

Tuning the Reactivity of Dioxoruthenium(VI) Porphyrins toward an Arylimine by Altering Porphyrin Substituents

Jie-Sheng Huang,* Sarana Ka-Yan Leung, Zhong-Yuan Zhou,[†] Nianyong Zhu, and Chi-Ming Che*

Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong

Received November 11, 2004

Reaction of dioxoruthenium(VI) porphyrins $[Ru^{VI}(Por)O_2]$ with arylimine HN=CPh₂ in dichloromethane afforded bis-(methyleneamido)ruthenium(IV) porphyrins $[Ru^{IV}(Por)(N=CPh_2)_2]$ for Por = 4-CI-TPP and TMP; (methyleneamido)hydroxoruthenium(IV) porphyrins $[Ru^{IV}(Por)(N=CPh_2)(OH)]$ for Por = TPP and TTP; and bis(arylimine)ruthenium(II) porphyrins $[Ru^{II}(Por)(HN=CPh_2)_2]$ for Por = 3,5-CI₂TPP and 3,5-(CF₃)₂TPP. In dichloromethane solution exposed to air, complex $[Ru^{II}(3,5-CI_2TPP)(HN=CPh_2)_2]$ underwent oxidative deprotonation to form $[Ru^{IV}(3,5-CI_2TPP)(N=CPh_2)_2]$. The new ruthenium porphyrins were identified by ¹H NMR, UV-vis, IR, and mass spectroscopy, along with elemental analysis. X-ray crystal structure determinations of $[Ru^{IV}(4-CI-TPP)(N=CPh_2)_2]$, $[Ru^{IV}(TPP)(N=CPh_2)_2]$ (OH)], and $[Ru^{II}(3,5-(CF_3)_2TPP)(HN=CPh_2)_2]$ revealed the Ru–N(methyleneamido) or Ru–N(arylimine) distances of 1.897(5) Å (average), 1.808(4) Å, and 2.044(2) Å (average), respectively.

Introduction

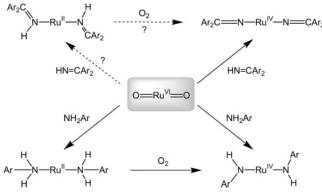
Since the first synthesis of $[Ru^{VI}(TMP)O_2]$ (TMP = *meso*tetramesitylporphyrinato dianion) by Groves and Quinn in 1984,^{1a} dioxoruthenium(VI) porphyrins, $[Ru^{VI}(Por)O_2]$, have received considerable attention.^{1–17} This interesting family of high-valent ruthenium porphyrins not only exhibits high reactivity toward oxidation of hydrocarbons,^{1b,2b-f,3,5,10,11,14,15}

- (a) Groves, J. T.; Quinn, R. Inorg. Chem. 1984, 23, 3844. (b) Groves, J. T.; Quinn, R. J. Am. Chem. Soc. 1985, 107, 5790. (c) Groves, J. T.; Ahn, K.-H. Inorg. Chem. 1987, 26, 3831.
- (2) (a) Leung, W.-H.; Che, C.-M. J. Am. Chem. Soc. 1989, 111, 8812.
 (b) Ho, C.; Leung, W.-H.; Che, C.-M. J. Chem. Soc., Dalton Trans. 1991, 2933. (c) Liu, C.-J.; Yu, W.-Y.; Peng, S.-M.; Mak, T. C. W.; Che, C.-M. J. Chem. Soc., Dalton Trans. 1998, 1805. (d) Liu, C.-J.; Yu, W.-Y.; Che, C.-M.; Yeung, C.-H. J. Org. Chem. 1999, 64, 7365. (e) Zhang, R.; Yu, W.-Y.; Lai, T.-S.; Che, C.-M. Chem. Commun. 1999, 1791. (f) Zhang, R.; Yu, W.-Y.; Sun, H.-Z.; Liu, W.-S.; Che, C.-M. Chem. Eur. J. 2002, 8, 2495.
- (3) (a) Marchon, J.-C.; Ramasseul, R. J. Chem. Soc., Chem. Commun. 1988, 298. (b) Marchon, J.-C.; Ramasseul, R. Synthesis 1989, 389.
 (c) Tavarès, M.; Ramasseul, R.; Marchon, J.-C.; Bachet, B.; Brassy, C.; Mornon, J. P. J. Chem. Soc., Perkin Trans. 2 1992, 1321.
- (4) (a) Rajapakse, N.; James, B. R.; Dolphin, D. Catal. Lett. 1989, 2, 219. (b) Cheng, S. Y. S.; Rajapakse, N.; Rettig, S. J.; James, B. R. J. Chem. Soc., Chem. Commun. 1994, 2669. (c) Bailey, A. J.; James, B. R. Chem. Commun. 1996, 2343. (d) Cheng, S. Y. S.; James, B. R. J. Mol. Catal. A: Chem. 1997, 117, 91.
- **3780** Inorganic Chemistry, Vol. 44, No. 11, 2005

thioethers,^{4a} alcohols,^{4b} and phosphines,^{4d,9a,b} but also serves as unique precursors for preparation of amine,^{4c,9d,e,17a-c} nitrosoarene,^{17f} hydroxylamine,^{17f} amido,^{17b,c} hydrazido-(1-),^{17d} and imido^{17c} complexes of ruthenium porphyrins.

Recently, we initiated exploration of the reactivity of $[Ru^{VI}(Por)O_2]$ toward imines and obtained the bis-methyl-

- (6) Paeng, I. R.; Nakamoto, K. J. Am. Chem. Soc. 1990, 112, 3289.
- (7) Schulz, L. D.; Fallon, G. D.; Moubaraki, B.; Murray, K. S.; West, B. O. J. Chem. Soc., Chem. Commun. 1992, 971.
- (8) Tokita, Y.; Yamaguchi, K.; Watanabe, Y.; Morishima, I. Inorg. Chem. 1993, 32, 329.
- (9) (a) Le Maux, P.; Bahri, H.; Simonneaux, G. J. Chem. Soc., Chem. Commun. 1994, 1287. (b) Le Maux, P.; Bahri, H.; Simonneaux, G.; Toupet, L. Inorg. Chem. 1995, 34, 4691. (c) Morice, C.; Le Maux, P.; Simonneaux, G. Tetrahedron Lett. 1996, 37, 6701. (d) Morice, C.; Le Maux, P.; Moinet, C.; Simonneaux, G. Inorg. Chim. Acta 1998, 273, 142. (e) Morice, C.; Le Maux, P.; Simonneaux, G.; Toupet, L. J. Chem. Soc., Dalton Trans. 1998, 4165.
- (10) Scharbert, B.; Zeisberger, E.; Paulus, E. J. Organomet. Chem. 1995, 493, 143.
- (11) (a) Gross, Z.; Ini, S.; Kapon, M.; Cohen, S. *Tetrahedron Lett.* 1996, 37, 7325. (b) Gross, Z.; Ini, S. *Inorg. Chem.* 1999, 38, 1446. (c) Gross, Z.; Ini, S. *Org. Lett.* 1999, 1, 2077.
- (12) Leung, W.-H.; Hun, T. S. M.; Hou, H.-w.; Wong, K.-Y. J. Chem. Soc., Dalton Trans. 1997, 237.
- (13) Zobi, F.; Stynes, D. V. Can. J. Chem. 2001, 79, 795.
- (14) Yamada, T.; Hashimoto, K.; Kitaichi, Y.; Suzuki, K.; Ikeno, T. *Chem. Lett.* **2001**, 268.


10.1021/ic0484102 CCC: \$30.25 © 2005 American Chemical Society Published on Web 02/22/2005

^{*} To whom correspondence should be addressed. E-mail: cmche@hku.hk (C.-M.C.); jshuang@hku.hk (J.-S.H.).

[†]Current address: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

^{(5) (}a) Higuchi, T.; Ohtake, H.; Hirobe, M. *Tetrahedron Lett.* 1989, *30*, 6545. (b) Higuchi, T.; Ohtake, H.; Hirobe, M. *Tetrahedron Lett.* 1991, *32*, 7435. (c) Ohtake, H.; Higuchi, T.; Hirobe, M. *J. Am. Chem. Soc.* 1992, *114*, 10660. (d) Ohtake, H.; Higuchi, T.; Hirobe, M. *Heterocycles* 1995, *40*, 867.

Scheme 1

eneamido (or azavinylidene) metalloporphyrins, $[Ru^{IV}(Por)-(N=CAr_2)_2]$, from the reaction of $[Ru^{VI}(TTP)O_2]$ (TTP = *meso*-tetrakis(*p*-tolyl)porphyrinato dianion) or $[Ru^{VI}(3,4,5-(MeO)_3TPP)O_2]$ (3,4,5-(MeO)_3TPP = *meso*-tetrakis(3,4,5-trimethoxyphenyl)porphyrinato dianion) with arylimine.^{17e}

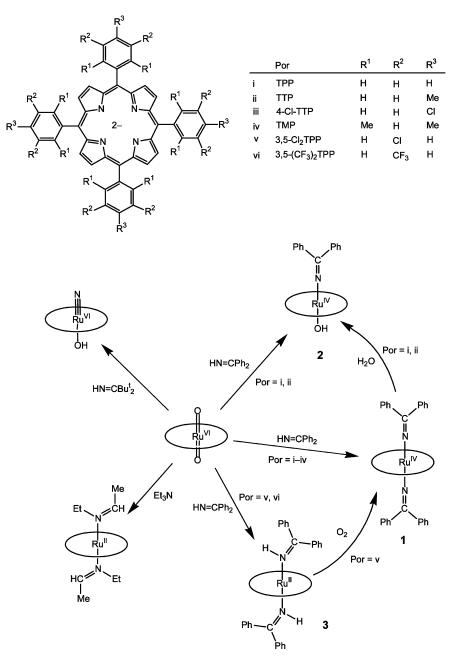
This is similar to the formation of bis(arylamido)ruthenium-(IV) porphyrins [Ru^{IV}(Por)(NHAr)₂] or [Ru^{IV}(Por)(NAr₂)₂] from treatment of [Ru^{VI}(Por)O₂] with arylamine (such as H₂N-*p*-C₆H₄NO₂ and HNPh₂).^{17b,c} However, reaction of [Ru^{VI}(Por)O₂] with arylamine (such as H₂N-*p*-C₆H₄Cl) can also afford bis(arylamine)ruthenium(II) porphyrins [Ru^{II}(Por)(NH₂-Ar)₂], which are readily convertible to bis(arylamido)ruthenium(IV) porphyrins through oxidative deprotonation.^{17c,18} It would be of interest to examine whether parallel reactivity of [Ru^{VI}(Por)O₂] toward arylimines, i.e., formation of bis-(arylimine)ruthenium(II) porphyrins [Ru^{II}(Por)(HN=CAr₂)₂] and oxidative deprotonation of the arylimine complexes to give [Ru^{IV}(Por)(N=CAr₂)₂] (Scheme 1), can be observed.

So far there have been no reports (to our knowledge) on bis-arylimine metalloporphyrins, despite previous isolation of the bis-alkylimine analogues $[Ru^{II}(Por)(EtN=CHMe)_2]^{17e}$ and the mono-arylimine complex $[Ru^{II}(Por)(CO)(PhN=CH <math>p-C_6H_4Cl)]$.¹⁹ In general, metalloporphyrins with simple imines, i.e., RN=CR'R'' (R,R'R'' = alkyl or aryl), as the sole axial ligands, are rare, and their synthetic route remains elusive (see below), which is in contrast to the facile formation of numerous pyridine, imidazole, or simple amine complexes of metalloporphyrins.²⁰ Since metal complexes

- (15) Schwenninger, R.; Schlögl, J.; Maynollo, J.; Gruber, K.; Ochsenbein, P.; Bürgi, H.-B.; Konrat, R.; Kräutler, B. *Chem. Eur. J.* 2001, 7, 2676.
- (16) Funyu, S.; Isobe, T.; Takagi, S.; Tryk, D. A.; Inoue, H. J. Am. Chem. Soc. 2003, 125, 5734.
- (17) (a) Huang, J.-S.; Che, C.-M.; Poon, C.-K. J. Chem. Soc., Chem. Commun. 1992, 161. (b) Huang, J.-S.; Che, C.-M.; Li, Z.-Y.; Poon, C.-K. Inorg. Chem. 1992, 31, 1313. (c) Huang, J.-S.; Sun, X.-R.; Leung, S. K.-Y.; Cheung, K.-K.; Che, C.-M. Chem. Eur. J. 2000, 6, 334. (d) Sun, X.-R.; Huang, J.-S.; Cheung, K.-K.; Che, C.-M. Inorg. Chem. 2000, 39, 820. (e) Huang, J.-S.; Leung, S. K.-Y.; Cheung, K.-K.; Che, C.-M. Chem. Eur. J. 2000, 6, 2971. (f) Liang, J.-L.; Huang, J.-S.; Zhou, Z.-Y.; Cheung, K.-K.; Che, C.-M. Chem. Eur. J. 2001, 7, 2306.
- (18) A non-porphyrin arylamine complex, [TpOs^{III}(NH₂Ph)Cl₂] (Tp = hydrotris(pyrazolyl)borate), has also been reported to undergo oxidative deprotonation to afford an arylamido complex, [TpOs^{IV}(NHPh)Cl₂], see: (a) Soper, J. D.; Mayer, J. M. *J. Am. Chem. Soc.* **2003**, *125*, 12217. (b) Soper, J. D.; Rhile, I. J.; DiPasquale, A. G.; Mayer, J. M. Polyhedron **2004**, *23*, 323.
- (19) Li, Y.; Chan, P. W. H.; Zhu, N.-Y.; Che, C.-M.; Kwong, H.-L. Organometallics 2004, 23, 54.

of simple imines are observed/proposed to be the intermediates in metal-mediated imine aziridination,²¹ imine/imide/ alkylidene metathesis,²² and amine-nitrile interconversion,²³ isolation of bis-arylimine metalloporphyrins would be essential for examination of their related reactivity, thus facilitating development of metalloporphyrin-mediated arylimine functionalizations or arylamine-nitrile interconversion.

In the course of our continuing studies on the reaction between $[Ru^{VI}(Por)O_2]$ and imines, we have found that bisarylimine complexes $[Ru^{II}(Por)(HN=CAr_2)_2]$ can be formed and isolated in good yields from such reaction by employing benzophenone imine $(HN=CPh_2)$ and certain porphyrin ligands. Like the bis-arylamine analogues, a $[Ru^{II}(Por)(HN=CAr_2)_2]$ complex can undergo oxidative deprotonation, leading to the formation of $[Ru^{IV}(Por)(N=CAr_2)_2]$. We have also found that treatment of some $[Ru^{VI}(Por)O_2]$ complexes with an arylimine afforded a (methyleneamido)hydroxoruthenium(IV) complex, $[Ru^{IV}(Por)(N=CAr_2)(OH)]$. All these findings are reported herein.


Results and Discussion

Dioxoruthenium(VI) porphyrins $[Ru^{VI}(Por)O_2]$ can be readily prepared by treatment of the carbonyl precursors $[Ru^{II}(Por)(CO)]$ with excess *m*-chloroperoxybenzoic acid.^{1,2a,b} It has been well documented that these ruthenium(VI) complexes exhibit high reactivity toward a variety of alkylor arylamines,^{4c,9d,e,17a-c} affording, in most cases, bis(amine)ruthenium(II) porphyrins such as $[Ru^{II}(Por)(H_2NR)_2]$ in high yields. In contrast, much less is known about the reactivity of $[Ru^{VI}(Por)O_2]$ toward alkyl- or arylimines; only the reactions of a few $[Ru^{VI}(Por)O_2]$ complexes with 2,2,4,4tetramethylpentan-3-one imine $(HN=CBut_2)^{24}$ and HN= CPh_2^{17e} have been reported.

Reaction of [Ru^{VI}(Por)O₂] with Arylimine. Following our previous work on the reaction of [Ru^{VI}(TTP)O₂] or [Ru^{VI}(3,4,5-(MeO)₃TPP)O₂] with HN=CPh₂,^{17e} we examined the reaction of [Ru^{VI}(Por)O₂] with the same arylimine by employing a series of other porphyrin ligands, including TPP (*meso*-tetraphenylporphyrinato dianion) and its derivatives 4-Cl-TPP (*meso*-tetrakis(*p*-chlorophenyl)porphyrinato dianion), TMP, 3,5-Cl₂TPP (*meso*-tetrakis(3,5-dichlorophenyl)porphyrinato dianion), and 3,5-(CF₃)₂TPP (*meso*-tetrakis(3,5-

- (21) (a) Rasmussen, K. G.; Hazell, R. G.; Jørgensen, K. A. Chem. Commun. 1997, 1103. (b) Rasmussen, K. G.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans. 2 1998, 1347.
- (22) Cantrell, G. K.; Meyer, T. Y. J. Am. Chem. Soc. 1998, 120, 8035.
- (23) (a) Diamond, S. E.; Tom, G. M.; Taube, H. J. Am. Chem. Soc. 1975, 97, 2661. (b) Keene, F. R.; Salmon, D. J.; Meyer, T. J. J. Am. Chem. Soc. 1976, 98, 1884. (c) Gunnoe, T. B.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 1996, 118, 6916.
- (24) Leung, S. K.-Y.; Huang, J.-S.; Liang, J.-L.; Che, C.-M.; Zhou, Z.-Y. Angew. Chem., Int. Ed. 2003, 42, 340.

^{(20) (}a) Buchler, J. W. In *Porphyrins and Metalloporphyrins*; Smith, K. M., Ed.; Elsevier: Amsterdam, 1975; p 157. (b) Buchler, J. W. In *The Porphyrins*; Dolphin, D., Ed.; Academic: New York, 1978; Vol. 1, p 389. (c) Sanders, J. K. M.; Bampos, N.; Clyde-Watson, Z.; Darling, S. L.; Hawley, J. C.; Kim, H.-J.; Mak, C. C.; Webb, S. J. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 3, p 1. (d) Scheidt, W. R. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 3, p 49.

(trifluoromethyl)phenyl)porphyrinato dianion). This led to the isolation of three types of ruthenium porphyrin products: $[Ru^{IV}(Por)(N=CPh_2)_2]$ (Por = 4-Cl-TPP: **1a**, TMP: **1b**), $[Ru^{IV}(Por)(N=CPh_2)(OH)]$ (Por = TPP: **2a**, TTP: **2b**), and $[Ru^{II}(Por)(HN=CPh_2)_2]$ (Por = 3,5-Cl₂TPP: **3a**, 3,5-(CF₃)₂TPP: **3b**) (Scheme 2).

The isolation of bis(methyleneamido)ruthenium(IV) porphyrins **1** for Por = 4-Cl-TPP and TMP is similar to that for Por = TTP and 3,4,5-(MeO)₃TPP reported previously.^{17e} In these cases, treatment of in situ formed [Ru^{VI}(Por)O₂] with excess HN=CPh₂ in dichloromethane at room temperature followed by addition of ethanol to the reaction mixture and subsequent evaporation of dichloromethane readily gave **1** in about 65% yield as a dark purple, crystalline solid.

However, the same procedure for Por = TPP led to the isolation of a mixture of $[Ru^{IV}(TPP)(N=CPh_2)_2]$ and $[Ru^{IV}-$

(TPP)(N=CPh₂)(OH)] (**2a**); the former was identified by its ¹H NMR signals similar to those of $[Ru^{IV}(TTP)(N=CPh_2)_2]$.²⁵ Attempts to obtain pure $[Ru^{IV}(TPP)(N=CPh_2)_2]$ were unsuccessful. In an effort to purify the product by chromatography on an alumina column, we found that $[Ru^{IV}(TPP)(N=CPh_2)_2]$ was transformed to **2a**, which was isolated in 70% yield.

Complex **2a** is a unique metalloporphyrin bearing both methyleneamido and hydroxo axial groups. The facile conversion of $[Ru^{IV}(TPP)(N=CPh_2)_2]$ to **2a** during the chromatography prompted us to examine the stability of previously reported $[Ru^{IV}(TTP)(N=CPh_2)_2]^{17e}$ toward similar

^{(25) &}lt;sup>1</sup>H NMR spectral data for $[Ru^{IV}(TPP)(N=CPh_2)_2]$ (300 MHz, CDCl₃): H_β 8.46 (s, 8H), H_o 7.91 (d, J = 7.8 Hz, 8H), H_m, H_p 7.67 (m, 12H), H'_p 6.67 (t, J = 7.5 Hz, 4H), H'_m 6.44 (t, J = 7.7 Hz, 8H), H'_o 4.03 (d, J = 7.1 Hz, 8H). The signals of pyrrolic protons (H_β) and axial methyleneamido phenyl protons (H'_p, H'_m, and H'_o) are very similar to those reported for $[Ru^{IV}(TTP)(N=CPh_2)_2]$: H_β 8.47 (s, 8H), H'_p 6.66 (t, 4H), H'_m 6.43 (t, 8H), H'_o 4.01 (d, 8H).^{17e}

Reactivity of Dioxoruthenium(VI) Porphyrins

treatment, which resulted in almost complete conversion of $[Ru^{IV}(TTP)(N=CPh_2)_2]$ to $[Ru^{IV}(TTP)(N=CPh_2)(OH)]$ (2b). The ¹H NMR spectrum of 2b turned out to be virtually identical to that of " $[Ru^{IV}(TTP)(N=CPh_2)]_2O$ " previously observed in solution;^{17e} accordingly, the latter species should be reformulated as $[Ru^{IV}(TTP)(N=CPh_2)(OH)]$ (see the spectral and X-ray structural characterization of 2 described below). Complexes **1a**,**b** were found to be stable during the chromatography.

It is interesting that reaction of $[Ru^{VI}(3,5-Cl_2TPP)O_2]$ or $[Ru^{VI}(3,5-(CF_3)_2TPP)O_2]$ with HN=CPh₂, through a procedure similar to that for preparation of **1a,b**, afforded bis-(arylimine)ruthenium(II) porphyrins **3a,b**, which were isolated in about 65% yield. This is parallel to the formation of bis(amine)ruthenium(II) porphyrins from $[Ru^{VI}(Por)O_2]$ and amines.^{4c,9e,17a-c}

Besides **3a,b**, the other known metalloporphyrins with simple imine as the sole axial ligands are the bis-alkylimine complexes [Ru^{II}(Por)(EtN=CHMe)₂],^{17e} which were prepared through apparent *N*-dealkylation of triethylamine by [Ru^{VI}-(Por)O₂] (Scheme 2). Attempts to prepare bis(alkylimine)-ruthenium(II) porphyrins from reaction of [Ru^{VI}(Por)O₂] with alkylimine HN=CBu^t₂ were not successful; this reaction was found to result in cleavage of the C=N bond and gave, unexpectedly, nitridoruthenium(VI) complexes [Ru^{VI}(Por)-(N)(OH)]²⁴ (Scheme 2).

Complexes **1a,b**, **2a,b**, and **3b** are moderately stable to air both in the solid state and in solution, but complex **3a** can be handled only for a short time in solutions exposed to air, although it is stable to air for weeks in the solid state. Interestingly, when a solution of **3a** in dichloromethane or chloroform exposed to air was left standing for 1 day, this complex was completely converted to the bis-methyleneamido complex [Ru^{IV}(3,5-Cl₂TPP)(N=CPh₂)₂], as revealed by ¹H NMR and UV-vis spectroscopy.²⁶

The reason for the marked dependence of the reactivity of $[Ru^{VI}(Por)O_2]$ toward HN=CPh₂ on the porphyrin substituents is not yet clear. It seems that electron-donating substituents such as Me and MeO favor methyleneamido ruthenium(IV) complexes whereas electron-withdrawing substituents such as CF₃ favor arylimine ruthenium(II) complexes. Indeed, electron-withdrawing substituents would stabilize metal complexes in a lower oxidation state by reducing the electron density of metal atoms. The conversion of $[Ru^{IV}(TPP)(N=CPh_2)_2]$ and $[Ru^{IV}(TTP)(N=CPh_2)_2]$ to 2a,b through chromatography is probably due to the presence of water in the alumina or solvents: we found that [Ru^{IV}-(TTP)(N=CPh₂)₂] gradually converted to **2b** in chloroform solution exposed to air and addition of water to the solution significantly speeded up the conversion. The higher stability of **2a,b** than $[Ru^{IV}(TPP)(N=CPh_2)_2]$ and $[Ru^{IV}(TTP)(N=$ $(CPh_2)_2$ may be attributed to the stronger *trans* effect of the methyleneamido group than the hydroxo group.

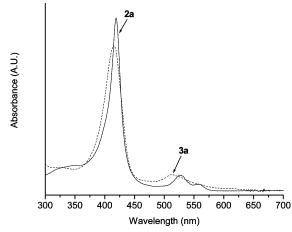


Figure 1. UV-vis spectra of $[Ru^{IV}(TPP)(N=CPh_2)(OH)]$ (2a) and $[Ru^{II}(3,5-Cl_2TPP)(HN=CPh_2)_2]$ (3a) in CH₂Cl₂.

Spectral Characterization of Reaction Products. Bis-(methyleneamido)ruthenium(IV) porphyrins **1a,b** show UV– vis spectra featuring Soret and β bands at about 420 and 530 nm, respectively, similar to those of [Ru^{IV}(TTP)(N= CPh₂)₂] and [Ru^{IV}(3,4,5-(MeO)₃TPP)(N=CPh₂)₂].^{17e} In the ¹H NMR spectra, all these methyleneamido complexes exhibit the axial [N=CPh₂]⁻ signals at $\delta \approx 6.7$ (t, H'_p), 6.4 (t, H'_m), and 4.0 ppm (d, H'_o), with the signal of pyrrolic protons (H_β) appearing at $\delta \approx 8.5$ ppm. The appearance of a single set of the axial [N=CPh₂]⁻ phenyl signals arises from the linear C=N-Ru-N=C arrangement in these methyleneamido ruthenium(IV) porphyrins.^{17e}

Complexes 2a,b exhibit UV-vis spectra (Soret: ca. 420 nm, β : 527 nm) that are very similar to those of **1a**,**b** and [Ru^{IV}(TTP)(N=CPh₂)₂] but dramatically different from those of previously reported dinuclear μ -oxo ruthenium(IV) porphyrins such as $[Ru^{IV}(TPP)X]_2O$ (X = Cl⁻, ArO⁻).²⁷ The spectrum of 2a is shown in Figure 1 as an example. In the ¹H NMR spectra of **2a**,**b** (see, for example, Figure 2), all the signals are located at normal fields and well resolved, like those of diamagnetic complexes [Ru^{IV}(Por)(N=CPh₂)₂],^{17e} indicating the diamagnetic character of the (methyleneamido)hydroxoruthenium(IV) porphyrins. Because each [Ru^{IV}-(Por)] moiety in 2a,b is unsymmetrically coordinated at the axial sites, the ortho or meta protons of the meso-phenyl groups in the porphyrin ligands give two well-separated sets of peaks, in contrast to the single set of peaks observed for such protons in [Ru^{IV}(TPP)(N=CPh₂)₂]²⁵ and [Ru^{IV}(TTP)-(N=CPh₂)₂].^{17e} Also, the H_{β} signals of **2a**,**b** ($\delta \approx 8.6$ ppm) are appreciably downfield from those of the two bismethyleneamido complexes. Since only a single set of the axial $[N=CPh_2]^-$ phenyl signals was observed for **2a**,**b**, both the complexes should contain linear axial Ru-N=C moieties.

The UV-vis spectra of the bis(arylimine)ruthenium(II) porphyrins **3a,b** (see, for example, Figure 1) show Soret and β bands at about 415 and 510 nm, respectively, which are considerably blue shifted from those of **1a,b**, but similar to those of bis(amine)ruthenium(II) porphyrins.^{17a-c} In the IR

⁽²⁶⁾ Spectral data for $[Ru^{IV}(3,5-Cl_2TPP)(N=CPh_2)_2]$, ¹H NMR (300 MHz): $H_{\beta} 8.52$ (s, 8H), $H_{o} 7.80$ (d, J = 1.7 Hz, 8H), $H_{p} 7.77$ (t, J = 1.8 Hz, 4H); $H'_{\rho} 6.79$ (t, J = 7.4 Hz, 4H), $H'_{m} 6.51$ (t, J = 7.9 Hz, 8H), $H'_{o} 4.01$ (d, J = 7.1 Hz, 8H). UV-vis (CH₂Cl₂): λ_{max} /nm 419 (Soret), 527 (β).

⁽²⁷⁾ Collman, J. P.; Barnes, C. E.; Brothers, P. J.; Collins, T. J.; Ozawa, T.; Gallucci, J. C.; Ibers, J. A. J. Am. Chem. Soc. 1984, 106, 5151.

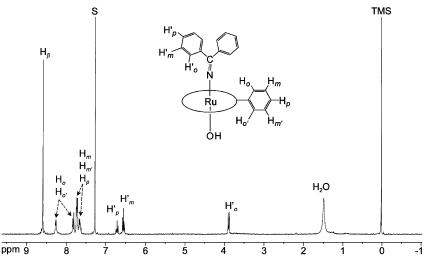


Figure 2. ¹H NMR spectrum of [Ru^{IV}(TPP)(N=CPh₂)(OH)] (2a) in CDCl₃ (the water came from the deuteriochloroform solvent).

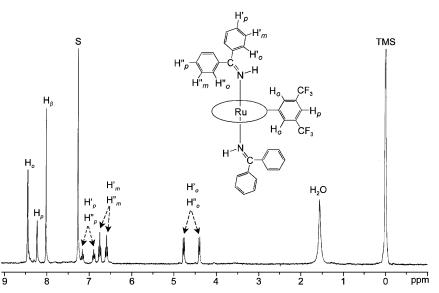


Figure 3. ¹H NMR spectrum of [Ru^{II}(3,5-(CF₃)₂TPP)(HN=CPh₂)₂] (3b) in CDCl₃ (the water came from the deuteriochloroform solvent).

spectra of **3a,b**, the oxidation state marker bands^{1c,17a} appear at frequencies of 1005 and 1002 cm⁻¹, respectively, again similar to those observed for the bis(amine)ruthenium(II) porphyrins,^{17a-c} but considerably lower than those of the methyleneamido ruthenium(IV) porphyrins **1a,b** and **2a,b** (1010–1012 cm⁻¹) and bis(arylamido)ruthenium(IV) porphyrins.^{17b,c} The weak and sharp bands at 3258 (**3a**) and 3250 cm⁻¹ (**3b**) in the IR spectra are absent in the methyleneamido complexes and can be attributed to the NH stretching vibrations of the axial HN=CPh₂ ligands.

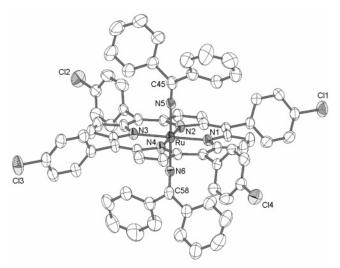
Since the axial Ru–N=C moieties in **3a,b** must be bent and rotation of the CPh₂ moiety of HN=CPh₂ about its C=N bond is prohibited, the two phenyl groups in each of the axial HN=CPh₂ ligands of **3a,b** should give different signals in the ¹H NMR spectra. This is indeed found to be the case (see, for example, the spectrum of **3b** shown in Figure 3), with one set of axial phenyl signals located at $\delta \approx 7.2$ (*p*-H), 6.7 (*m*-H), and 4.7 ppm (*o*-H), and the other at $\delta \approx 6.9$ (*p*-H), 6.6 (*m*-H), and 4.3 ppm (*o*-H). Consistent with the lower oxidation state of ruthenium in **3a** than in [Ru^{IV}(3,5-Cl₂TPP)(N=CPh₂)₂], the H_{β} signal of the former ($\delta = 8.11$ ppm) is significantly upfield from that of the latter ($\delta = 8.52$ ppm).²⁶

In the mass spectra of **3a,b**, three cluster peaks assignable to the parent ion $[M]^+$, and the fragments $[M - HN=CPh_2]^+$ and $[M - 2HN=CPh_2]^+$ were observed in each case. For **1a,b**, their mass spectral features are similar to the previously reported analogues such as $[Ru^{IV}(TPP)(N=CPh_2)_2]$.^{17e} Complexes **2a,b** each exhibit a mass spectrum that is dominated by the cluster peak ascribable to $[M - OH]^+$; a cluster peak assignable to $[Ru^{IV}(Por)(N=CPh_2)]_2O$ (which might be generated under the mass spectroscopic conditions) is also present.

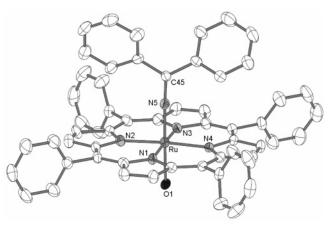
X-ray Crystal Structures. We have determined the crystal structure of each type of the reaction products by employing diffraction-quality crystals of **1a**, **2a**, and **3b**•0.5CH₂Cl₂. The crystal data are summarized in Table 1. Selected bond distances and angles are given in Table 2.

The structure of **1a** (Figure 4) resembles that of $[Ru^{IV}(3,4,5-(MeO)_3TPP)(N=CPh_2)_2]$ reported earlier,^{17e} featuring a planar

Reactivity of Dioxoruthenium(VI) Porphyrins


Table 1. Crystallographic Data for $[Ru^{IV}(4-Cl-TPP)(N=CPh_2)_2]$ (1a), $[Ru^{IV}(TPP)(N=CPh_2)(OH)]$ (2a), and $[Ru^{II}(3.5-(CF_3)_2TPP)(HN=CPh_2)_2] \cdot 0.5CH_2Cl_2$ (3b·0.5CH_2Cl_2)

	1a	2a	$3b \cdot 0.5 CH_2 Cl_2$
formula	$C_{70}H_{44}Cl_4N_6Ru$	C57H39N5ORu	C ₇₈ H ₄₂ F ₂₄ N ₆ Ru• 0.5CH ₂ Cl ₂
cryst syst	monoclinic	monoclinic	monoclinic
fw	1211.98	911.00	1662.71
space group	$P2_1/n$	$P2_1/n$	$P2_1/n$
a, Å	12.145(2)	12.934(1)	16.597(1)
<i>b</i> , Å	20.470(4)	30.942(4)	17.904(2)
<i>c</i> , Å	23.446(5)	11.181(1)	25.811(2)
α, deg	90.00	90.00	90.00
β , deg	102.48(3)	101.492(3)	93.517(2)
γ, deg	90.00	90.00	90.00
$V, Å^3$	5691(2)	4384.9(8)	7656(1)
Z	4	4	4
$\rho_{\rm calc}, {\rm g} {\rm cm}^{-3}$	1.415	1.380	1.443
2θ range, deg	50.90	55.12	55.20
GOF	0.98	1.01	1.02
R1/wR2	0.051/0.14	0.063/0.12	0.078/0.20


Table 2. Selected Bond Distances (Å) and Angles (deg) for $[Ru^{IV}(4-Cl-TPP)(N=CPh_2)_2]$ (**1a**), $[Ru^{IV}(TPP)(N=CPh_2)(OH)]$ (**2a**), and $[Ru^{II}(3,5-(CF_3)_2TPP)(HN=CPh_2)_2]\cdot 0.5CH_2Cl_2$ (**3b** $\cdot 0.5CH_2Cl_2$)

	1	a			
Ru-N1	2.072(4)	Ru-N2	2.051(4)		
Ru-N3	2.060(4)	Ru-N4	2.049(4)		
Ru-N5	1.887(5)	Ru-N6	1.906(4)		
N5-C45	1.198(6)	N6-C58	1.204(6)		
N1-Ru-N2	89.1(2)	N2-Ru-N3	90.7(2)		
N3-Ru-N4	89.4(2)	N1-Ru-N4	90.8(2)		
N1-Ru-N3	179.8(2)	N2-Ru-N4	179.8(2)		
N5-Ru-N1	90.0(2)	N5-Ru-N2	90.1(2)		
N5-Ru-N3	90.0(2)	N5-Ru-N4	89.7(2)		
N6-Ru-N1	90.3(2)	N6-Ru-N2	90.3(2)		
N6-Ru-N3	89.8(2)	N6-Ru-N4	89.9(2)		
N5-Ru-N6	179.5(2)	C45-N5-Ru	175.3(4)		
C58-N6-Ru	174.1(4)				
	2				
Ru-N1	2.039(4)	a Ru-N2	2.045(4)		
Ru=N3		Ru=N2 Ru=N4	2.045(3)		
Ru-N5 Ru-N5	2.051(4)	Ru=N4 Ru=O1			
	1.808(4) 1.274(5)	Ku=01	1.971(3)		
N5-C45	1.274(5)				
N1-Ru-N2	90.0(1)	N2-Ru-N3	89.9(1)		
N3-Ru-N4	90.5(1)	N1-Ru-N4	89.5(1)		
N1-Ru-N3	177.2(1)	N2-Ru-N4	175.8(1)		
N5-Ru-N1	93.0(2)	N5-Ru-N2	93.0(2)		
N5-Ru-N3	89.8(2)	N5-Ru-N4	91.2(1)		
O1-Ru-N1	88.6(1)	O1-Ru-N2	87.7(1)		
O1-Ru-N3	88.6(1)	O1-Ru-N4	88.1(1)		
N5-Ru-O1	178.3(2)	C45-N5-Ru	175.0(4)		
110 110 01	170.5(2)	015 115 114	175.0(1)		
$3b \cdot 0.5 CH_2 Cl_2$					
Ru-N1	2.045(2)	Ru-N2	2.042(2)		
Ru-N3	2.046(2)	Ru-N4	2.040(2)		
Ru-N5	2.035(2)	Ru-N6	2.053(2)		
N5-C53	1.291(3)	N6-C66	1.310(3)		
N1-Ru-N2	89.96(7)	N2-Ru-N3	90.40(6)		
N1-Ru-N2 N3-Ru-N4	89.96(7)	$N_2 = R_u = N_3$ $N_1 = R_u = N_4$	90.40(6) 89.71(7)		
N_{1} N1-Ru-N3	178.06(7)	N1 = Ru = N4 N2 = Ru = N4	178.98(7)		
N5-Ru-N1	81.69(7)	N5-Ru-N2	94.93(7)		
N5-Ru-N3	96.39(7)	N5-Ru-N4	85.99(7)		
N6-Ru-N1 N6-Ru-N3	97.46(7)	N6-Ru-N2	82.04(7)		
N_{0} -Ru-N $_{0}$	84.47(7)	N6-Ru-N4	97.04(7)		
N5-Ru-N6 C66-N6-Ru	176.87(7)	C53-N5-Ru	143.2(2)		
C00-N0-KU	142.6(2)				

porphyrin ring (mean deviation: 0.033 Å) and a linear axial C=N-Ru-N=C moiety (C-N-Ru: 174.1(4)°, 175.3(4)°; N-Ru-N: 179.5(2)°) with mean Ru-N distance of 1.897-(5) Å and mean C=N distance of 1.201(6) Å (the corresponding bond distances for $[Ru^{IV}(3,4,5-(MeO)_3TPP)(N=CPh_2)_2]$ are 1.896(8) and 1.25(1) Å^{17e}).

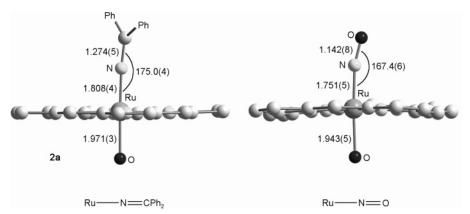
Figure 4. Structure of $[Ru^{IV}(4-Cl-TPP)(N=CPh_2)_2]$ (1a) with omission of hydrogen atoms (thermal ellipsoid probability: 30%).

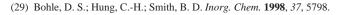
Figure 5. Structure of [Ru^{IV}(TPP)(N=CPh₂)(OH)] (**2a**) with omission of hydrogen atoms (thermal ellipsoid probability: 30%).

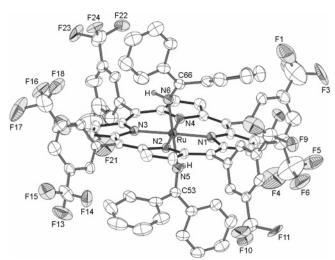
Complex **2a** (Figure 5) contains a linear axial Ru–N=C moiety (Ru–N–C 175.0(4)°) similar to that in **1a** and [Ru^{IV}(3,4,5-(MeO)₃TPP)(N=CPh₂)₂], but shows appreciably shorter Ru–N(axial) distance (1.808(4) Å) and longer methyleneamido N=C distance (1.274(5) Å) than those of the bis-methyleneamido complexes. This might arise from a smaller *trans* influence of OH⁻ than the methyleneamido group, which results in the formation of stronger Ru– N(axial) bond in the (methyleneamido)hydroxo complex. The porphyrin ring in **2a** is also planar, with a mean deviation of 0.019 Å. The axial O–Ru–N=C moiety is linear (O– Ru–N 178.3(2)°) and shows a Ru–O distance of 1.971(3) Å.

Note that a methyleneamido group is isoelectronic with the nitrosyl group, resembling the latter in binding metal ions.²⁸ In this context, the methyleneamido complexes [Ru-(Por)(N=CPh₂)₂] and [Ru(Por)(N=CPh₂)(OH)] may be considered analogous to the nitrosyl complexes [Ru(Por)-(NO)₂] and [Ru(Por)(NO)(OH)], respectively. Since no [Ru-

^{(28) (}a) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; John Wiley & Sons: New York, 1988; p 371. (b) Johnson, B. F. G.; Haymore, B. L.; Dilworth, J. R. In Comprehensive Coordination Chemistry, Vol. 2; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, 1987; p 99.




Figure 6. Comparison of the key bond distances (Å) and angles (deg) between [Ru(TPP)(N=CPh₂)(OH)] (2a) and [Ru(TTP)(NO)(OH)].²⁹ For clarity, the *meso*-aryl groups of the porphyrin ligands are not shown.


 $(Por)(NO)_2$] species have been structurally characterized, nor have structurally characterized methyleneamido complexes of non-ruthenium metalloporphyrins been known, the structure determination of **2a**, together with that of [Ru(TTP)-(NO)(OH)],²⁹ provides a unique opportunity to compare the key structure features of methyleneamido- and nitrosylmetalloporphyrins.

As shown in Figure 6, there is indeed some similarity between the structures of **2a** and [Ru(TTP)(NO)(OH)]. Accordingly, an alternative formulation of **2a** would be [Ru^{II}-(TPP)(N=CPh₂)(OH)] if one considers the methyleneamido group as [N=CPh₂]⁺, like the NO⁺ group in the nitrosyl complex (which is usually formulated as [Ru^{II}(TTP)(NO)-(OH)]). Figure 6 also shows that **2a** exhibits slightly longer Ru–N(axial) and Ru–O distances, along with a smaller distortion (from planarity) of the porphyrin ring, than the nitrosyl complex, and the Ru–N=C moiety in **2a** has a better linearity than the Ru–N=O moiety in [Ru(TTP)(NO)(OH)].

Our previous work^{17e} demonstrated that bis-methyleneamido ruthenium porphyrins [Ru(Por)(N=CPh₂)₂] resemble bis-arylamido ruthenium(IV) complexes [Ru^{IV}(Por)(NAr₂)₂] or [Ru^{IV}(Por)(NHAr)₂]. It seems that a methyleneamido group has both the characters of nitrosyl and arylamido groups. All these N-donor ligands can form Ru–N bonds having significant multiple bonding characters.^{17e} The shorter Ru–N distance of Ru–NO in [Ru(TTP)(NO)(OH)] than that of Ru–N=CPh₂ in **2a**, and the shorter Ru–N distances of Ru–N=CPh₂ in **1a** than those of Ru–NHAr in [Ru^{IV}(TTP)-(NHAr)₂]^{17c} reflect the order of Ru–N multiple bonding characters: Ru–NO > Ru–N=CPh₂ > Ru–NHAr.

In contrast to the linear axial Ru–N=C moieties in methyleneamido complexes **1a** and **2a**, the bis-arylimine complex **3b** features bent axial Ru–N=C moieties (Figure 7) with average Ru–N–C angle of 142.9(2)°. The Ru–N(axial) distances of 2.035(2) and 2.053(2) Å in **3b** are substantially longer than those in **1a** and **2a**, but slightly shorter than those of bis-alkylimine complex [Ru^{II}(TTP)-(EtN=CHMe)₂] (2.115(6) Å)^{17e} and non-porphyrin arylimine complex [Ru^{II}(Tp)(PEt₃)₂(HN=CPh₂)]BPh₄ (2.095(5) Å, Tp = hydrotris(pyrazolyl)borate).³⁰ A considerably longer Ru–N(axial) distance of 2.203 Å was observed for [Ru^{II}(Por)-

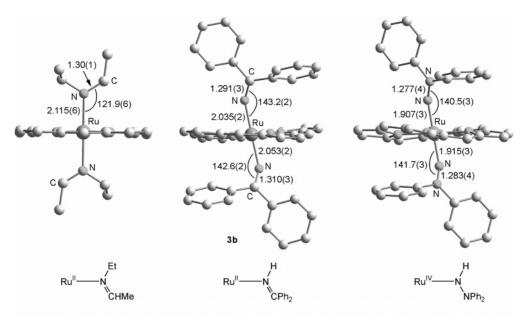


Figure 7. Structure of $[Ru^{II}(3,5-(CF_3)_2TPP)(HN=CPh_2)_2]\cdot 0.5CH_2Cl_2$ (**3b**·0.5CH₂Cl₂) with omission of hydrogen atoms, except those on the arylimine nitrogen atoms, and solvent molecule (thermal ellipsoid probability: 30%).

(CO)(PhN=CH-p-C₆H₄Cl)].¹⁹ All these alkyl- or arylimine ruthenium complexes, including **3b**, display the imine C= N distances within the narrow range 1.291(3)-1.310(3) Å.

The two phenyl groups in each of the axial ligands of **3b** make dihedral angles of about 20° and 89° with the porphyrin plane, with one of the two phenyl groups being almost perpendicular to the porphyrin plane, unlike the cases of 1a and 2a (whose corresponding dihedral angles are about 48-72°) but similar to the case of bis(hydrazido(1-))ruthenium-(IV) porphyrin [Ru^{IV}(TTP)(HNNPh₂)₂] (which shows such dihedral angles of about 10° and 85°).^{17d} Moreover, the porphyrin ring in 3b exhibits a marked saddle distortion with mean deviation of 0.125 Å, a value considerably larger than those of $[Ru^{II}(TTP)(EtN=CHMe)_2]$ (0.0241 Å) and the foregoing methyleneamido complexes. Such a significant distortion of the porphyrin ring in **3b** might result from the interaction between the phenyl groups of the arylimine and the meso-aryl groups of the porphyrin ligand, analogous to the case of $[Ru^{IV}(TTP)(HNNPh_2)_2]$ (whose axial phenyl groups are closer to the porphyrin ring and the porphyrin ring atoms show a larger mean deviation of 0.167 Å from

⁽³⁰⁾ Jiménez-Tenorio, M. A.; Jiménez-Tenorio, M.; Puerta, M. C.; Valerga, P. Inorg. Chim. Acta 2000, 300–302, 869.

Figure 8. Comparison of the key bond distances (Å) and angles (deg) among $[Ru^{II}(TTP)(EtN=CHMe)_2]$, ^{17e} $[Ru^{II}(3,5-(CF_3)_2TPP)(HN=CPh_2)_2]$ (**3b**), and $[Ru^{IV}(TTP)(HNNPh_2)_2]$.^{17d} For clarity, the *meso*-aryl groups of the porphyrin ligands are not shown.

the mean plane).^{17d} A comparison of the key structural features among $[Ru^{II}(TTP)(EtN=CHMe)_2]$, **3b**, and $[Ru^{IV}-(TTP)(HNNPh_2)_2]$ is depicted in Figure 8.

Conclusion

The reactivity of dioxoruthenium(VI) porphyrins [Ru^{VI}-(Por)O₂] toward arylimine is affected by the substituents on the meso-phenyl groups of the porphyrin ligands. Reaction of in situ formed [Ru^{VI}(TPP)O₂] with excess HN=CPh₂ in dichloromethane affords a mixture of bis(methyleneamido)ruthenium(IV) porphyrin [Ru^{IV}(TPP)(N=CPh₂)₂] and (methyleneamido)hydroxoruthenium(IV) porphyrin [Ru^{IV} - $(TPP)(N=CPh_2)(OH)]$; the former can be converted to the latter upon chromatography on an alumina column. Introducing 4-chloro, 2,4,6-trimethyl, or 3,4,5-trimethoxy substituents to the meso-phenyl groups of the TPP macrocycle effectively prevents formation of [Ru^{IV}(Por)(N=CPh₂)(OH)], resulting in the generation of stable $[Ru^{IV}(Por)(N=CPh_2)_2]$ as the sole isolable products. However, neither [Ru^{IV}(Por)(N=CPh₂)₂] nor [Ru^{IV}(Por)(N=CPh₂)(OH)] is observed when 3,5-di-(trifluoromethyl) substituents are introduced; in this case, the reaction product is bis(arylimine)ruthenium(II) porphyrin $[Ru^{II}(3,5-(CF_3)_2TPP)(HN=CPh_2)_2]$. By introducing 3,5dichloro substituents, the product is a less stable bis-arylimine complex [Ru^{II}(3,5-Cl₂TPP)(HN=CPh₂)₂] which can be isolated but, in solutions exposed to air, readily undergoes oxidative deprotonation to form [Ru^{IV}(3,5-Cl₂TPP)(N= CPh₂)₂], a reactivity resembling the formation of bisarylamine complex [Ru^{II}(Por)(NH₂Ar)₂] from [Ru^{VI}(Por)O₂] and NH2Ar and the oxidative deprotonation of [RuII(Por)(NH2-Ar)2] to bis-arylamido complex [Ru^{IV}(Por)(NHAr)2] reported earlier.^{17c} X-ray crystal structure determination of [Ru(TPP)-(N=CPh₂)(OH)] reveals that the key structural feature of this methyleneamido complex is similar to that of the nitrosyl complex [Ru(TPP)(NO)(OH)]. The present work demonstrates the resemblance of methyleneamido ruthenium porphyrins to both arylamido and nitrosyl analogues and provides, to our knowledge, the first access to bis-arylimine and (methyleneamido)hydroxo complexes of metalloporphyrins.

Experimental Section

General. Benzophenone imine (97%, Aldrich) and *m*-chloroperoxybenzoic acid (*m*-CPBA; 55%, Merck) were used as received. All solvents were of AR grade and were used without purification. The complexes [Ru^{II}(Por)(CO)] (Por = TPP, TTP, 4-Cl-TPP, TMP, 3,5-Cl₂TPP, 3,5-(CF₃)₂TPP),^{31,32} used for in situ generation of [Ru^{VI}-(Por)O₂]³³ (by oxidation with *m*-CPBA in dichloromethane), were synthesized according to the literature method. UV–vis spectra were recorded on a Hewlett-Packard 8453 diode array spectrophotometer (interfaced with an IBM-compatible PC). ¹H NMR spectra were recorded on a Bruker DPX 300 spectrometer at 298 K with tetramethylsilane (TMS) as internal standard. Chemical shifts (ppm) are reported relative to TMS. IR spectra were obtained on a Bio-Rad FT-IR spectrometer. Fast atom bombardment mass spectra

- (32) Spectral and analytical data for $[Ru^{II}(3,5-Cl_2TPP)(CO)]$, ¹H NMR (300 MHz, CDCl₃): H_{β} 8.72 (s, 8H), H_{o} , H'_{o} 8.13 (m, 4H), 8.05 (m, 4H), H_{ρ} 7.81 (t, J = 1.8 Hz, 4H). UV-vis (CH₂Cl₂): λ_{max}/mn (log ϵ) 413 (5.18), 529 (4.03). IR (Nujol): 1945 (ν_{CO}), 1010 cm⁻¹ (oxidation state marker band). Anal. Calcd for C4₅H₂0N₄Cl₈ORu·H₂O: C, 52.0; H, 2.14; N, 5.41. Found: C, 52.65; H, 2.31; N, 5.34. Spectral and analytical data for [Ru^{II}(3,5-(CF₃)₂TPP)(CO)], ¹H NMR (300 MHz, CDCl₃): H_{β} 8.79 (s, 8H), H_{o} , H'_{o} 8.63 (br, 8H), 8.36 (br, 4H). UV-vis (CH₂Cl₂): λ_{max}/nn (log ϵ) 413 (5.23), 529 (3.96). IR (Nujol): 1921 (ν_{CO}), 1011 cm⁻¹ (oxidation state marker band). Anal. Calcd for C₅₃H₂₀N₄F₂₄ORu·H₂O: C, 48.82; H, 1.70; N, 4.30. Found: C, 49.12; H, 1.78; N, 4.31.
- (33) Treatment of [Ru^{II}(Por)(CO)] for Por = 3,5-Cl₂TPP and 3,5-(CF₃)₂-TPP with *m*-CPBA in CH₂Cl₂ or CDCl₃ completely shifted the Soret (413 nm) and β (529 nm) bands (UV–vis spectra) to 421 and 519 nm, respectively, and the H_{β} signal ($\delta \approx 8.7$ ppm, ¹H NMR spectra) to $\delta \approx 9.1$ ppm. This is characteristic of the conversion of the carbonyl complexes to [Ru^{VI}(3,5-Cl₂TPP)O₂] or [Ru^{VI}(3,5-(CF₃)₂TPP)O₂], like the conversion of [Ru^{II}(Por)(CO)] with Por = TPP, TTP, and 4-Cl-TPP to the corresponding [Ru^{VI}(Por)O₂] through similar reactions (which shifts the Soret band from ca. 413 to 420 nm, the β band from ca. 530 to 518 nm, and the H_{β} signal from $\delta \approx 8.6$ to $\delta \approx 9.1$ ppm).^{2a,b}

⁽³¹⁾ Rillema, D. P.; Nagle, J. K.; Barringer, L. F., Jr.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 56.

(FAB MS) were recorded on a Finnigan MAT 95 mass spectrometer using 3-nitrobenzyl alcohol as matrix. Electrospray mass spectra (ES MS) were measured on a Finnigan LCQ quadrupole ion trap mass spectrometer with HPLC dichloromethane as solvent. Elemental analyses were performed by the Institute of Chemistry, the Chinese Academy of Sciences.

Preparation of Bis(methyleneamido)ruthenium(IV) Porphyrins [Ru^{IV}(Por)(N=CPh₂)₂] (1). These complexes were isolated as dark purple solids by treating [Ru^{VI}(Por)O₂] (in situ formed from [Ru^{II}(Por)(CO)] and *m*-CPBA) with excess HN=CPh₂ (*m*-CPBA/ HN=CPh₂ molar ratio \approx 1:25) in dichloromethane according to a procedure similar to that for the preparation of [Ru^{IV}(TTP)(N= CPh₂)₂] and [Ru^{IV}(3,4,5-(MeO)₃TPP)(N=CPh₂)₂].^{17e}

[**Ru**^{IV}(4-Cl-TPP)(N=CPh₂)₂] (1a). Yield: 65%. ¹H NMR (300 MHz, CDCl₃): H_β 8.46 (s, 8H), H_o 7.81 (d, J = 8.4 Hz, 8H), H_m 7.63 (d, J = 8.4 Hz, 8H), H'_p 6.68 (t, J = 7.5 Hz, 4H), H'_m 6.43 (t, J = 7.7 Hz, 8H), H'_o 3.98 (d, J = 7.3 Hz, 8H). UV-vis (3.72 × 10⁻⁶ M, CH₂Cl₂): λ_{max} /nm (log ϵ) 420 (5.37), 529 (4.28), 556 (3.99, sh). IR (KBr pellet): 1010 cm⁻¹ (oxidation state marker band). ES MS: m/z 1212 [M]⁺, 1032 [M - L]⁺, 852 [M - 2L]⁺ (L = N= CPh₂). Anal. Calcd for C₇₀H₄₄N₆Cl₄Ru: C, 69.37; H, 3.66; N, 6.93. Found: C, 69.65; H, 3.68; N, 6.68.

[**Ru**^{IV}(**TMP**)(**N=CPh**₂)₂] (**1b**). Yield: 68%. ¹H NMR (300 MHz, CDCl₃): H_β 8.34 (s, 8H), H_m 7.12 (s, 8H), *p*-Me 2.55 (s, 12H), *o*-Me 1.43 (s, 24H), H'_ρ 6.64 (t, J = 7.4 Hz, 4H), H'_m 6.43 (t, J = 7.7 Hz, 8H), H'_o 4.01 (d, J = 7.3 Hz, 8H). UV-vis (4.94 × 10⁻⁶ M, CH₂Cl₂): λ_{max} /nm (log ϵ) 419 (5.24), 530 (4.27), 555 (3.92, sh). IR (KBr pellet): 1012 cm⁻¹ (oxidation state marker band). FAB MS: m/z 1242 [M]⁺, 1062 [M – L]⁺, 882 [M – 2L]⁺ (L = N=CPh₂). Anal. Calcd C₈₂H₇₂N₆Ru: C, 79.26; H, 5.84; N 6.76. Found: C, 79.46; H, 6.03; N, 6.90.

Preparation of (Methyleneamido)hydroxoruthenium(IV) Porphyrins [Ru^{IV}(Por)(N=CPh₂)(OH)] (2). These complexes were prepared according to a similar procedure to that for the preparation of 1, except that the products obtained were subjected to column chromatography on alumina (aluminum oxide 90, neutral, 70–230 mesh, EM) with dichloromethane–chloroform as eluent followed by removal of the solvents (which afforded 2 as dark purple solids).

[**Ru**^{IV}(**TPP**)(**N=CPh**₂)(**OH**)] (2a). Yield: 70%. ¹H NMR (300 MHz, CDCl₃): H_β 8.60 (s, 8H), H_o, H_o' 8.27 (m, 4H), 7.82 (m, 4H), H_m, H_m', H_p 7.73 (m, 8H), 7.66 (m, 4H), H'_p 6.72 (t, J = 7.4 Hz, 2H), H'_m 6.55 (t, J = 7.7 Hz, 4H), H'_o 3.89 (d, J = 7.4 Hz, 4H). UV-vis (6.94 × 10⁻⁶ M, CH₂Cl₂): λ_{max} /nm (log ϵ) 419 (5.29), 527 (4.23), 557 (3.81, sh). IR (KBr pellet): 3605 (ν_{OH}), 1012 cm⁻¹ (oxidation state marker band). ES MS: m/z 894 [M – OH]⁺, 1805. Anal. Calcd for C₅₇H₃₉N₅ORu: C, 75.15; H, 4.31; N, 7.69. Found: C, 75.55; H, 4.44; N, 7.67.

[**Ru**^{IV}(**TTP**)(**N=CPh**₂)(**OH**)] (**2b**). Yield: 68%. ¹H NMR (300 MHz, CDCl₃): H_β 8.61 (s, 8H), H_o, H_o' 8.14 (dd, J = 7.6, 1.7 Hz, 4H), 7.71 (dd, J = 7.7, 1.8 Hz, 4H), H_m, H_m' 7.54 (d, J = 7.5 Hz, 4H), 7.47 (d, J = 7.5 Hz, 4H), p-CH₃ 2.69 (s, 12H), H'_ρ 6.69 (t, J = 7.6 Hz, 2H), H'_m 6.53 (t, J = 7.7 Hz, 4H), H'_o 3.87 (d, J = 7.8 Hz, 4H). UV-vis (6.36 × 10⁻⁶ M, CH₂Cl₂): λ_{max} /nm (log ϵ) 421 (5.28), 527 (4.32), 558 (4.11, sh). IR (KBr pellet): 3602 (ν_{OH}), 1011 cm⁻¹ (oxidation state marker band). ES MS: m/z 950 [M – OH]⁺, 1917. Anal. Calcd for C₆₁H₄₇N₅ORu: C, 75.76; H, 4.90; N, 7.24. Found: C, 76.27; H, 4.84; N, 7.17.

Preparation of Bis(arylimine)ruthenium(II) Porphyrins [Ru^{II}-(Por)(HN=CPh₂)₂] (3). These complexes were isolated as dark purple solids according to the same procedure as that for the preparation of 1a,b except that [Ru^{II}(3,5-Cl₂TPP)(CO)] or [Ru^{II}(3,5-(CF₃)₂TPP)(CO)] was used instead of [Ru^{II}(4-Cl-TPP)(CO)] or [Ru^{II}(TMP)(CO)]. [**Ru^{II}**(3,5-Cl₂**TPP**)(**HN=CPh**₂)₂] (3a). Yield: 63%. ¹H NMR (300 MHz, CDCl₃): H_β 8.11 (s, 8H), H_o 7.86 (d, J = 1.9 Hz, 8H), H_ρ 7.69 (t, J = 1.8 Hz, 4H), H'_ρ, H''_ρ 7.16 (t, J = 7.5 Hz, 2H), 6.83 (t, J = 7.5 Hz, 2H), H'_m, H''_m 6.74 (t, J = 7.8 Hz, 4H), 6.58 (t, J =7.8 Hz, 4H), H'_o, H''_o 4.71 (d, J = 7.2 Hz, 4H), 4.30 (d, J = 7.0 Hz, 4H). UV-vis (9.62 × 10⁻⁶ M, CH₂Cl₂): λ_{max} /nm (log ϵ) 415 (5.09), 512 (4.22). IR (KBr pellet): 3258 (ν_{NH}), 1005 cm⁻¹ (oxidation state marker band). FAB MS: m/z 1352 [M]⁺, 1171 [M - L]⁺, 990 [M - 2L]⁺ (L = HN=CPh₂). Anal. Calcd for C₇₀H₄₂N₆Cl₈Ru: C, 62.19; H, 3.13; N, 6.22. Found: C, 62.41; H, 3.19; N, 5.99.

[**Ru**^{II}(3,5-(**CF**₃)₂**TPP**)(**HN=CPh**₂)₂] (**3b**). Yield: 65%. ¹H NMR (300 MHz, CDCl₃): H_β 8.03 (s, 8H), H_o 8.45 (s, 8H), H_p 8.23 (s, 4H), H'_p, H''_p7.16 (t, J = 7.7 Hz, 2H), 6.89 (t, J = 7.7 Hz, 2H), H'_m, H''_m 6.75 (t, J = 7.8 Hz, 4H), 6.59 (t, J = 7.8 Hz, 4H), H'_o, H''_o'4.76 (d, J = 7.3 Hz, 4H), 4.39 (d, J = 7.2 Hz, 4H). UV-vis (4.94 × 10⁻⁶ M, CH₂Cl₂): λ_{max} /nm (log ϵ) 415 (5.24), 510 (4.33). IR (KBr pellet): 3250 (ν_{NH}), 1002 cm⁻¹ (oxidation state marker band). ES MS (CH₂Cl₂): m/z 1620 [M]⁺, 1439 [M – L]⁺, 1258 [M – 2L]⁺ (L = HN=CPh₂). Anal. Calcd for C₇₈H₄₂N₆F₂₄Ru: C, 57.82; H, 2.61; N, 5.19. Found: C, 57.61; H, 2.90; N, 5.04.

X-ray Crystal Structural Determination of 1a, 2a, and 3b. 0.5CH₂Cl₂. Diffraction-quality crystals were grown by slow evaporation of a solution in dichloromethane-hexane (1:5 v/v) at room temperature for about 3 days (1a and 2a) or by slow evaporation of a solution in dichloromethane-ethanol (1:5 v/v) at room temperature for a week (3b·0.5CH₂Cl₂). Data were collected using graphite-monochromatized Mo Ka radiation at 28 °C on a MAR diffractometer with a 300-mm image plate detector for 1a (dimensions $0.40 \times 0.25 \times 0.20 \text{ mm}^3$) and at 21 °C on a Bruker SMART CCD diffractometer for 2a (dimensions: $0.18 \times 0.14 \times$ 0.08 mm³) and **3b**·0.5CH₂Cl₂ (dimensions: $0.20 \times 0.16 \times 0.14$ mm³). In the case of 1a, the data collection was made with 2° oscillation step of φ , 600-second exposure time, and 120-mm scanner distance, and 100 images were collected. The structures were solved by direct methods employing SIR-97³⁴ program (1a) or SHELXS-97³⁵ program (2a and 3b·0.5CH₂Cl₂) and refined by full-matrix least-squares on F² employing SHELXL-97³⁶ program on PC. For 3b.0.5CH₂Cl₂, the F atoms of the CF₃ groups in the 3,5-(CF₃)₂TPP ligand are disordered. In the least-squares refinements, all non-hydrogen atoms, except some of the disordered F atoms, were refined anisotropically, and the H atoms at calculated positions were not refined.

Acknowledgment. This work was supported by The University of Hong Kong, the Hong Kong University Foundation, Hong Kong Research Grants Council (HKU7011/04P), and the University Grants Committee of the Hong Kong SAR of China (Area of Excellence Scheme, AoE/P-10/01).

Supporting Information Available: Positional and thermal parameters and bond lengths and angles for $[Ru^{IV}(4-CI-TPP)(N=CPh_2)_2]$ (1a), $[Ru^{IV}(TPP)(N=CPh_2)(OH)]$ (2a), and $[Ru^{II}(3,5-(CF_3)_2-TPP)(HN=CPh_2)_2]\cdot 0.5CH_2Cl_2$ (3b·0.5CH₂Cl₂) in CIF format. This material is available free of charge via the Internet at http:// pubs.acs.org.

IC0484102

⁽³⁴⁾ Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1998, 32, 115.

⁽³⁵⁾ Sheldrick, G. M. SHELXS-97. Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997.

⁽³⁶⁾ Sheldrick, G. M. SHELXL-97. Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997.