

This article is part of the **Organocatalysis**

web themed issue

Guest editors: Professors Keiji Maruoka, Hisashi Yamamoto, Liu-Zhu Gong and Benjamin List

All articles in this issue will be gathered together online at <u>www.rsc.org/organocatalysis</u>

Cite this: Chem. Commun., 2012, 48, 3632-3634

COMMUNICATION

Partially saturated fluorinated heterocycles: diastereo- and enantioselective synthesis of β-trifluoromethyl-pyrroline carboxylates^{†‡}

Hiroyuki Kawai,^a Yutaka Sugita,^a Etsuko Tokunaga,^a Hiroyasu Sato,^b Motoo Shiro^b and Norio Shibata^{*a}

Received 23rd December 2011, Accepted 15th February 2012 DOI: 10.1039/c2cc18052a

The first asymmetric synthesis of β -trifluoromethylated pyrroline carboxylates has been achieved by organocatalytic conjugated addition of adamantyl glycine imine to β -trifluoromethylated enones, followed by a deprotection/cyclization/dehydration sequence.

Heterocycles constitute a major family of pharmaceuticals and agrochemicals with a very long history.¹ On the other hand, fluorinated organic compounds have recently emerged as the leading candidates in the future drug market, since adding fluorine or a fluorinated group to biologically active compounds can dramatically alter their metabolic stability, potency, or other properties of parent compounds.² In this context, heterocyclic compounds with fluorine are becoming modern attractive targets in the field of medicinal chemistry.³ Although the aromatic heterocycles are a well-known group of heterocycles, we are interested in the partially saturated fluorinated heterocyclic compounds. Fig. 1 shows selected examples of fluorinated aromatic heterocycles 1 (X=O, isoxazole; X=NH, pyrazole; X=CH₂, 2H-pyrrole) and their partially saturated variants 2 (X=O, isoxazoline; X \equiv NH, pyrazoline; X \equiv CH₂, pyrroline).⁴ The most obvious aspect that differentiates 2 from 1 is the existence of chirality in its cyclic framework. The chiral drug industry has soared in recent years as a result of leading progress in asymmetric synthesis;⁵ thus the partially saturated fluorinated heterocycles containing chiral center(s) are very attractive. Indeed, a series of partially saturated five-membered fluorinated heterocycles 2

Fig. 1 While aromatic fluorinated heterocycles 1 do not have chirality, their partially saturated variants 2 and 3 have chiral center(s).

has been recognized as an important class of compounds with remarkable biological activities and thus a large number of compounds 2 have been registered in databases.⁴

We recently reported the catalytic asymmetric synthesis of biologically important 5-trifluoromethyl-2-isoxazolines 2 (X=O) using chiral ammonium salts of Cinchona alkaloids.⁶ An expeditious synthesis of 2 (X=O) based on the direct introduction of a trifluoromethyl group into aromatic isoxazoles was also disclosed.⁷ As part of our ongoing research programs directed at the development of efficient methodologies for the construction of trifluoromethylated heterocycles,⁸ we targeted β -trifluoromethyl pyrroline carboxylates 3 (X=CHCO₂R') due to their potential attractiveness as drug candidates as they have two contiguous asymmetric centers. We disclose herein the first diastereo- and enantioselective synthesis of β-trifluoromethylated pyrroline carboxylates via organocatalytic conjugated addition of a glycinate Schiff base 5 to β -trifluoromethylated enones 4 by a phase-transfer catalyst derived from Cinchona alkaloids, followed by a deprotection/cyclization/dehydration sequence in excellent yields, excellent diastereoselectivities and high enantioselectivities (Scheme 1).

 β -Trifluoromethylated α , β -unsaturated carbonyl compounds **4** are used as potential building blocks for construction of a stereogenic C–CF₃ center.⁹ Billard and co-workers reported the racemic synthesis of β -trifluoromethylated pyrroline carboxy-lates **3** in good yields.¹⁰ However, the diastereoselectivity was moderate and the asymmetric synthesis of **3** has not yet been reported. To achieve the asymmetric variant of Billard's methodology, we initiated our examination of the organocatalytic asymmetric conjugated addition of glycinate Schiff base **5** onto β -trifluoromethylated enones **4**. In recent years, enantioselective

Scheme 1 Asymmetric organocatalytic synthesis of β -trifluoromethylated pyrroline carboxylates 3.

^a Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan. E-mail: nozshiba@nitech.ac.jp; Fax: +81-52-735-5442

^b Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan

[†] This article is part of the joint *ChemComm–Organic & Biomolecular Chemistry* 'Organocatalysis' web themed issue.

[‡] Electronic supplementary information (ESI) available. CCDC 866497. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2cc18052a

1,4-addition of glycinate Schiff base 5 to unsubstituted α , β unsaturated carbonyl compounds to construct a single asymmetric center has been well examined.¹¹ However, the enantioselective 1,4-addition of 5 to β -substituted α,β -unsaturated carbonyl compounds for construction of two contiguous asymmetric centers is a challenge.¹² Kobayashi and co-workers reported the catalytic asymmetric 1,4-addition reactions of 5 to β -substituted α . β -unsaturated acrylates using Ca–Box catalysts prepared from calcium alkoxides and methylene bridged Box ligands in 22-82% de with 81-99% ee.^{12a} Very recently, the catalytic asymmetric 1,4-addition reaction of 5 to chalcones catalyzed by chiral pentanidium salts to provide adducts with excellent enantioselectivities and diastereoselectivities was disclosed by Tan and co-workers.^{12b} We started our investigation with the reaction of (E)-4.4,4-trifluoro-1-phenylbut-2-en-1-one (4a) with a tert-butyl glycinate-benzophenone Schiff base (5a) in the presence of 50% KOH aq., and screened a more readily available catalyst, and chiral quaternary ammonium phase transfer catalysts (Table 1). We first attempted the reaction in the presence of a catalytic amount of N-3,5-bis(trifluoromethylbenzyl) cinchoninium bromide (6a) as a chiral phase transfer catalyst in toluene at 0 °C. Although the β -trifluoromethylated pyrroline **3a** was obtained in 88% yield with a low ee (38%), excellent diastereoselectivity was observed (entry 1). The quinidine derivative 6b gave a slightly lower ee value of 36% (entry 2). After screening several phase-transfer catalysts derived from cinchonine 6c-6f (entries 3-6), catalyst 6e, having a sterically demanding tBu group, was found to be the most effective catalyst providing 3a in high yield (90%) with 55% ee (entry 5). We next attempted the reaction using commercially available Maruoka catalyst 6g; however, no improvement was observed (entry 7). We then examined the effect of bases (entries 8–15), and Cs₂CO₃ was found to be most effective in terms of enantioselectivity (71% ee, entry 10). We continued the survey of reaction conditions (entry 16-20), and a slightly better result was obtained using cyclopentyl methyl ether, CPME, as the solvent (entry 20, 96%, 72% ee). We next turned our attention to the glycinate Schiff base 5. Steric bulkiness of 5 was necessary for achieving high enantiocontrol, and ee's up to 82% of 3b were obtained when 1-adamantyl glycinate-benzophenone Schiff base (5b) was used (entry 21, 75%, 82% ee). The best result was obtained when the reaction was carried out at -20 °C in the presence of 5.0 equiv. of Cs₂CO₃ (entry 22, 95%, 86% ee). An excellent diastereoselectivity of >95/5 was observed in all cases.

With optimal conditions in hand, the scope of the conjugated addition of glycinate Schiff base **5b** to β -trifluoromethylated enones **4** catalyzed by *Cinchona* phase-transfer catalyst **6e**, followed by a deprotection/cyclization/dehydration sequence was explored with a variety of substrates selected in order to establish the generality of the process, all affording excellent yields, excellent *anti*-diastereoselectivities, and high enantioselectivities (Table 2). A series of β -trifluoromethylated enone derivatives **4c**-**4i** with a variety of substituents on their aromatic rings, such as methyl, methoxy, fluoro, chloro, bromo, and nitro, were nicely converted to **3c**-**3i** in excellent yields with excellent diastereoselectivities of >98/2 and high enantioselectivities of 77–88% ee (entries 1–8). Sterically demanding naphthyl substituted enone **4j** was also compatible, although the enantioselectivities were somewhat low, affording product

Table 1 Optimization of reaction conditions

Entry ^a	5	6	Base	Solvent	Time/h	$\operatorname{Yield}^{b}(\%)$	ee^{c} (%)
1	5a	6a	50% KOH aq.	Toluene	1	88	38
2	5a	6b	50% KOH aq.	Toluene	1	95	36
3	5a	6c	50% KOH aq.	Toluene	2	97	39
4	5a	6d	50% KOH aq.	Toluene	2	97	14
5	5a	6e	50% KOH aq.	Toluene	2	90	55
6	5a	6f	50% KOH aq.	Toluene	2	95	0
7	5a	6g	50% KOH aq.	Toluene	2	90	35
8	5a	6e	Na ₂ CO ₃	Toluene	62	84	68
9	5a	6e	K ₂ CO ₃	Toluene	53	76	69
10	5a	6e	Cs_2CO_3	Toluene	12	82	71
11	5a	6e	K ₃ PO ₄	Toluene	12	70	70
12	5a	6e	tBuOK	Toluene	3	59	27
13	5a	6e	NaOMe	Toluene	2	86	51
14	5a	6e	Me ₄ NF	Toluene	2	86	39
15	5a	6e	CsF	Toluene	24	83	60
16	5a	6e	Cs ₂ CO ₃	Mesitylene	40	95	66
17	5a	6e	Cs ₂ CO ₃	CH_2Cl_2	12	86	25
18	5a	6e	Cs ₂ CO ₃	THF	12	90	66
19	5a	6e	Cs ₂ CO ₃	Et ₂ O	4	97	68
20	5a	6e	Cs ₂ CO ₃	CPME	4	96	72
21	5b	6e	Cs ₂ CO ₃	CPME	5	75	82
22^d	5b	6e	Cs ₂ CO ₃	CPME	9	95	86

^{*a*} The reaction of **4a** with **5** (1.1 equiv.) was carried out in the presence of a catalyst (10 mol%) and a base in solvent at 0 °C, unless otherwise noted. ^{*b*} Isolated yield. ^{*c*} ee's were determined by chiral HPLC. ^{*d*} The reaction was carried out at -20 °C in the presence of 5.0 equiv. of Cs₂CO₃.

3j in 97% yield with an ee value of 72% (entry 9). The heteroaromatic substrate **4k** bearing a furanyl group was also a suitable substrate for this transformation, providing the desired product **3k** in 96% yield with 80% ee (entry 10). *Anti-***3** was obtained exclusively in all the cases and the absolute stereochemistry of *anti-***3b** was determined after derivatization to its methylester (Fig. S1, ESI‡).¹³ All the other products **3** were tentatively assigned by analogy.

In summary, we have developed the first asymmetric synthesis of biologically attractive β -trifluoromethyl pyrroline carboxylates **3** containing two contiguous asymmetric centers in excellent yields with excellent *anti*-diastereoselectivities and high enantioselectivities using the *Cinchona* alkaloid-catalyzed conjugated addition of a glycinate Schiff base to β -trifluoromethylated enones, followed by a deprotection/cyclization/dehydration sequence. It should be noted

Table 2 Asymmetric synthesis of β -trifluoromethylated pyrroline 3

Entry ^a	4	Ar	3	Time/h	$\operatorname{Yield}^{b}(\%)$	dr	ee^{c} (%)
1	4a	Ph	3b	9	95	98:2	86
2	4c	3-MeC ₆ H ₄	3c	36	72	99:1	84
3	4d	4-MeC ₆ H ₄	3d	12	95	99:1	87
4	4e	3-MeOC ₆ H ₄	3e	36	74	98:2	84
5	4f	$4 - MeOC_6H_4$	3f	12	94	99:1	88
6	4g	$4-FC_6H_4$	3g	15	94	99:1	84
7	4h	$4-ClC_6H_4$	3ĥ	15	93	99:1	78
8	4i	$4 - BrC_6H_4$	3i	15	96	99:1	77
9	4j	2-Naphthyl	3j	14	81	98:2	72
10	4k	2-Furanyl	3k	16	96	99:1	80

^{*a*} The reaction of **4** with **5b** (1.1 equiv.) was carried out in the presence of **6e** (10 mol%) and Cs_2CO_3 (5.0 equiv.) in CPME at -20 °C. ^{*b*} Isolated yield. ^{*c*} ee's were determined by chiral HPLC.

that the combination of the new bulky adamantyl glycinate and CPME¹⁴ solvent introduced asymmetry into the Billard chemistry,¹⁰ with especially good diastereocontrol. The adamantyl ester would provide an attractive alternative to the analogous methyl, *tert*-butyl, or cumyl esters.¹⁵ The use of CPME should be advantageous for industrial use due to the high stability, wide liquidity range, low heat of vaporization, resistance to peroxide formation and narrow explosion area.¹⁴

This study was financially supported in part by Grants-in-Aid for Scientific Research (21390030, 22106515, 23915014, Project No. 2105: Organic Synthesis Based on Reaction Integration). We also thank the Asahi Glass Foundation for support in part.

Notes and references

- (a) Bioactive Heterocycles I, ed. S. Eguchi, Springer, Heidelberg, 2006; (b) Heterocyclic Chemistry at a Glance, ed. J. A. Joule and K. Mills, Blackwell, Oxford, 2007.
- 2 (a) Biomedicinal Aspects of Fluorine Chemistry, ed. R. Filler and Y. Kobayashi, Elsevier Biomedical Press and Kodansya Ltd, Amsterdam, 1982; (b) Fluorine in Bioorganic Chemistry, ed. J. T. Welch and S. Eswarakrishnan, Wiley, New York, 1991; (c) Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, ed. R. Filler, Y. Kobayashi and L. M. Yagupolskii, Elsevier, Amsterdam, 1993; (d) Fluorine Containing Amino Acids: Synthesis and Properties, ed. V. P. Kuhar and V. A. Soloshonok, Wiley, Chichester, UK, 1995; (e) Biomedical Frontiers of Fluorine Chemistry, ed. I. Ojima, J. McCarthy and J. T. Welch, ACS Symp. Series 639, The American Chemical Society, Washington, D. C., 1996.
- 3 (a) Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications, ed. V. A. Petrov, Wiley, Hoboken, New Jersey, 2009; (b) Modern Fluoroorganic Chemistry, ed. P. Kirsch, Wiley-VCH, Weinheim, 2004; (c) V. M. Muzalevskiy, A. V. Shastin, E. S. Balenkova, G. Haufe and V. G. Nenajdenko, Synthesis, 2009, 3905; (d) A. W. Erian, J. Heterocycl. Chem., 2001, 38, 793; (e) P. Lin and J. Jiang, Tetrahedron, 2000, 56, 3635; (f) M. J. Silvester, Adv. Heterocycl. Chem., 1994, 59, 1; (g) J. T. Welch, Tetrahedron, 1987, 43, 3123.
- 4 More than 29000 compounds **2** (X=O), 15000 compounds **2** (X=N), 12000 compounds **2** (X=CH₂) have been registered in the SciFinder database on December, 2011.

- 5 (a) S. C. Stinson, *Chem. Eng. News*, 2000, **78**, 55; (b) S. C. Stinson, *Chem. Eng. News*, 2001, **79**, 79; (c) L. A. Nguyen, H. He and C. Pham-Huy, *Int. J. Biomed. Sci.*, 2006, **2**, 85.
- 6 K. Matoba, H. Kawai, T. Furukawa, A. Kusuda, E. Tokunaga, S. Nakamura, M. Shiro and N. Shibata, *Angew. Chem., Int. Ed.*, 2010, 49, 5762.
- 7 H. Kawai, K. Tachi, E. Tokunaga, M. Shiro and N. Shibata, *Angew. Chem.*, *Int. Ed.*, 2011, **50**, 7803.
- 8 (a) N. Shibata, H. Fujimoto, S. Mizuta, S. Ogawa, Y. Ishiuchi, S. Nakamura and T. Toru, Synlett, 2006, 3484; (b) S. Ogawa, N. Iida, E. Tokunaga, M. Shiro and N. Shibata, Chem.-Eur. J., 2010, 16, 7090; (c) S. Ogawa, T. Nishimine, E. Tokunaga and N. Shibata, Synthesis, 2010, 3274; (d) Y. Huang, E. Tokunaga, S. Suzuki, M. Shiro and N. Shibata, Org. Lett., 2010, 12, 1136.
- 9 (a) T. Konno, T. Tanaka, T. Miyabe, A. Morigaki and T. Ishihara, *Tetrahedron Lett.*, 2008, 49, 2106; (b) G. Blay, I. Fernández, M. C. Munoz, J. R. Pedro and C. Vila, *Chem.-Eur. J.*, 2010, 16, 9117; (c) W. Wang, X. Lian, D. Chen, X. Liu, L. Lin and X. Feng, *Chem. Commun.*, 2011, 47, 7821.
- 10 O. Marrec, C. Christophe, T. Billard, B. Langlois, J.-P. Vors and S. Pazenok, Adv. Synth. Catal., 2010, 352, 2825.
- 11 Review for the reaction of a glycinate Schiff base under phasetransfer catalysis, see: (a) M. J. O'Donnell, Acc. Chem. Res., 2004, 37, 506; for selected examples, see:; (b) E. J. Corey, M. C. Noe and F. Xu, Tetrahedron Lett., 1998, 39, 5347; (c) D. Ma and K. Cheng, Tetrahedron: Asymmetry, 1999, 10, 713; (d) F.-Y. Zhang and E. J. Corey, Org. Lett., 2000, 2, 1097; (e) T. Ishikawa, Y. Araki, T. Kumamoto, H. Seki, K. Fukuda and T. Isobe, Chem. Commun., 2001, 245; (f) M. J. O'Donnell, F. Delgado, E. Domínguez, J. de Blas and W. L. Scottc, Tetrahedron: Asymmetry, 2001, 12, 821; (g) S. Arai, R. Tsuji and A. Nishida, Tetrahedron Lett., 2002, 43, 9535; (h) T. Shibuguchi, Y. Fukuta, Y. Akachi, A. Sekine, T. Ohshima and M. Shibasaki, Tetrahedron Lett., 2002, 43, 9539; (i) T. Ohshima, T. Shibuguchi, Y. Fukuta and M. Shibasaki, Tetrahedron, 2004, 60, 7743; (j) T. Ohshima, V. Gnanadesikan, T. Shibuguchi, Y. Fukuta, T. Nemoto and M. Shibasaki, J. Am. Chem. Soc., 2003, 125, 11206; (k) S. Arai, K. Tokumaru and T. Aoyama, Chem. Pharm. Bull., 2004, 52, 646; (1) T. Akiyama, M. Hara, K. Fuchibe, S. Sakamoto and K. Yamaguchi, Chem. Commun., 2003, 1734; (m) B. Lygo, B. Allbutt and E. H. M. Kirton, Tetrahedron Lett., 2005, 46, 4461; (n) S. Arai, F. Takahashi, R. Tsuji and A. Nishida, Heterocycles, 2006, 67, 495; (o) T. Shibuguchi, H. Mihara, A. Kuramochi, S. Sakuraba, T. Ohshima and M. Shibasaki, Angew. Chem., Int. Ed., 2006, 45, 4635; (p) H. Mihara, T. Shibuguchi, A. Kuramochi, T. Ohshima and M. Shibasaki, Heterocycles, 2007, 72, 421; (q) S. Saito, T. Tsubogo and S. Kobayashi, J. Am. Chem. Soc., 2007, 129, 5364; (r) T. Tsubogo, S. Saito, K. Seki, Y. Yamashita and S. Kobayashi, J. Am. Chem. Soc., 2008, 130, 13321; (s) L. Bernardi, J. López-Cantarero, B. Niess and K. A. Jørgensen, J. Am. Chem. Soc., 2007, 129, 5772; (t) A. Ryoda, N. Yajima, T. Haga, T. Kumamoto, W. Nakanishi, M. Kawahata, K. Yamaguchi and T. Ishikawa, J. Org. Chem., 2008, 73, 133; (u) P. Elsner, L. Bernardi, G. D. Salla, J. Overgaard and K. A. Jørgensen, J. Am. Chem. Soc., 2008, 130, 4897; (v) T. Kano, T. Kumano and K. Maruoka, Org. Lett., 2009, 11, 2023; (w) G. Zhang, T. Kumamoto, T. Heima and T. Ishikawa, Tetrahedron Lett., 2010, 51, 3927; (x) M. Strohmeier, K. Leach and M. A. Zajac, Angew. Chem., Int. Ed., 2011, 50, 12335.
- 12 (a) S. Kobayashi, T. Tsubogo, S. Saito and Y. Yamashita, Org. Lett., 2008, 10, 807; (b) T. Ma, X. Fu, C. W. Kee, L. Zong, Y. Pan, K.-W. Huang and C.-H. Tan, J. Am. Chem. Soc., 2011, 133, 2828.
- 13 3b was converted into methylester [TfOH (1.0 equiv.), MeOH, reflux, 48 h, 92%], and the absolute stereochemistry of (2*R*, 3*R*)-3 was determined by X-ray analysis (CCDC 866497, Fig. S1, ESI[‡]).
- 14 I. Kin, G. Ohta, K. Teraishi and K. Watanabe, US 2005065060, 2005.
- 15 (a) Y.-H. Shi, Z. Wang, B. Hu, M. Wang, J. S. Fossey and W.-P. Deng, Org. Lett., 2011, 13, 6010; (b) J. Hernández-Toribio, R. G. Arrayás and J. C. Carretero, Chem.-Eur. J., 2011, 17, 6334; (c) Z.-Y. Xue, Q.-H. Li, H.-Y. Tao and C.-J. Wang, J. Am. Chem. Soc., 2011, 133, 11757.