Ortho Lithiation of 2-Hydroxymethyl-1,4,5,6,8-pentamethoxynaphthalene, a Supplement¹⁾ Yasuhiro Tanoue* and Akira Terada*,† Department of Food Science and Technology, Shimonoseki University of Fisheries, Nagatahonmachi, Shimonoseki, Yamaguchi 759-65 † Department of Chemistry, Kyushu Institute of Technology, Tobata, Kitakyushu, Fukuoka 804 (Received August 9, 1990) **Synopsis.** The structures of the products in our previous report "One-Pot Ortho Hydroxylations of 2-(1-Hydroxyalkyl)-naphthalenes and (1-Hydroxyalkyl)benzenes"²⁾ were reexamined by ¹³C NMR spectra and part of our previous interpretation will be corrected here. The lithiations of 2-(1-hydroxyalkyl)-1,4,5,6,8-pentamethoxynaphthalenes occurred at the 7-position, and not at the 3-position as we reported. During our synthetic study of fusarubin (1)³⁾ (see Scheme 1), we found an error in our previous report titled "One-Pot Ortho Hydroxylations of 2-(1-Hydroxyalkyl)naphthalenes and (1-Hydroxyalkyl)benzenes" published in this Journal.²⁾ We therefore used ¹³C NMR spectroscopy to reexamin the hydroxylation products in further detail. In this paper, we wish to correct part of our previous explanation. ## **Results and Discussion** We have already reported that the lithiation of 2-hydroxymethyl-1,4,5,6,8-pentamethoxynaphthalene (**3b**) with butyllithium and subsequent oxidation by oxygen gave 3-hydroxymethyl-1,4,5,7,8-pentamethoxy-2-naphthol (**2b**).²⁾ However, a question during our synthetic study of fusarubin led us to reexamine the structure of the product. The 13 C NMR spectrum of **3b** showed the C-2,3, and 7-signals at δ =128.30, 108.20, and 98.91, respectively. If the structure of our product was **2b**, the 6-position carbon would be slightly affected by the hydroxyl group and the C-6 signal would have been found near δ =96 (i.e., shifted upfield by 2—3 ppm rela- tive to that (δ =98.91) of **3b**). However, the aromatic carbon signal bearing no substituent in our product was found at δ =104.38, not near δ =96. If we presume the formation of 7-hydroxymethyl-1,3,4,5,8-pentamethoxy-2-naphthol (**2B**) instead of **2b**, these ¹³C NMR results could be reasonably interpreted. That is to say, the C-6 signal (δ =104.38) in **2B** was shifted upfield by 3.8 ppm relative to that (δ =108.20) of **3b** by the introduction of a hydroxyl group (see Chart 1). This explanation was also supported by the following reaction result. The lithiation of **3b** with butyllithium and subsequent treatment with propylene oxide gave 2-hydroxymethyl-7-(2-hydroxypropyl)-1,4,5,6,8-pentamethoxynaphthalene (**10**) in 62% yield, and no 2-hydroxymethyl-3-(2-hydroxypropyl)-1,4,5,6,8-pentamethoxynaphthalene (**9**) (Scheme 1). The ¹³C NMR spectrum of **10** is shown in Chart 1. In the cases of **3d** and **3f**, the hydroxyl group was also introduced at the 7-position between two methoxyl groups. We have concluded, therefore, that the lithiation of **3b**, **3d**, and **3f** with butyllithium occurred at the 7-position. A similar hydroxylation of 3-methoxybenzylalcohol (6c) gave a mixture of 2-hydroxy-3-methoxybenzylalcohol (7c) and 4-hydroxy-3-methoxybenzylalcohol (8C). The product mixture could be separated by silica gel column chromatography. The ¹³C NMR spectra of these products are shown in Chart 1. The IR and ¹H NMR spectra of 7c and 8C agreed with those of the authentic samples obtained by reduction of o-vanillin and vanillin, respectively. Scheme 1. Correcting Tables 1 and 3 in our previous report,²⁾ we present our new results in Table 1 of this text. The C-4 chemical shift of δ =128.83 in the ¹³C NMR spectrum of 2-hydroxymethylnaphthalene (4a) noted in the previous report should be corrected to δ =128.98. ## **Experimental** Melting points were determined with a Yanagimoto micromelting point apparatus and were uncorrected. ¹H and ¹³C NMR spectra were taken on a JEOL JNM-60 in CDCl₃ solutions, using Me₄Si and CDCl₃ as internal standards, respectively. Mass spectra and IR spectra were obtained with a JEOL DX-300 spectrometer and a Hitachi 260-30 spectrometer, respectively. Column chromatography was carried out on silica gel (Wakogel C-200) eluting with chloroform. The procedure for the hydroxylation of 3b, 3d, 3f, and 6c—6f is described in Ref. 2. The spectra (IR, ¹H NMR, MS, and HRMS) of 2B, 2D, and 2F were the same as those of 2b, 2d, and 2f in the previous report.²⁾ **2B**: Viscous oil; 13 C NMR δ =56.47 (CH₂OH), 61.02, 61.46, 62.09, 62.34, and 62.73 (OCH₃), 104.38 (C-6), 116.56 (C-4a), 121.30 (C-8a), 129.91 (C-7), 136.60 (C-2), 141.05, 142.42, 145.45, 145.65, and 152.84 (C-OCH₃). **2D:** Viscous oil; 13 C NMR δ =14.08 (CH₃), 22.69, 28.41, and 38.23 (CH₂), 56.47, 61.41, 62.09, 62.34, and 62.97(OCH₃), 68.69 (CH), 102.23 (C-6), 116.37 (C-4a), 121.01 (C-8a), 133.52 (C-7), 136.70 (C-2), 140.95, 142.42, 144.47, 145.70, and 152.98 (C-OCH₃). **2F:** Viscous oil; 13 C NMR δ =43.07 (CH₂), 56.42, 61.36, 62.05, 62.29, and 62.92 (OCH₃), 67.71 (CH), 104.14 (C-6), 116.37 (C-4a), 117.93 (=CH₂), 120.96 (C-8a), 132.54 (C-7), 134.94 (-CH=), 136.65 (C-2), 140.95, 142.38, 144.43, 145.65, and 152.88 (C-OCH₃). 7c: Viscous oil; IR (neat) 3350 (OH), 1615, 1590, 1480, 1270, 1230, 1080, 1035, and 1000 cm⁻¹; ¹H NMR δ =2.40 (broad, Table 1. Hydroxylation of 2-(1-Hydroxyalkyl)-1,4,5,6,8-pentamethoxynaphthalene and (1-Hydroxyalkyl)-3-methoxybenzene | (1-Hydroxyalkyl)-3-methoxybenzene | | |---|---| | Substrate | Product and Yield/% | | 014 014 | n-BuLi
n-BuMgBr MeO Me OMe | | 3b: R=H
3d: R=C ₄ H ₉
3f: R=CH ₂ CH=CH ₂ | 2B, 59[98] ^{a)} 2D, 73 2F, 78 | | $ \begin{array}{c} $ | R1 OH +HO R1 OH H R2 | | 6c: R ₁ =OMe, R ₂ =H
6d: R ₁ =OMe, R ₂ =C ₄ H ₉
6e: R ₁ =R ₂ =H
6f: R ₁ =H, R ₂ =C ₄ H ₉ | 7c, 12[23] 8C, 21[40] 7d, 23[37] 8D, 35[56] 7e, 26[66] 7f, 19[93] | a) Conversion yield. 1H, OH), 3.88 (s, 3H, OCH₃), 4.74 (s, 2H, CH₂), 6.83 (s, 4H, OH, ArH); 13 C NMR δ =56.08 (OCH₃), 61.65 (CH₂OH), 110.55 (C-4), 119.64 (C-6), 120.81 (C-5), 126.53 (C-1), 143.84(C-2), and 146.68 (C-3); MS m/z 154 (M+), 136, 107, and 65; HRMS, Found: m/z 154.0612. Calcd for C₈H₁₀O₃: M, 154.0630. **8C:** Mp 115—116 °C (hexane)(lit,⁴) 115 °C); IR (KBr) 3340 (OH), 3150 (OH), 1610, 1270, 1240, 1038, 998 cm⁻¹; ¹H NMR δ =1.82 (broad, 1H, OH), 3.90 (s, 3H, OCH₃), 4.60 (s, 2H, CH₂), 5.50 (broad, 1H, OH), 6.86(s, 2H, ArH), and 6.91 (s, 1H, ArH); ¹³C NMR δ =55.59 (OCH₃), 63.07 (CH₂OH), 111.13 (C-2), 115.09 (C-5), 119.15 (C-6), 133.47 (C-1), 145.31 (C-4), and 147.36 (C-3); MS, m/z 154 (M⁺), 137, 93, and 65. Found: C, 62.37; H, 6.66%. Calcd for C₈H₁₀O₃: C, 62.33; H, 6.54%. 7d: Viscous oil; IR (neat) 3400 (OH), 1615, 1595, 1493, 1278, 1080, 1045, and 1010 cm⁻¹; ¹H NMR δ =0.89 (t, J=5.0 Hz, 3H, CH₃), 1.1—1.9 (m, 6H, CH₂), 2.20 (broad, 1H, OH), 3.88 (s, 3H, OCH₃), 4.88 (t, J=6.7 Hz, 1H, CH), 6.37 (broad, 1H, OH), and 6.81(s, 3H, ArH); ¹³C NMR δ =14.03 (CH₃), 22.59, 28.06, and 36.96 (CH₂), 55.98 (OCH₃), 72.02 (CH), 109.86 (C-4), 119.15 (C-6), 119.49 (C-5), 129.86 (C-1), 143.25 (C-2), and 146.87 (C-3); MS m/z 210 (M⁺), 192, 163, 137, 131, and 103; HRMS, Found: m/z 210.1227. Calcd for C₁₂H₁₈O₃: M, 210.1255. **8D:** Mp 79—80 °C (hexane-benzene (10:1)); IR (KBr) 3380 (OH), 1613, 1440, 1270, 1245, 1057, and 1038 cm⁻¹; ¹H NMR δ =0.88 (t, J=5.4 Hz, 3H, CH₃), 1.1—1.9 (m, 7H, OH, CH₂), 3.89 (s, 3H, OCH₃), 4.58 (t, J=6.9 Hz, 1H, CH), 5.65 (s, 1H, OH), 6.83 (s, 2H, ArH), and 6.87 (s, 1H, ArH), ¹³C NMR δ =13.98 (CH₃), 22.54, 28.02, and 38.63 (CH₂), 55.84 (OCH₃), 74.51 (CH), 108.54 (C-2), 114.16 (C-5), 118.86 (C-6), 136.90 (C-1), 144.86 (C-4), 146.62 (C-3); MS, m/z 210 (M⁺), 153, 125, 93. Found: C, 68.61; H, 8.80%. Calcd for C₁₂H₁₈O₃: C, 68.55; H, 8.63%. 2-Hydroxymethyl-7-(2-hydroxypropyl)-1,4,5,6,8-pentamethoxynaphthalene (10). A solution of 2-hydroxymethyl-1,4,5,6,8-pentamethoxynaphthalene 3b⁵⁾ (1.62 g, 5.26 mmol) in THF (70 ml) was cooled to $-10\,^{\circ}$ C and allowed to react with n-BuLi (16.8 ml, 26.3 mmol, 10% (w/v) in hexane) for 1.5 h. Propylene oxide (2.02 ml, 28.9 mmol) in THF (10 ml) was then added to this solution at $-10\,^{\circ}$ C and stirred for 5 h. The reaction mixture was stored in a refrigerator overnight, then quenched with aqueous ammonium chloride, and extracted with chloroform. The chloroform solution was washed with brine, dried over Na₂SO₄, and concentrated. The residue was chromatographed on silica gel to give 10 (1.06 g, 62% yield) and 3b (0.59 g, 36% yield) was recovered. **10:** Viscous oil: IR (neat) 3370 (broad, OH), 1610, 1595, 1355, 1045 cm⁻¹; ¹H NMR δ =1.29 (d, J=6.2 Hz, 3H, CH₃), 2.35 (broad, 2H, 2×OH), 3.0 (m, 2H, CH₂), 3.75 (s, 6H, 2×OCH₃), 3.84, 3.98 (each s, 3H, OCH₃), 3.90 (m, 1H, CH), 4.00 (s, 3H, OCH₃), 4.85 (s, 2H, CH₂OH), and 6.85 (s, 1H, ArH); ¹³C NMR δ =23.71 (CH₃), 33.88 (CH₂), 56.42 (CH₂OH), 60.72, 61.12, 61.56, 62.29, and 62.53 (OCH₃), 69.13 (CH), 106.24 (C-3), 121.11, 121.94, 126.14 (C-7), 129.86 (C-2), 145.26, 145.90, 149.66 (2C), and 152.55 (C–OCH₃); MS, m/z 366 (M⁺), 319, and 289. HRMS, Found: m/z 366. 1690. Calcd for $C_{19}H_{26}O_7$: M, 366.1689. ## References - 1) Paper X, on Synthesis of Naphthoquinone Derivatives. Paper IX, Y. Tanoue, A. Terada, and Y. Matsumoto, *Bull. Chem. Soc. Jpn.*, **62**, 2736 (1989). - 2) Y. Tanoue, A. Terada, I. Seto, Y. Umezu, and O. Tsuge, *Bull. Chem. Soc. Jpn.*, **61**, 1221 (1988). - 3) R. H. Thomson, "Naturally Occurring Quinones," 2nd ed, Academic Press, London (1971), p. 291. - 4) W. H. Carothers and R. Adams, J. Am. Chem. Soc., 46, 1080 (1924). - 5) Y. Tanoue, A. Terada, T. Tsuboi, T. Hayashida, and O. Tsuge, *Bull. Chem. Soc. Jpn.*, **60**, 2927 (1987).