	3 h	Ph CO ₂ Bu F F 2b	(84)
2	Ph CONEt ₂ PhS 1c	15 min	Ph CONEt ₂ F F 2c	76 (85) ^c
3	Ph Ph	15 min	Ph Ph	91 (99) ^c
	1d		2a	

^aIf otherwise not mentioned, the reaction was carried out in CH₂Cl₂ at room temperature using 2 eq of BrF₃-KHF₂ to **1**.

2.2. Reaction of aldehyde and ketone dithioacetal 3 with BrF3-KHF2

BrF₃-KHF₂ was also applied to the reaction with the ketone and aldehyde dithioacetals [3c, 5b, 9]. Reactions with diphenyl dithioacetals of aldehydes (**3a-c**) and ketones (**3d,e**) were completed in 1 h, and the corresponding *gem*-difluorides (**4a-e**) were obtained in

^bIsloated yield based on **1** used. In parentheses, ¹⁹F NMR yield.


^c3eq of BrF₃-KHF₂ to **1** was used.

good yields, as shown in Table 3.

Table 3. The reaction of aldehyde and ketone thioacetals with $BrF_3\mbox{-}KHF_2{\,}^a$

PhS SPh
$$R^2$$
 CH_2CI_2 , rt R^2 R^2 R^2 R^2

Entry	Substrate 3	Reacion	Product 4	Yield
		time (min)		(%) ^b
	PhS SPh		F_F	
1		45		(91)
	3a		4a	
	√=\ SPh		/ - \	
2	Ph	45	Ph— F	81(90)
	3b		4b	
3	SPh SPh MeO ₂ C	15	MeO ₂ C	91(99)
	3c		4c	
	PhS_SPh		F_F	
4		45		(84)
	3d		4d	

^aIf otherwise not mentioned, the reaction was carried out at room temperature using 2.2 eq of BrF₃-KHF₂ to **3**.

2.3. Synthesis of glycosyl fluorides $\bf 6$ by the reaction of (phenylthio)glycosides $\bf 5$ with BrF_3 - KHF_2

Glycosyl fluorides have been widely used as glycosyl donors in glycosidation reactions [10]. They are generally prepared from the corresponding thioglycosides using a fluorination reagent with or without an oxidizing agent [11]. We applied BrF₃-KHF₂ glycosyl for fluorides the synthesis **(6)** from the corresponding (phenylthio)glycosides (5). Both pyranosyl fluoride (6a) and furanosyl fluorides (6b-d) were prepared in good yield by the reaction of the corresponding (phenylthio)glycosides (5a-d) with BrF₃-KHF₂ in CH₂Cl₂ (Table 4). In the reaction with furanosyl derivatives, only one isomer was selectively formed (Entries 2-4).

Table 4.The reaction of (phenylthio)glycosides with BrF₃-KHF₂^a

Entry	Substrate 5	Reacion	Product 6	Yield
-------	-------------	---------	-----------	-------

^bIsolated yield based on **3**. In parentheses, ¹⁹F NMR yield.

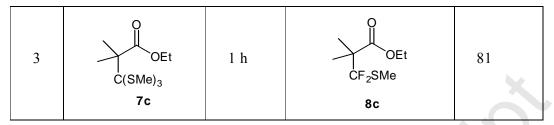
^cThe reaction was carried out at 0 °C.

		time		(%) ^b
1	AcO AcO SPh	4 h	AcO AcO F 6a	83(86) ^c $(\alpha : \beta = 63:37)$
2	5b	15 min	6b F	89(94) ^d α only
3	BzO SPh	15 min	BzO F 6c	87 β only
4	BnO SPh OBn 5d	15 min	BnO F O F O Gd	(66) β only

 $^{^{}a}$ If otherwise not mentioned, the reaction was carried out at room temperature using 1.1 eq of BrF₃-KHF₂ to **5**.

2.4. Reaction of trimethyl trithioorthocarboxylates 7 with BrF₃-KHF₂

^bIsolated yield based on **5**. In parentheses, ¹⁹F NMR yield.


 $^{^{}c}$ 1.5 eq of BrF₃-KHF₂ to **5** was used.

^d The reaction was carried out at 0 °C.

A tris(methylthio)methyl group can be introduced to the electron rich aromatic ring and α-position of the ester group by a reaction with tris(methylthio)methyl cation generated from dimethyl trithiocarbonate [12]. The reaction of species N,N-dimethyl-4-(tris(methylthio)methyl)aniline (7a) with BrF₃-KHF₂ was completed in 15 min at 0 °C, and the tris(methylthio)methyl group was converted to the trifluoromethyl group. However, bromination at the aromatic ring took place concurrently and 2-bromo-N,N-dimethyl-4-(trifluoromethyl)aniline (8a) was formed in moderate yield (Entry 1 in 5). Similarly, in the reaction of Table *N*-methyl-3-tris(methylthio)methylindole (7b),5-bromo-1-methyl-3-(trifluoromethyl)-1*H*-indole (**8b**) was obtained selectively (Entry the 2). On the other hand, in reaction of ethyl 2,2-dimethyl-3,3,3-tris(methylthio)propanoate (7c) with BrF₃-KHF₂, only two fluorine atoms were introduced and one methylthio group remained (Entry 3).

Table 5. Reaction of trimethyl trithioorthocarboxylates 7 with BrF_3 -KHF2 a

Entry	Substrate 7	Reacion	Product 8	Yield (%) ^b
		time		
1	C(SMe) ₃ Me ₂ N 7a	15 min	Br CF ₃ Me ₂ N 8a	52 (62)
2	C(SMe) ₃ N Me 7b	15 min	Br CF ₃ N Me 8b	76 (83)

^aThe reaction was carried out in CH₂Cl₂ at 0 °C using 3.2 eq of BrF₃-KHF₂ to 7.

3. Conclusion

A new air-stable fluorinating reagent, BrF₃-KHF₂, was prepared by the reaction of BrF₃ with KHF₂. The reagent was shown to be more reactive than the previously reported IF₅-pyridine-HF in desulfurizing difluorination reaction of the benzylic sulfide. The reagent was successively applied to desulfurizing fluorination reactions of dithioacetals, (phenylthio)glycosides, and trimethyl trithioorthocarboxylates.

4. Experimental

4.1. General

The melting points were measured with a Yanagimoto micro melting-point apparatus. The IR spectra were recorded using a JASCO FT/IR-410. The 1 H NMR (400 MHz) spectra, 19 F NMR (376 MHz) spectra, and 13 C NMR (100 MHz) were recorded in CDCl₃ on a JEOL JNM-A400II FT NMR and the chemical shift, δ , is referred to TMS (1 H, 13 C) and CFCl₃ (19 F), respectively. BrF₃ in a cylinder was purchased from Galaxy Chemicals, LLC and used without purification. BrF₃ was transferred from cylinder to a TeflonTM bottle through a TeflonTM tube using nitrogen pressure. BrF₃ decomposes in air

^bIsolated yield based on 7. In parentheses, ¹⁹F NMR yield.

by humidity under emitting HF fume, and should be handled in a bench hood with rubber-gloved hands under nitrogen atmosphere. BrF₃ reacts violently with most of organic solvents at room temperature and a special care is required for its use.

4.2. Preparation of BrF3-KHF2

To a suspension of KHF₂ (3.4 g, 44 mmol) in CH₂Cl₂ (10 mL) in a Teflon[™] bottle, BrF₃ (3.0g, 22 mmol) was slowly added through a Teflon[™] tube at −78 °C. The resulting mixture was stirred at −78 °C for 30 min, and the cooling bath was removed and temperature was allowed to reach room temperature. A slightly reddish supernatant was removed using a Teflon[™] pipette, and the remaining solid was washed with CH₂Cl₂ (10 mL) several times, until CH₂Cl₂ became almost colorless. The remaining solvent was removed by stirring under nitrogen stream for a few hours. The resulting pale yellow solid (5.4 g) was stored in a Teflon[™] bottle in the refrigerator. It is slightly hygroscopic, and therefore, it should be used as quickly as possible to minimize contact with moisture.

4.2. Desulfurizing difluorination of benzylic sulfides 1 with BrF₃-KHF₂

4.2.1. 2,2-Difluoro-1,2-diphenylethanone (2a)

To a suspension of BrF₃-KHF₂ (129 mg) in CH₂Cl₂ (2.4 mL) in Teflon[™] bottle, **1a** (101 mg, 0.3 mmol) in CH₂Cl₂ (1.0 mL) was added at room temperature, and the mixture was stirred at room temperature for 15 min. Then, H₂O (5 mL) was added to the reaction mixture and the resulting product was extracted with CH₂Cl₂ (5 mL X 3). The combined organic layer was washed with saturated aqueous NaHCO₃ (5 mL) and

saturated aqueous Na₂S₂O₃ (5 mL), and dried over MgSO₄. After concentration under reduced pressure, **2a** was isolated by column chromatography (silica gel, hexane-ether) in 89% yield. IR (neat) 1703 (C=O), 1450, 1256, 1135 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 7.43-7.61 (m, 8H), 8.02-8.04 (m, 2H); ¹⁹F NMR (376MHz, CDCl₃) δ –98.12 (s, 2F); ¹³C NMR (100MHz, CDCl₃) δ 188.9 (t, ² J_{C-F} = 30.7 Hz), 134.2, 133.1 (t, ² J_{C-F} = 24.9 Hz), 132.1, 130.9, 130.3 (t, ⁴ J_{C-F} = 2.9 Hz, 2C), 128.8 (2C), 128.6 (2C), 125.6 (t, ³ J_{C-F} = 5.8 Hz, 2C), 116.9 (t, ¹ J_{C-F} = 253.9 Hz); HRMS (EI) calcd for C₁₄H₁₀F₂O 232.0700, found 232.0683.

4.2.2. Butyl 2,2-difluoro-2-phenylacetate (2b)

IR (neat) 2963, 1764 (C=O), 1265, 1105 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.60 (m, 2H), 7.49-7.45 (m, 3H), 4.24 (t, J = 6.6 Hz, 2H), 1.68-1.60 (m, 2H), 1.37-1.28 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.65 (s, 2F); ¹³C NMR (100 MHz) δ 164.3 (t, ² $J_{C-F} = 35.7$ Hz), 132.8 (t, ² $J_{C-F} = 25.8$ Hz), 130.9, 128.6 (2C), 125.4 (t, ³ $J_{C-F} = 6.2$ Hz, 2C), 113.4 (t, ¹ $J_{C-F} = 251.9$ Hz), 66.8, 30.2, 18.9, 13.5; HRMS (EI) calcd for C₁₂H₁₄F₂O₂ 228.0962, found 228.0956.

4.2.3. N,N-Diethyl-2,2-difluoro-2-phenylacetamide (2c)

IR (neat) 2979, 1669 (C=O), 1452, 1364, 1260, 1093 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 7.56 (d, J = 7.0 Hz, 2H), 7.44-7.49 (m, 3H), 3.42 (q, J = 7.2 Hz, 2H), 3.25 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2Hz, 3H), 1.03 (t, J = 7.0 Hz, 3H); ¹⁹F NMR (376MHz, CDCl₃) δ -95.41 (s, 2F); ¹³C NMR (100MHz, CDCl₃) δ 162.7 (t, ² J_{C-F} = 29.7 Hz), 133.9 (t, ² J_{C-F} = 23.6 Hz), 130.7 (t, ⁴ J_{C-F} = 1.9 Hz, 2C), 128.7, 125.1 (t, ³ J_{C-F} = 5.8 Hz, 2C),

115.5 (t, ${}^{I}J_{C-F}$ = 251.5 Hz), 42.0 (t, ${}^{4}J_{C-F}$ = 3.8 Hz), 41.4, 13.7, 12.2; HRMS(EI) calcd for C₁₂H₁₅F₂NO 227.1122, found 227.1128.

4.3. The reaction of aldehyde and ketone thioacetals 3 with BrF₃-KHF₂

4.3.1. 1-(Difluoromethyl)naphthalene (4a)

The reaction was carried out as in the case of **2a** using 2.2 eq of BrF₃-KHF₂ to **3a**, and yield of **4a** was determined to be 91 % by ¹⁹F NMR using fluorobenzene as an internal standard. IR (neat) 1514, 1349, 1242 cm⁻¹; ¹H NMR δ 8.19-7.49 (m, 7H), 7.14 (t, J = 55.8 Hz, 1H); ¹⁹F NMR δ -111.48 (d, J = 56.0 Hz, 2F) (lit.[13] -111.38 (d, J = 55.2 Hz)); ¹³C NMR δ 133.7, 131.5, 129.7, 129.5 (t, ² $J_{C-F} = 21.1$ Hz), 128.7, 127.1, 126.4, 124.8 (t, ³ $J_{C-F} = 8.6$ Hz), 124.6, 123.5, 115.4 (t, ¹ $J_{C-F} = 239.5$ Hz).

4.3.2. 4-(Difluoromethyl)-1,1'-biphenyl (4b)

White solid. mp 71-72 °C (lit.[14] 77.0-77.5 °C); IR (KBr) 1414, 1380, 1226, 1077, 1024, 767 cm⁻¹; ¹H NMR δ 7.69-7.39 (m, 9H), 6.70 (t, J = 56.5 Hz, 1H); ¹⁹F NMR δ -110.98 (d, J = 57.3 Hz, 2F); ¹³C NMR δ 143.7 (t, ⁵ $J_{\text{C-F}} = 1.9$ Hz), 140.2, 133.2 (t, ² $J_{\text{C-F}} = 22.1$ Hz), 128.9 (2C), 127.9, 127.4 (2C), 127.2 (2C), 126.0 (t, ³ $J_{\text{C-F}} = 6.2$ Hz, 2C), 114.7 (t, ¹ $J_{\text{C-F}} = 238.5$ Hz).

4.3.3. Methyl 4-(difluoromethyl)benzoate (4c)

White solid. mp 38 °C (lit.[15] 36.5-37.0 °C); IR (KBr) 1724 (C=O), 1442, 1281 cm⁻¹; ¹H NMR δ 8.13 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 6.70 (t, J = 56.7 Hz,

1H), 3.95 (s, 3H); ¹⁹F NMR δ –112.86 (d, J = 57.9 Hz, 2F); ¹³C NMR δ 166.2, 138.4 (t, ${}^2J_{\text{C-F}}$ = 22.5 Hz), 132.3, 129.9 (2C), 125.6 (t, ${}^3J_{\text{C-F}}$ = 6.3 Hz, 2C), 114.0 (t, ${}^1J_{\text{C-F}}$ = 240.9 Hz), 52.3.

4.3.4. 9,9-Difluoro-9H-fluorene (4d)

White solid. mp 46-48 °C (lit.[16] 47-48 °C). IR (KBr) 1918, 1454, 1261 cm⁻¹; ¹H NMR δ 7.62 (d, J = 7.0 Hz, 2H), 7.56 (d, J = 7.3 Hz, 2H), 7.45 (dd, J = 7.5, 7.5 Hz, 2H), 7.33 (dd, J = 7.6, 7.6 Hz, 2H); ¹⁹F NMR δ –112.12 (s, 2F); ¹³C NMR δ 139.4 (t, ³J_{C-F} = 5.3 Hz, 2C), 137.9 (t, ²J_{C-F} = 25.1 Hz, 2C), 132.0 (2C), 128.7 (2C), 123.7 (2C), 123.2 (t, ¹J_{C-F} = 244.0 Hz), 120.3 (2C).

4.3.5. 2,2-Difluoroadamantane (4e)

White solid. mp 102-103 °C (lit.[17] 104-105 °C); IR (KBr) 2938, 2917, 1389, 1121 cm⁻¹; ¹H NMR δ 2.18 (brs, 2H), 1.97 (brs, 2H), 1.94 (brs, 2H), 1.86 (brs, 2H), 1.78-1.72 (m, 6H); ¹⁹F NMR δ –100.41 (s, 2F); ¹³C NMR δ 125.5 (t, ¹ $J_{\text{C-F}}$ = 248.2 Hz), 36.6 (2C), 35.8 (t, ² $J_{\text{C-F}}$ = 4.0 Hz, 2C), 34.0 (t, ³ $J_{\text{C-F}}$ = 4.0 Hz, 4C), 26.4.

4.4. The reaction of phenylthioglycosides 5with BrF_3 - KHF_2

4.4.1. 2,3,4,5-Tetra-O-acetyl-D-glucopyranosyl fluoride (6a)

The reaction was carried out as in the case of 2a using 1.5 eq of BrF₃-KHF₂ to 5a, and 6a was isolated in 83% yield. The ratio of α -isomer : β -isomer was determined to be 63:37 from ¹H NMR spectra. (6a- α) mp 104-106 °C. IR (neat) 2958, 1748 (C=O),

1379, 1230, 1038 cm⁻¹. ¹H NMR δ = 5.76 (dd, J = 53.4, 2.76 Hz, 1H), 5.50 (dd, J = 9.9, 9.9 Hz, 1H), 5.16 (dd, J = 9.9, 9.9 Hz, 1H), 4.96 (ddd, J = 24.6, 10.4, 2.8 Hz, 1H), 4.29 (dd, J = 12.2, 3.8 Hz, 1H), 4.21-4.13 (m, 2H), 2.14 (s, 3H), 2.11 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H); ¹⁹F NMR δ –150.34 (dd, J = 52.5, 25.3 Hz, 1F); ¹³C NMR δ = 170.5, 169.9, 169.8, 169.4, 103.7 (d, ${}^{1}J_{C-F}$ = 228.8 Hz), 70.1 (d, ${}^{2}J_{C-F}$ = 24.8 Hz), 69.7 (d, ${}^{3}J_{C-F}$ = 4.1Hz), 69.3, 67.2, 61.1, 20.6, 20.5, 20.4 (2C). (6a- β) mp 77-78 °C. IR (neat) 2942, 1761, 1439, 1378, 1227, 1109, 1042 cm⁻¹; ¹H NMR δ 5.37 (dd, J = 52.0, 6.1 Hz, 1H), 5.22-5.20 (m, 2H), 5.18-5.08 (brs, 1H), 4.29-4.20 (m, 2H), 3.93-3.88 (s, 1H), 2.11 (s, 6H), 2.05 (s, 6H); ¹⁹F NMR δ –137.83 (1F, dd, J = 51.9, 10.4 Hz); ¹³C NMR δ 170.5, 170.0, 169.2, 169.1, 106.1 (d, ${}^{1}J_{C-F}$ = 219.2 Hz), 72.0 (d, ${}^{3}J_{C-F}$ = 4.1 Hz), 71.7 (d, ${}^{3}J_{C-F}$ = 8.3 Hz), 71.1 (d, ${}^{2}J_{C-F}$ = 28.9 Hz), 67.4, 61.7, 20.6-20.5 (4C); HRMS (EI) calcd for $C_{14}H_{20}O_{9}F$ (M⁺+H) 351.1091, found 351.1115.

2,3;5,6-di-O-Isopropylidene- α -D-mannofuranosyl fluoride (**6b-\alpha**)

IR (neat) 2989, 1374, 1212, 1130, 1070, 972, 849 cm⁻¹; ¹H NMR δ 5.69 (d, J = 59.5 Hz, 1H), 4.77-4.43 (m, 2H), 4.43-4.38 (m, 1H), 4.18-4.05 (m, 3H), 1.46 (s, 6H), 1.39 (s, 3H), 1.35 (s, 3H); ¹⁹F NMR δ –129.25 (dd, J = 59.5, 6.7 Hz, 1F); ¹³C NMR δ 113.6 (d, ${}^{1}J_{C-F}$ = 221.6 Hz), 113.2, 109.4, 84.7, (d, ${}^{2}J_{C-F}$ = 42.2 Hz), 82.6, 78.6, 72.7, 66.6, 26.9, 25.8, 25.1, 24.5; HRMS (EI) calcd for $C_{12}H_{19}O_{5}F$ (M⁺+H) 263.1295, found 263.1317.

4.4.4. 2,3-O-Isopropylidene-5-O-benzoyl- β -D-ribofuranosiyl fluoride (6c)

IR (neat) 2990, 1725, 1273, 1094, 977, 714 cm⁻¹; ¹H NMR δ 8.07 (d, J = 8.2 Hz, 2H), 7.61-7.56 (m, 1H), 7.48-7.42 (m, 2H), 5.83 (d, J = 61.8 Hz, 1H), 4.88-4.85 (m, 2H), 4.71-4.67 (m, 1H), 4.45-4.37 (m, 2H), 1.50 (s, 3H), 1.35 (s, 3H); ¹⁹F NMR δ –116.44 (d,

J = 60.9 Hz, 1F){ lit.[18] -115.85 (dq, J = 61.6, 4.0 Hz, 1F)}; ¹³C NMR $\delta = 166.1$, 133.4, 129.9 (2C), 129.6, 128.5(2C),115.4 (d, ${}^{I}J_{C-F} = 223.1 \text{ Hz}$), 113.3, 86.5 (d, ${}^{3}J_{C-F} = 3.2 \text{ Hz}$), 85.1 (d, ${}^{2}J_{C-F} = 40.8 \text{ Hz}$), 81.0, 64.7, 26.4, 25.0.

4.4.5. 2,3,5-Tri-O-benzyl-β-D-arabinofuranosyl fluoride (6d)

White solid. mp 78-79 °C (lit.[19] 77-78 °C); IR (KBr) 3062, 3030, 2865, 1454, 1115, 1028, 738, 698 cm⁻¹; ¹H NMR δ 7.30-7.17 (m, 15H), 5.79 (d, J = 61.5 Hz, 1H), 4.73-4.45 (m, 7H), 4.17 (dd, J = 9.3, 2.2 Hz, 1H), 3.96 (dd, J = 5.1, 2.0 Hz, 1H), 3.64-3.57 (m, 2H); ¹⁹F NMR δ -121.23 (dd, J = 61.6, 9.2 Hz, 1F); ¹³C NMR δ 137.9, 137.7, 137.2, 127.7-128.5 (15C), 108.3 (d, ${}^{I}J_{C-F}$ = 229.9 Hz), 84.5 (d, ${}^{2}J_{C-F}$ = 21.5 Hz), 82.4, 81.5, 73.5, 72.6, 72.4, 71.5.

4.5. Reaction of trimethyl trithioorthocarboxylates 7 with BrF₃-KHF₂

4.5.1. 2-Bromo-N,N-dimethyl-4-(trifluoromethyl)aniline (8a)

The reaction was carried out as in the case of **2a** at 0 °C using 3.2 eq of BrF₃-KHF₂ to **7a**, and **8a** was isolated in 52% yield. IR (neat) 2952, 2874, 2842, 2791, 1608, 1324, 1123 cm⁻¹; ¹H NMR δ 7.79 (s, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 2.87 (s, 6H); ¹⁹F NMR δ -62.52(s, 3F); ¹³C NMR δ 154.9, 131.3, (q, ³ $J_{\text{C-F}}$ = 3.8 Hz), 125.3 (q, ³ $J_{\text{C-F}}$ = 3.8 Hz), 125.2 (q, ² $J_{\text{C-F}}$ = 34.3 Hz), 123.7 (t, ¹ $J_{\text{C-F}}$ = 276.0 Hz), 120.3, 117.9, 43.8 (2C); HRMS (EI) calcd for C₉H₈BrF₃N (M⁺-1) 265.9791, found 265.9792.

4.5.2. 5-Bromo-1-methyl-3-(trifluoromethyl)-1H-indole (8b)

White solid. mp 60 °C (lit.[20] 58-60 °C); IR (KBr) 1558, 1473, 1235, 1095 cm⁻¹; ¹H

NMR (DMSO-d₆) δ 8.08 (s, 1H), 7.72 (s, 1H), 7.60 (d, J = 8.9 Hz, 1H), 7.46 (dd, J = 8.9, 1.9 Hz, 1H), 3.86 (s, 3H); ¹⁹F NMR (DMSO-d₆) δ -54.8 (s, 3F); ¹³C NMR (DMSO-d₆) δ 135.4, 131.8 (q, ³ $J_{\text{C-F}}$ = 4.9 Hz), 125.4, 124.8 (q, ³ $J_{\text{C-F}}$ = 2.2 Hz), 124.3 (q, ¹ $J_{\text{C-F}}$ = 270.0 Hz), 120.4, 113.9, 113.3, 120.6 (q, ² $J_{\text{C-F}}$ = 37.2 Hz), 33.2.

4.5.3. Ethyl 3,3-difluoro-2,2-dimethyl-3-(methylthio)propanoate (8c)

IR (neat) 2988, 2938, 1737, 1274, 1175, 1034 cm⁻¹; ¹H NMR δ 4.20 (q, J = 7.3 Hz, 2H), 2.29 (s, 3H), 1.40 (s, 6H), 1.28 (t, J = 7.3 Hz, 3H); ¹⁹F NMR δ -84.67 (s, 2F); ¹³C NMR δ 171.7 (t, ³ $J_{\text{C-F}}$ = 2.8 Hz), 131.5 (t, ¹ $J_{\text{C-F}}$ = 289 Hz), 61.5, 51.6 (t, ³ $J_{\text{C-F}}$ = 22.0 Hz), 20.7 (t, ³ $J_{\text{C-F}}$ = 3.1 Hz, 2C), 13.9, 9.9 (t, ² $J_{\text{C-F}}$ = 5.3 Hz); HRMS (EI) calcd for $C_8H_{14}F_2O_2S$ 212.0683, found 262.0682.

Acknowledgment

We are grateful to prof. Hermann-Josef Frohn (University of Duisburg-Essen, Germany) for his kind advice on the handling of BrF₃.

References

- [1] (a) P. Kirsh, in Modern Fluoroorganic Chemistry, Wiley-VCH; Weinheim, 2004, pp. 203-277.
- (b) T. Hiyama, in: H. Yamamoto, (Ed.), Organofluorine Compounds, Springer-Verlag Heidelberg, 2000, pp. 183-233.
- (c) R. F. Anderson, J. O. Punderson, in: R. E. Banks, (Ed.), Organofluorine Chemicals and Their Industrial Applications, Ellis Horwood LTD., Chichester, 1979, pp. 123-247.
- [2] Recent reviews and books on fluorination reagent, see: (a) R. P. Singh, J. M.

- Shreeve, Synthesis (2002) 2561-2578.
- (b) K. L. Kirk, Org. Process Res. Dev. 12 (2008) 305-321.
- (c) K. Uneyama, in Organofluorine Chemistry, Blackwell Publishing, Oxford, 2006.
- [3] Recent reviews and books on air stable fluorination reagent, see: (a) R. P. Singh, J.
- M. Shreeve, Acc. Chem. Res. 37 (2004) 31-44.
- (b) P. T. Nyffeler, S. G. Durón, M. D. Burkart, S. P.Vincent, C.-H. Wong, Angew. Chem. Int. Ed. 44 (2005) 192-212.
- (c) S. Hara, in: K. K. Laali, (Ed.), Advances in Organic Synthesis, Bentham Science Publishers LTD., Hilversum, 2006; p 49-60.
- (d) N. Al-Maharik, D. O'Hagan, Aldrichimica Acta 44 (2011) 65-75.
- [4] (a) S. Hara, M. Monoi, R. Umemura, C. Fuse, Tetrahedron 68 (2012) 10145-10150.
- (b) M. Kunigami, S. Hara, J. Fluorine Chem. (2014) in press.
- [5] As for the reviews of the fluorination using BrF₃, see: (a) S. Rozen, Acc. Chem. Res.38 (2005) 803-812. (b) S. Rozen, Adv. Synth. Catal. 352 (2010) 2691-2707.
- [6] (a) S. Siegel, Acta Cryst. 9 (1956) 493-495.
- (b) K. O. Christe, C. J. Schack, Inorg. Chem. 9 (1970) 1852-1858.
- [7] W. W. Wilson, K. O. Christe, Inorg. Chem. 28 (1989) 4172-4175.
- [8] We didn't have any information about the structure of this solid. But it was conveniently used as BrF₃-2(KHF₂) (MW 215) because, two equivalent of KHF₂ to BrF₃ was used to make it. This solid is insoluble in most of organic solvents, and a slightly hygroscopic.
- [9] As for the recent review articles of gem-diffuoride synthesis from thioacetals, see:
- (a) V. Hugenberg, G. Haufe, J. Fluorine Chem. 143 (2012) 238-262.
- (b) T. Fuchigami, S. Inagi, Chem. Commun. 47 (2011) 10211-10223.

- (c) M. Shimizu, T. Hiyama, Angew. Chem. Int. Ed. 44 (2005) 214-231.
- (d) M. Kuroboshi, K. Kanie, T. Hiyama, Adv. Synth. Catal. 343 (2001) 235-250.
- (e) V. P. Reddy, G. K. S. Prakash, G. A. Olah, in: K. K. Laali (Ed.), Advances in Organic Synthesis, Bentham Science Publishers LTD., Hilversum, 2006, pp.183-211.
- (f) V. P. Reddy, M. Perambuduru, R. Alleti, in: K. K. Laali (Ed.), Advances in Organic Synthesis, Bentham Science Publishers LTD., Hilversum, 2006, pp.327-351.
- [10] (a) M. Shimizu, H. Togo, M. Yokoyama, Synthesis (1998) 799-822.
- (b) K. Toshima, Carbohydr. Res. 327 (2000) 15-26.
- (c) T. Mukaiyama, Angew. Chem. Int. Ed. 43 (2004) 5590-5614.
- [11] (a) K. C. Nicolau, R. E. Dolle, D. P. Papahatjis, J. L. Randall, J. Am. Chem. Soc. 106 (1984) 4189-4192.
- (b) J. C. López, P. B. Albert, C. Uriel, S. Valverde, A. M. Gómez, J. Org. Chem. 72 (2007) 10268-10271.
- (c) T. Sawamura, S. Kuribayashi, S. Inagi, T. Fuchigami, Adv. Synth. Catal. 352 (2010) 2757-2760.
- (d) S. Tsegay, R. J. Williams, S. J. Williams, Carbohydr. Res. 357 (2012) 16-22.
- (e) K. Suzuki, Y. Ito, O. Kanie, Carbohydr. Res. 359 (2012) 81-91.
- (f) G. Mugunthan, K. P. R. Kartha, Tetrahedron Lett. 53 (2012) 5631-5634.
- [12] M. Barbero, S. Cadamuro, I. Degani, R. Fochi, A. Gatti, V. Regondi, Synthesis (1988) 22-25.
- [13] G. K. S. Prakash, S. K. Ganesh, J.-P. Jones, A. Kulkarni, K. Masood, J. K. Swabeck,G. A. Olah, Angew. Chem. Int. Ed. 51 (2012) 12090-12094.
- [14] K. Fujikawa, Y. Fujioka, A. Kobayashi, H. Amii, Org. Lett. 13 (2011) 5560-5563.
- [15] T. Furuya, T. Fukuhara, S. Hara, J. Fluorine Chem. 126 (2005) 721-725.

- [16] F. E. Ray, C. E. Albertson, J. Am. Chem. Soc. 70 (1948) 1954-1955.
- [17] G. A. Olah, M. Nojima, I. Kerekes, J. Am. Chem. Soc. 96 (1974) 925-927.
- [18] M. Rapp, X. Cai, W. Xu, W. R. Dolbier Jr., S. F. Wnuk, J. Fluorine Chem. 130 (2009) 321-328.
- [19] W. A. Szarek, G. Grynkiewicz, Chem. Lett. (1984) 1751-1754.
- [20] M. M. Bastos, L. M. U. Mayer, E. C. S. Figueira, M. Soares, W. B. Kover, N. Boechat, J. Heterocycl. Chem. 45 (2008) 969-973.

An air-stable fluorinating reagent was prepared from BrF_3 and KHF_2 .> BrF_3 - KHF_2 was used in the various fluorination reactions.> Desulfurizing fluorination reactions of benzylic sulfides, dithioacetals and trimethyl trithioorthocarboxylates were performed.