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The first asymmetric synthesis of b-trifluoromethylated pyrroline

carboxylates has been achieved by organocatalytic conjugated

addition of adamantyl glycine imine to b-trifluoromethylated enones,
followed by a deprotection/cyclization/dehydration sequence.

Heterocycles constitute a major family of pharmaceuticals and

agrochemicals with a very long history.1 On the other hand,

fluorinated organic compounds have recently emerged as the

leading candidates in the future drug market, since adding

fluorine or a fluorinated group to biologically active compounds

can dramatically alter their metabolic stability, potency, or other

properties of parent compounds.2 In this context, heterocyclic

compounds with fluorine are becoming modern attractive targets

in the field of medicinal chemistry.3 Although the aromatic hetero-

cycles are a well-known group of heterocycles, we are interested in

the partially saturated fluorinated heterocyclic compounds. Fig. 1

shows selected examples of fluorinated aromatic heterocycles 1

(XQO, isoxazole; XQNH, pyrazole; XQCH2, 2H-pyrrole)

and their partially saturated variants 2 (XQO, isoxazoline;

XQNH, pyrazoline; XQCH2, pyrroline).
4 The most obvious

aspect that differentiates 2 from 1 is the existence of chirality in

its cyclic framework. The chiral drug industry has soared in

recent years as a result of leading progress in asymmetric

synthesis;5 thus the partially saturated fluorinated heterocycles

containing chiral center(s) are very attractive. Indeed, a series

of partially saturated five-membered fluorinated heterocycles 2

has been recognized as an important class of compounds with

remarkable biological activities and thus a large number of

compounds 2 have been registered in databases.4

We recently reported the catalytic asymmetric synthesis of

biologically important 5-trifluoromethyl-2-isoxazolines 2 (XQO)

using chiral ammonium salts ofCinchona alkaloids.6 An expeditious

synthesis of 2 (XQO) based on the direct introduction of

a trifluoromethyl group into aromatic isoxazoles was also

disclosed.7 As part of our ongoing research programs directed at

the development of efficient methodologies for the construction of

trifluoromethylated heterocycles,8 we targeted b-trifluoromethyl

pyrroline carboxylates 3 (XQCHCO2R
0) due to their potential

attractiveness as drug candidates as they have two contiguous

asymmetric centers. We disclose herein the first diastereo- and

enantioselective synthesis of b-trifluoromethylated pyrroline

carboxylates via organocatalytic conjugated addition of a

glycinate Schiff base 5 to b-trifluoromethylated enones 4 by

a phase-transfer catalyst derived from Cinchona alkaloids,

followed by a deprotection/cyclization/dehydration sequence

in excellent yields, excellent diastereoselectivities and high

enantioselectivities (Scheme 1).

b-Trifluoromethylated a,b-unsaturated carbonyl compounds

4 are used as potential building blocks for construction of a

stereogenic C–CF3 center.
9 Billard and co-workers reported the

racemic synthesis of b-trifluoromethylated pyrroline carboxy-

lates 3 in good yields.10 However, the diastereoselectivity was

moderate and the asymmetric synthesis of 3 has not yet been

reported. To achieve the asymmetric variant of Billard’s method-

ology, we initiated our examination of the organocatalytic

asymmetric conjugated addition of glycinate Schiff base 5 onto

b-trifluoromethylated enones 4. In recent years, enantioselective

Fig. 1 While aromatic fluorinated heterocycles 1 do not have chirality,

their partially saturated variants 2 and 3 have chiral center(s).

Scheme 1 Asymmetric organocatalytic synthesis of b-trifluoromethylated

pyrroline carboxylates 3.
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1,4-addition of glycinate Schiff base 5 to unsubstituted a,b-
unsaturated carbonyl compounds to construct a single asymmetric

center has been well examined.11 However, the enantioselective

1,4-addition of 5 to b-substituted a,b-unsaturated carbonyl

compounds for construction of two contiguous asymmetric

centers is a challenge.12 Kobayashi and co-workers reported

the catalytic asymmetric 1,4-addition reactions of 5 to

b-substituted a,b-unsaturated acrylates using Ca–Box catalysts

prepared from calcium alkoxides and methylene bridged Box

ligands in 22–82% de with 81–99% ee.12a Very recently, the

catalytic asymmetric 1,4-addition reaction of 5 to chalcones

catalyzed by chiral pentanidium salts to provide adducts with

excellent enantioselectivities and diastereoselectivities was

disclosed by Tan and co-workers.12b We started our investigation

with the reaction of (E)-4,4,4-trifluoro-1-phenylbut-2-en-1-one (4a)

with a tert-butyl glycinate-benzophenone Schiff base (5a) in the

presence of 50% KOH aq., and screened a more readily available

catalyst, and chiral quaternary ammonium phase transfer catalysts

(Table 1). We first attempted the reaction in the presence of a

catalytic amount of N-3,5-bis(trifluoromethylbenzyl) cinchoninium

bromide (6a) as a chiral phase transfer catalyst in toluene at 0 1C.

Although the b-trifluoromethylated pyrroline 3a was obtained in

88% yield with a low ee (38%), excellent diastereoselectivity was

observed (entry 1). The quinidine derivative 6b gave a slightly lower

ee value of 36% (entry 2). After screening several phase-transfer

catalysts derived from cinchonine 6c–6f (entries 3–6), catalyst 6e,

having a sterically demanding tBu group, was found to be the most

effective catalyst providing 3a in high yield (90%) with 55% ee

(entry 5). We next attempted the reaction using commercially

available Maruoka catalyst 6g; however, no improvement

was observed (entry 7). We then examined the effect of bases

(entries 8–15), and Cs2CO3 was found to be most effective in

terms of enantioselectivity (71% ee, entry 10). We continued

the survey of reaction conditions (entry 16–20), and a slightly

better result was obtained using cyclopentyl methyl ether,

CPME, as the solvent (entry 20, 96%, 72% ee). We next

turned our attention to the glycinate Schiff base 5. Steric

bulkiness of 5 was necessary for achieving high enantiocontrol,

and ee’s up to 82% of 3b were obtained when 1-adamantyl

glycinate-benzophenone Schiff base (5b) was used (entry 21,

75%, 82% ee). The best result was obtained when the reaction

was carried out at�20 1C in the presence of 5.0 equiv. of Cs2CO3

(entry 22, 95%, 86% ee). An excellent diastereoselectivity of

>95/5 was observed in all cases.

With optimal conditions in hand, the scope of the conjugated

addition of glycinate Schiff base 5b to b-trifluoromethylated

enones 4 catalyzed by Cinchona phase-transfer catalyst 6e,

followed by a deprotection/cyclization/dehydration sequence

was explored with a variety of substrates selected in order to

establish the generality of the process, all affording excellent

yields, excellent anti-diastereoselectivities, and high enantio-

selectivities (Table 2). A series of b-trifluoromethylated enone

derivatives 4c–4i with a variety of substituents on their aromatic

rings, such as methyl, methoxy, fluoro, chloro, bromo, and

nitro, were nicely converted to 3c–3i in excellent yields with

excellent diastereoselectivities of >98/2 and high enantio-

selectivities of 77–88% ee (entries 1–8). Sterically demanding

naphthyl substituted enone 4j was also compatible, although

the enantioselectivities were somewhat low, affording product

3j in 97% yield with an ee value of 72% (entry 9). The

heteroaromatic substrate 4k bearing a furanyl group was also

a suitable substrate for this transformation, providing the

desired product 3k in 96% yield with 80% ee (entry 10).

Anti-3 was obtained exclusively in all the cases and the

absolute stereochemistry of anti-3b was determined after

derivatization to its methylester (Fig. S1, ESIz).13 All the other

products 3 were tentatively assigned by analogy.

In summary, we have developed the first asymmetric synthesis of

biologically attractive b-trifluoromethyl pyrroline carboxylates 3

containing two contiguous asymmetric centers in excellent yields

with excellent anti-diastereoselectivities and high enantioselectivities

using the Cinchona alkaloid-catalyzed conjugated addition of a

glycinate Schiff base to b-trifluoromethylated enones, followed by a

deprotection/cyclization/dehydration sequence. It should be noted

Table 1 Optimization of reaction conditions

Entrya 5 6 Base Solvent Time/h Yieldb (%) eec (%)

1 5a 6a 50% KOH aq. Toluene 1 88 38
2 5a 6b 50% KOH aq. Toluene 1 95 36
3 5a 6c 50% KOH aq. Toluene 2 97 39
4 5a 6d 50% KOH aq. Toluene 2 97 14
5 5a 6e 50% KOH aq. Toluene 2 90 55
6 5a 6f 50% KOH aq. Toluene 2 95 0
7 5a 6g 50% KOH aq. Toluene 2 90 35
8 5a 6e Na2CO3 Toluene 62 84 68
9 5a 6e K2CO3 Toluene 53 76 69
10 5a 6e Cs2CO3 Toluene 12 82 71
11 5a 6e K3PO4 Toluene 12 70 70
12 5a 6e tBuOK Toluene 3 59 27
13 5a 6e NaOMe Toluene 2 86 51
14 5a 6e Me4NF Toluene 2 86 39
15 5a 6e CsF Toluene 24 83 60
16 5a 6e Cs2CO3 Mesitylene 40 95 66
17 5a 6e Cs2CO3 CH2Cl2 12 86 25
18 5a 6e Cs2CO3 THF 12 90 66
19 5a 6e Cs2CO3 Et2O 4 97 68
20 5a 6e Cs2CO3 CPME 4 96 72
21 5b 6e Cs2CO3 CPME 5 75 82
22d 5b 6e Cs2CO3 CPME 9 95 86

a The reaction of 4awith 5 (1.1 equiv.) was carried out in the presence of a

catalyst (10 mol%) and a base in solvent at 0 1C, unless otherwise noted.
b Isolated yield. c ee’s were determined by chiral HPLC. d The reaction

was carried out at �20 1C in the presence of 5.0 equiv. of Cs2CO3.
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that the combination of the new bulky adamantyl glycinate

and CPME14 solvent introduced asymmetry into the Billard

chemistry,10 with especially good diastereocontrol. The

adamantyl ester would provide an attractive alternative to

the analogous methyl, tert-butyl, or cumyl esters.15 The use of

CPME should be advantageous for industrial use due to the

high stability, wide liquidity range, low heat of vaporization,

resistance to peroxide formation and narrow explosion area.14
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Aid for Scientific Research (21390030, 22106515, 23915014,
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