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A new strategy for the synthesis of cyclic peptoids was developed. The approach is based on the use of consecutive Ugi reactions for the
assembly of the acyclic peptoid and for the ring closure. Cyclopentapeptoid analogues of the RGD peptides were designed and synthesized
using this methodology. The results confirm the versatility and efficiency of the method for the preparation of cyclic oligopeptoids.

Peptoid$? are a class of oligomeribl-alkyl glycines that

or consecutive Ugi reactions have been used in the synthesis

mimic the primary natural structure of peptides. They are of PNA oligomer8 and also in the synthesis of hydantoin-
attractive non-natural molecules for drug discovery ap- imide and tetrazole derivativé$J-4CRs also have been used
proaches because of their many biological activities and in one-pot macrocyclizatior’s® However, these approaches
proteolytic stability. Many peptoids have been shown to be did not allow the assembly of pure peptoid backbones in a

capable of acting as protein ligands with high affirfity.
The Ugi four-component reaction (U-4CR$ known to

be one of the most versatile tools for the construction of
peptoid and mixed peptoitheptide backbones. Repetitive
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consecutive fashion followed by formation of the macrocycle,
as proposed in this study. In order to study sequential Ugi
reactions for the construction of defined cyclopeptoid
backbones, a convergent approach toward the synthesis of
cyclic peptoids capable of mimicking the structural complex-
ity of the cyclic RGD peptides is reported herein (RGD
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arginine-glycine-aspartic acid). The RGD loop containing of the amides and not to the carbon as in peptides. The
peptides are the molecular attachment points of many cellularshift of the side chains to the amide nitrogen commonly
and extracellular matrices. Along with the integrins, their results in increased metabolic stability. It can be done in two
receptors, they constitute a major system for cell adhé8ion, different directions: (1) toward the “N-terminus” direction,
which is crucial in many pathological processes, such asthat is, to the nitrogen atom of the amino acid itself, (€
tumor metastasis, angiogenesis, osteoporosis, and thrombosid\;), or (2) to the “C-terminus” direction, that is, to the
Nearly half of the known integrins recognize the RGD nitrogen atom of the next amino acid residug (€ Ni;1).
sequence as ligands, giving this motif a central role in cell As shown in Figure 1, for any given R and,R peptoid
adhesion biology as the prototype adhesion signal. ("RGD”) and a retro-peptoid (“DGR”) can be formed within
The integrins became attractive targets for drug develop- a cyclic peptide; that is, four different cyclopeptoid configu-
ment, especially those involved in cancer treatment and in rations with the side chain sequence of R-G-D are possible.
platelet aggregation. For instance, the inhibitors of the For the targeted cyclopeptoidsand 3, the G, — N; shift
integrin ouipfs, iNvolved in platelet aggregation, are used as had to be followed. Also, compared to classical peptoids,
antithrombotic agents, and the cyclic peptide, c(RGDf- these compounds contain some amifitd bonds that allow
[NMe]V), an antagonist of integriw s, is in clinical tests H-donor interaction, albeit less than in peptides.
as an anticancer drdg.Many cyclic RGD peptides and The retrosynthetic analysis of the peptoids (Scheme 1)
nonpeptidic mimetics have been developed as highly activeshows that the proposed compounds can be achieved
and selective antagonists for different integrin receptors by

tuning the conformational bias of the macrocytie'’ _

On the basis of the pharmacophore model proposed by Scheme 1. Retrosynthesis
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NH —d Oy_JN Nl (U-4CRs) for the construction of the acyclic amino acid
o N'{OFN_\ﬂ NH HO_(N\_QO_O}_N precursor, and another Ugi three-component four-center
HO?—’ NH HN— Y O HN ‘—\_NH reaction for the peptoid macrocyclization. A general route
2 ’ s Y=NH was developed in which the side chains of the peptoid
C, = N;shift retro C, = N; shift H,N

backbone could be easily exchanged by varying the amine,
Figure 1. Structures of RGD peptide pharmacophore modgl ( 1€@ding to both kinds of target peptoids, the RGD- and the
and of the cyclic pentapeptoid analogu@s. C, — N; shifted DGR-like compounds.

peptoid;3: retro G, — N; shifted peptoid. N.; shifted peptoids A special challenge was the introduction of the guani-

are not shown. dinium group. Attempts to use ethyl or propylamine with

(14) Goodman, S. L.; Heemann, G.; Sulyok, G. A. G.; Kessler, Hl.
. C . . . Med. Chem2002 45, 1045,
innovation in this approach is the rapid access to the cyclic ™15y Aumailley, M.. Gurrath, M.: Mier, G.: Calvete, J.: Timpl, R.:
skeleton, in principle, suitable to combinatorial extension, Kessler, H.FEBS Lett.1991, 291, 50.
; ; ; (16) Hayashi, Y.; Sato, Y.; Katada, J.; Takiguchi, Y.; Ojima, I.; Uno, I.
and the fact that the side chains are attached to the mtrogerbioorg Med. Chemn. Lett.996 6, 1351,
(17) Dijkgraaf, |.; Kruijtzer, J. A. W.; Frielink, C.; Soede, A. C.; Hilbers,

(10) Rouslahti, E.; Pierschbacher, M. Bciencel987, 238 491. H. W.; Oyen, W. J. G.; Corstens, F. H. M.; Liskamp, R. M. J.; Boerman,
(11) Haubner, R.; Schimitt, W.; Hpemann, G.; Goodman, S. L.; O. C.Nucl. Med. Biol.2006 33, 953.
Jonczyk, A.; Kessler, HJ. Am. Chem. Sod.996 118 7881. (18) Haubner, R.; Gratias, R.; Diefenbach, B.; Goodman, S. L.; Jonczyk,
(12) Dechantsreiter, M. A.; Planker, E.; Math; Lohof, E.; Hdzemann, A.; Kessler, H.J. Am. Chem. S0d.996 118 7461.
G.; Jonczyk, A.; Goodman, S. L.; Kessler, Bl. Med. Chem1999 42, (19) Gottschalk, K.-E.; Kessler, HAngew. Chem., Int. EQR2002 41,
3033. 3767.
(13) Wermuth, J.; Goodman, S. L.; Jonczyk, A.; Kessler.HAm. Chem. (20) Marinelli, L.; Lavecchia, A.; Gottschalk, K.-E.; Novellino, E.;
Soc.1997 119 1328. Kessler, HJ. Med. Chem2003 46, 4393.

206 Org. Lett, Vol. 10, No. 2, 2008



anw-guanidinium group, unprotected or protected with either
2xBoc or 2xChz, were unsuccessful in the Ugi reactions.
Some of the problems encountered were migration of the
protecting group to the free amine or cyclization to a cyclic
guanidinium, as observed previously in another cortext.
Therefore, monoprotected ethylene and propylene amino
alcohols or diamines were used to synthesize SGD and KGD
type peptoids that could allow the introduction of the
guanidinium moiety after the synthesis of the central mac-
rocycle (Scheme 2). Of many methods tried for the guanidi-

Scheme 2. Synthesis of Protected SGD-, KGD-, and
DGK-like Peptoids

Scheme 4. Synthesis of Cyclopeptoid
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nylation, none was successful for these compodh#fS hus

a new set of guanidinium protective groups had to be
employed. For this purpose, amihéwas synthesized from
azide 12 after dimethoxybenzyl (Dmb) protection and

The first Ugi reaction (Scheme 4) was performed using
amine 16 as the amino component, furnishing esié&rin
68% vyield. After hydrolysis of estet7, the resulting acid
was used in a subsequent Ugi reaction to give es8an
high yield (85%). The amino acid precursor for the cycliza-
tion was obtained froni8 after ester hydrolysis and Cbz
deprotection and was reacted wigrt-butyl isocyanide and
paraformaldehyde under pseudo-high-dilution conditions to
avoid oligomerization, giving cyclopeptoi@lin 33% yield
(combined yield after four steps) after removal of the
protecting groups with 1:1 TFA/CiTI,.

The retro-peptoid3 was achieved likewise by changing
the order of addition of the amines of the two initial Ugi
reactions (Scheme 5). Glycitert-butyl ester hydrochloride

introduction of the guanidinium moiety with the 2,2,5,7,8- _

pentamethyl-6-sulfonyl (pmc) protectedHdpyrazole car-
boxamidinel4 (Scheme 3). This new set of mixed protecting

Scheme 3. Synthesis of Aminel6
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groups was suitable, and no migration or cyclization was
observed.
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(4c) was used in the first Ugi reaction (Scheme 5) to furnish
ester8c (84% vyield), followed by aminél6 in the second
U-4CR to give estel9 (53% vyield). The cyclization of the
amino acid, prepared from peptoid esi®r was carried out
under the standard conditions to give pept®id 21% yield
(four steps) after treatment with 1:1 TFA/QEI, to remove
the protecting groups.

The approach proposed herein has been shown to be
straightforward and opens the possibility for a combinatorial
strategy toward a wide range of cyclic peptoids. By choosing
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the proper amino and carbonyl components in the first two as studies to include a Passerini-3CR to form depsipeptoids
U-4CRs and isocyanide and carbonyl component in the Ugi are in progress.

three-component four-center reaction used for the cyclization,
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