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ABSTRACT: The use of medicinal plants concomitantly with conventional drugs can result in herb-drug 
interactions that cause fluctuations in drug bioavailability, and consequent therapeutic failure and/or 
toxic effects. The CYP superfamily of enzymes plays an important role in herb-drug interactions. Among 
CYP enzymes, CYP3A4 and CYP2D6 are the most relevant since they metabolize about 50% and 30% of 
the drugs on the market, respectively. Thus, the main goal of this study was to evaluate the occurrence of 
in vitro interactions between medicinal plant extracts and drug substrates of CYP3A4 and CYP2D6 
enzymes. Standardized extracts from nine medicinal plants (Bauhinia forficata, Cecropia glaziovii, 
Cimicifuga racemosa, Cynara scolymus, Echinacea sp, Ginkgo biloba, Glycine max, Ilex paraguariensis, and 
Matricaria recutita) were evaluated for their potential interactions mediated by CYP3A4 and CYP2D6 
enzymes. Among the extracts tested, C. glaziovii (red embaúba) showed the most relevant inhibitory 
effects of CYP3A4 and CYP2D6 activity, while I. paraguariensis (yerba mate) inhibited CYP3A4 activity. 
Both extracts were chemically analyzed by UPLC-MS/MS, and these inhibitory effects could lead to 
clinically potential and relevant interactions with the drug substrates of these isoenzymes.
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1. INTRODUCTION
Complementary and alternative medicine (CAM) is 
a worldwide culturally-based age-old medicinal 
practice 1, 2. CAM is  commonly used by individuals 
suffering from chronic pain 3 or chronic diseases 4, 
such as cancer 5, 6, cardiovascular diseases 7, 8, 
obesity, diabetes 9, arthritis 10, neurocognitive 
disorders and HIV+/AIDS 11 to complement 
conventional therapies or for the relief of symptoms 
12, 13. 
In 2012, the National Health Interview Survey 
carried out a study revealing that the use of natural 
products was the most common complementary 
health approach among adults 3. In this context, 
among CAM, the use of medicinal plants stands out 
14, and their use combined with conventional drugs 
exposes users to the risk of herb-drug interactions 
15. Unfortunately, the assumption that these folk 
remedies are always safe encourages their 
consumption without professional guidance 16, 17.
Herb-drug interactions are a complex process that 
can occur with multiple medications targeting 
different metabolic pathways, and involving 
different compounds present in herbal products 18-

20. These processes are not yet completely 
understood, although extensive research on this 
subject has been conducted in the last years to 
provide more information about the way these 
interactions occur, and their impact on 
pharmacological treatments and patients’ health 18, 

20-22.
Herb-drug interactions usually arise when 
medicines and products prepared with medicinal 
plants are administered orally, which is the patients’ 
preferred route of administration due to the 
convenience of use. However, this route exposes the 
xenobiotics to first-pass metabolism 23, a process 
involving several enzymes, including the 
cytochrome P450 (CYP), a superfamily of enzymes 
that metabolize 70-80% of conventional drugs in 
clinical use. These enzymes are responsible for the 
biotransformation, controlling the plasma and 
tissue levels of the bioactive compounds, and they 
play an essential role in drug-drug and herb-drug 
interactions 24-27.
Inhibition or induction of CYP enzymes may modify 
the bioavailability or other pharmacokinetic 
parameters of drugs, which can lead to therapeutic 
failure and/or toxic effects, especially with drugs 
with a narrow therapeutic index 28, 29. 
Among the CYP enzymes, CYP3A4 is the most 
abundant in the body, with high expression in the 
liver and intestine, particularly in the jejunum and 
ileum 30, 31. CYP3A4 enzyme metabolizes about half 
of the available drugs, and it is modulated by several 
compounds, such as ketoconazole, verapamil, 
rifampicin, and clarithromycin 32, 33. The second 
major drug-metabolizing enzyme is CYP2D6, which 
catalyzes the metabolism of approximately one-
third of the available drugs 29. The inhibition of this 
isoenzyme may lead to potential adverse 

interactions through the rapid increase of drug 
plasma levels leading to drug-induced toxicity 34. 
Several studies report significant modulation of CYP 
enzymes by drugs, their metabolites, and natural 
products 35, 36; for instance, goldenseal (Hydrastis 
canadensis), liquorice (Glycyrrhiza glabra), valerian 
(Valeriana officinalis) 37, St. John's wort (Hypericum 
perforatum) 38, 39, and medicinal plants used in 
Traditional Chinese medicine 40. Secondary 
metabolites, such as polyphenols 28, 41, 42 and 
alkaloids 43 are also described as CYP enzyme 
inhibitors. However, due to the enormous plant 
biodiversity of the planet, most medicinal plants 
have been poorly studied, and little is known about 
their chemical constituents 44. 
The regulatory agencies Food and Drug 
Administration (FDA, USA) and European Medicines 
Agency (EMA), provide guidelines concerning the 
interactions involving CYP enzymes and emphasize 
the need for further studies 32, 45. Thus, this work 
reports the investigation of the standardized 
extracts of the following nine medicinal plants 
regarding their potential to lead herb-drug 
interactions mediated by CYP3A4 and CYP2D6 
enzymes: Bauhinia forficata Link., Cecropia glaziovii 
Sneth., Cimicifuga racemosa L., Cynara scolymus L., 
Echinacea sp., Ginkgo biloba L., Glycine max (L.) 
Merr., Ilex paraguariensis A. St.-Hil, and Matricaria 
recutita L. Midazolam and metoprolol, that are 
CYP3A4 and CYP2D6 substrates, respectively, were 
used to analyze the potential interactions 
employing human recombinant enzymes. The 
extracts that inhibited more expressively these 
enzymes activities were characterized by Ultra-
performance Liquid Chromatographic-tandem Mass 
Spectrometry (UPLC-MS/MS) to detect their major 
phytoconstituents and to explore their involvement 
in the detected CYP3A4 and CYP2D6 inhibition.

2. MATERIALS AND METHODS
2.1 Materials
2.1.1 Enzyme and chemicals
CYP3A4 Baculosomes™ Plus Reagent, rHuman was 
purchased from Thermo® Fisher Scientific 
(Waltham, MA, USA). Cytochrome P450 2D6 human 
enzyme (E9413), Trizma base, NaCl, nicotinamide 
adenine dinucleotide phosphate (NADPH), 
ethylenediaminetetraacetic acid (EDTA), 
trifluoracetic acid (TFA), dimethyl sulfoxide 
(DMSO), ketoconazole (≥ 99% purity), and 
quinidine (> 99% purity) were purchased from 
Sigma-Aldrich (Darmstadt, Hessen, Germany). 
Metoprolol tartrate (≥ 98% purity) and midazolam 
(> 99% purity) were provided by HenriFarma 
Produtos Químicos e Farmacêuticos (Cambuci, SP, 
Brazil) and Nortec Química (Rio de Janeiro, RJ, 
Brazil), respectively. All HPLC grade solvents were 
obtained from Merck (Darmstadt, Hessen, 
Germany). Information concerning the tested 
extracts is shown in Table 1.
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Table 1. Standardized medicinal plant extracts.
Medicinal planta Family Common name Chemical markers
Cynara scolymus L. Asteraceae Globe artichoke Chlorogenic acid 0.5%

Matricaria recutita L. Asteraceae Chamomile Flavonoids 0.16%
Cecropia glaziovii Sneth. Urticaceae Red embaúba Chlorogenic acid 0.11% 

Echinacea sp. Asteraceae Coneflower Tannins 1.62% 
Cimicifuga racemosa L. Ranunculaceae Black cohosh Triterpene glycosides 0.77%

Ilex paraguariensis A. St.-Hil. Aquifoliaceae Yerba mate Chlorogenic acid 6.75%
Ginkgo biloba L. Ginkgoaceae Ginkgo Flavonoid glycosides 25.8%

Bauhinia forficata Link. Fabaceae Orchid tree Flavonoid expressed as quercetin 2%
Glycine max (L.) Merr. Fabaceae Soy Isoflavone 40.5%

aThese materials are referred as standardized extracts and are conformed to the international analytical requirements.

2.2 Methods
2.2.1 Drugs and extracts preparation
Stock solutions of midazolam (1 mM) and 
ketoconazole (100 µM) were solubilized in dimethyl 
sulfoxide (DMSO) and diluted in a mixture of 50 mM 
Tris (pH 7.4) plus 1 mM EDTA at 125 µM and 50 µM, 
respectively. Stock solutions of metoprolol (1 mM) 
and quinidine (0.5 µM) were solubilized in a mixture 
of 50 mM Tris (pH 7.4) plus 1 mM EDTA. The stock 
solutions of standardized medicinal plant extracts 
(1,000 µg/mL) were solubilized in PBS (pH 7.4) plus 
3 mM MgCl2 for CYP3A4 reactions or 50 mM Tris 
(pH 7.4) plus 1 mM EDTA for CYP2D6 reactions. All 
solutions were filtered through 0.22 µm membranes 
and used for the enzymatic reactions. To prepare 
the inhibition curves, the extracts were diluted at 
the concentrations used for the curves in their 
reaction mixtures. For the dereplication studies, I. 
paraguariensis extract was solubilized in methanol: 
water (1:1 v/v) at 500 µg/mL, and C. glaziovii in 
ultrapure water at 100 and 200 µg/mL. Samples 
were injected in the UPLC-MS/MS system described 
below.

2.2.2 Enzyme reaction conditions
2.2.2.1 CYP3A4
The reactions were performed using microsomes 
prepared from insect cells infected with 
recombinant baculovirus containing a human CYP 
isozyme as well as a human cytochrome P450 
reductase. Human cytochrome b5 is commercially 
included in the preparation.
The reaction mixtures containing midazolam (4 
µM), with or without ketoconazole or the extracts 
and 1 pmol of CYP3A4 Baculosomes™ Plus Reagent, 
were pre-incubated at 37°C for 5 min. After, 960 µM 
NADPH were added to initiate the reactions. The 
reaction mixtures (50 μL) were incubated at 30°C 
for 20 min and the reactions were quenched by 
adding 50 μL of cold methanol. The samples were 
vortexed for 30 s and placed in an ice bath for 1 min. 
Afterwards, the samples were centrifuged for 5 min 
at 9,400 x g and the supernatants were collected for 
UPLC-MS analyses. Ketoconazole 2.0 μM was used 
as CYP3A4 inhibitor. 

2.2.2.2 CYP2D6

The reactions were performed using microsomes 
prepared from CYP2D6 human and yeast CYP-
reductase expressed in Saccharomyces cerevisiae.
The reaction mixtures containing metoprolol (80 
µM), with or without quinidine or the extracts and 1 
pmol of Cytochrome P450 2D6 human enzyme, 
were pre-incubated at 30°C for 5 min. After, 600 µM 
NADPH were added to initiate the reactions. The 
reaction mixtures (50 μL) were incubated at 30°C 
for 10 min and the reactions were quenched by 
adding 1 µL of TFA 50%. The samples were vortexed 
for 30 s and placed in an ice bath for 1 min. 
Afterwards, cold acetonitrile (ACN, 49 µL) was 
added to the mixtures, vortexed for 30 s and 
centrifuged for 5 min at 9,400 x g and the 
supernatants were collected for UPLC-MS analyses. 
Quinidine 0.08 µM was used as CYP2D6 inhibitor. 

2.2.3 Inhibition curves of the extracts
The inhibition curves were determined only for the 
extracts that showed the most expressive enzymatic 
inhibition (C. glaziovii and I. paraguariensis) and 
were statistically significant (p < 0.05). The extracts 
were diluted and tested at 500, 250, 125, 62.5, and 
31.25 µg/mL, and the enzyme inhibition assays 
were performed according to the enzyme reaction 
conditions described above. 

2.2.4 Instrumentation of UPLC-MS/MS analyses
The analyses were performed using a liquid 
chromatography equipment (Acquity-UPLC™) 
coupled to a photodiode array detector (PDA) and a 
high-resolution mass spectrometer (Xevo® G2 QTof 
model – Waters®) equipped with an electrospray 
ionization source (ESI) operating in positive (ESI+) 
and negative (ESI-) ionization modes. The 
separation of samples and C. glaziovii dereplication 
was achieved on a C18 column 1.7 µm, 2.1 x 100 mm 
Kinetex (Phenomenex®). For I. paraguariensis 
extract dereplication, a C18 column, 2.6 µm 2.1 x 
150 mm Kinetex (Phenomenex®) was used. All data 
were processed by using the software MassLynx 
V4.1.

2.2.5 Liquid chromatography conditions for the 
analyses of midazolam, metoprolol, and their 
metabolites 
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Liquid chromatography analyses were performed 
using a mobile phase consisting of a mixture of 0.1% 
aqueous formic acid (A) and acetonitrile (B) in 
gradient elution mode at a flow rate of 0.4 mL/min. 
The solvent program steps were set for midazolam 
and its metabolite in a gradient elution mode as 
follows: initial conditions 10-90% (B-A); a linear 
gradient from 10-50% (B) for 6 min and hold at 50% 
(B) for 30 sec. After that, the UPLC column was 
maintained in the initial conditions (10-90%, B-A) 
during 1.5 min for re-equilibration before the next 
injection. 
The solvent program steps were set for metoprolol 
and its metabolites in a gradient elution mode as 
follows: 0-3 min of 2-98% (B-A); a linear gradient 
from 2-90% (B) for 3 min and hold at 90% (B) for 1 
min. After that, the UPLC column was maintained in 
the initial conditions (2-98%, B-A) during 5 min for 
re-equilibration before the next injection.
The total run time including equilibration was 8 min 
and 12 min for samples containing midazolam and 
metoprolol, respectively.
The volume of sample injected were 4 µL for 
midazolam reaction samples and 2 µL for 
metoprolol reaction samples. The autosampler was 
kept at 6°C, and the column temperature was held at 
35°C or 40°C for midazolam and metoprolol 
reaction samples, respectively. 
Precision, accuracy, and selectivity parameters 
were evaluated for the validation of the analytical 
methods 46.

2.2.6 Spectrometric analyses of midazolam, 
metoprolol, and their metabolites
For midazolam and its metabolite, the mass 
spectrometer parameters were set as follows: ESI+, 
capillary voltage of 3.0 kV; source block 
temperature of 90°C; desolvation temperature of 
400°C; nebulizer nitrogen flow rate of 10 L/h; and 
desolvation nitrogen gas flow of 350 L/h. 
Spectrometric analyses were performed using 
sampling cone 50 V and collision energy 28 eV. 
For metoprolol and its metabolites, the mass 
spectrometer parameters were set as follows: ESI+, 
capillary voltage of 2.0 kV; source block 
temperature of 90°C; desolvation temperature of 
300°C; nebulizer nitrogen flow rate of 200 L/h; and 
desolvation nitrogen gas flow of 900 L/h. 
Spectrometric analyses were performed using 
sampling cone 40 V and collision energy 30 eV. For 
both, mass scanning ranged from m/z 100 to 1,000 
with a scan time of 1.0 sec. Argon was used as the 
collision gas and leucine enkephalin as a reference 
compound to determine the masses accurately. 

2.2.7 Liquid chromatographic conditions for the 
analyses of the medicinal plant extracts 
For C. glaziovii extract, the mobile phase was a 
gradient consisted by 0.1% of aqueous formic acid 
(A) and acetonitrile (B) at constant flow rate of 0.4 
mL/min programmed as follows: 0-2 min of 2-98% 
(B-A); a linear gradient from 2-95% (B) for 12 min; 

hold at 95% (B) for 1.5 min, and returned to 2-98% 
(B) for 30 sec. After that, the UPLC column was 
maintained in the initial conditions (2-98%, B-A) 
during 4 min for re-equilibration. 
For I. paraguariensis extract, the mobile phase was 
consisted by a gradient of 0.1% of aqueous formic 
acid (A) and methanol (B) at constant flow rate of 
0.5 mL/min. This gradient was programmed as 
follows: Initial condition 15-85% (B-A); a linear 
gradient from 15-25% (B) for 2 min; 25-60% (B) for 
2-4 min; 60-70% (B) for 4-9 min, and 70-15% (B) 
for 9-10 min. After that, the UPLC column was 
maintained in the initial conditions (15-85%, B-A) 
during 2 min for re-equilibration.

2.2.8 Spectrometric analyses of the medicinal 
plant extracts
For C. glaziovii dereplication analyses, the mass 
spectrometer parameters were set as follows: ESI+ 
and/or ESI-, capillary voltage of 3.0 kV; source block 
temperature of 90°C; desolvation temperature of 
300°C; nebulizer nitrogen flow rate of 200 L/h; 
desolvation nitrogen gas flow of 900 L/h. MS/MS 
analyses were performed using a collision 28 eV 
(m/z 300-400) and 30 eV (m/z > 400).
For I. paraguariensis dereplication analyses, the 
mass spectrometer parameters were set as follows: 
For ESI-, capillary voltage of 2.5 kV; source block 
temperature of 150°C; desolvation temperature of 
500°C; nebulizer nitrogen flow rate of 150 L/h; 
desolvation nitrogen gas flow of 1,000 L/h. For ESI+, 
capillary voltage of 3.5 kV; source block 
temperature of 90°C; desolvation temperature of 
400°C; nebulizer nitrogen flow rate of 30 L/h, and 
desolvation nitrogen gas flow of 900 L/h were set. 
MS/MS analyses were performed using a collision 
energy ramp 10-30 eV.
For C. glaziovii, mass scanning ranged from m/z 80 
to 1,000, and for I. paraguariensis from m/z 50 to 
1,200 with a scan time of 1.0 sec. Argon was used as 
the collision gas.

2.2.9 Statistical analyses
All data were analyzed using Microsoft Excel® 2016 
and GraphPad Prism 6 and were obtained from 
three independent experiments. For the substrate 
saturation curves, data were expressed as mean ± 
standard derivation (SD). Values of Km and Vmax 
were determined by non-linear regression and 
Michaelis-Menten equation (V = Vmax [S]/ (Km + [S]). 
Data on the potential changes in CYP3A4 and 
CYP2D6 enzymatic activity caused by the tested 
medicinal plant extracts were expressed as mean ± 
standard derivation (SD) and analyzed by one-way 
ANOVA followed by the post-hoc Dunnett's test 
(confidence interval 95%). The inhibition curve 
data of the extracts were expressed as mean ± 
standard derivation (SD) and analyzed by non-
linear regression. 

3. RESULTS

Page 4 of 15

ACS Paragon Plus Environment

Chemical Research in Toxicology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

3.1 Characterization of drug substrates and 
their metabolites 
The in vitro herb-drug interactions mediated by 
CYP3A4 and CYP2D6 enzymes were evaluated using 
standardized medicinal plants extracts and the 
drugs midazolam and metoprolol, which are well-
known as substrates of CYP3A4 and CYP2D6 
enzymes, respectively 32, 47. It is relevant to highlight 
that the interactions detected using these substrates 
are useful for predicting the occurrence of 
interactions with other drugs metabolized by 
CYP3A4 and CYP2D6. A comprehensive list of drugs 
that are substrates for these enzymes is available at 
the SuperCYP database 
http://bioinformatics.charite.de/supercyp/ 48.
This study employed the following criteria to 
validate the analytical methods: precision - RSD < 
15%; accuracy - % recovery between 80-120%; and 
specificity, which was assessed by injecting the 
reaction mix into the UPLC-MS equipment. The 
results are available in the Supplementary Material 
(Table S1 and Fig. S1).
Fig.1 shows chromatograms and spectra obtained 
by UPLC-MS/MS for midazolam, metoprolol, and 

their metabolites. The metabolites OH-metoprolol 
and O-demethylmetoprolol coeluted, and no further 
separation was observed after several attempts. 
Since these molecules present similar polarity 
features and both result from CYP2D6 metabolism, 
the formed peak corresponding to these two 
metabolites was used for quantification.
Table 2 presents the data concerning the molar 
mass and retention times determined by UPLC-
MS/MS for midazolam and metoprolol, their 
metabolites as well as their molecular formulas. 
These results are similar to those previously 
described in the literature 36, 49.
To select the drug substrate concentrations to be 
used for the evaluation of potential herb-drug 
interactions involving CYP3A4 and CYP2D6 
recombinant enzymes, the substrate saturation 
curves were obtained for midazolam (Fig. 1D) and 
metoprolol (Fig. 1H). The kinetic parameters of drug 
metabolization in vitro (Km and Vmax) are also 
displayed in Table 2. 

Figure 1. Drug probes and metabolites detected by UPLC-MS and substrate saturation curves data. A. Midazolam 4 µM 
(peak 2) and metabolite OH-midazolam (peak 1) chromatogram. B. OH-midazolam peak extracted (peak 1) and mass 
spectra (m/z 203.0364). C. Chromatogram of midazolam peak extracted (peak 2) and mass spectra (m/z 291.1178). D. 
Substrate saturation curve - metabolites formation rates (pmol/min/pmol of CYP3A4) in relation to midazolam 
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substrate concentrations (µM). E. Metoprolol 80 µM (peak 2) and metabolites OH-metoprolol/O-demethylmetoprolol 
(peak 1) chromatogram. F. OH-metoprolol/O-demethylmetoprolol peak extracted (peak 1) and mass spectra (m/z 
284.1832/254.1729). G. Chromatogram of metoprolol peak extracted (peak 2) and mass spectra (m/z 268.1926). H.  
Substrate saturation curve - metabolites formation rates (pmol/min/pmol of CYP2D6) in relation to metoprolol 
substrate concentrations (µM). The curves were automatically fitted using nonlinear regression and the Michaelis–
Menten equation; values are presented as mean ± SD.

Table 2. Drug substrates and metabolites characteristics.
Enzyme CYP3A4 CYP2D6
Chemical characteristics
Substrates Midazolam Metoprolol
Mass detected 291.1178 g/mol 268.1926 g/mol
Retention time 4.17 min 5.70 min
Molecular formula C18H13CIFN3 C15H25NO3

Metabolites OH-midazolam OH-metoprolol /
O-demethylmetoprolol

Mass detected 203.0364 g/mol 284.1832/ 254.1729 g/mol
Retention time 4.05 min 5.08 min
Molecular formula C18H13CIFN3O C15H25NO4/C14H23NO3
Kinetics characteristics
Km

a 3.33 ± 1.50 µM 71.88 ± 19.46 µM

Vmax
a 1.50 ± 0.254 pmol/min/pmol of 

enzyme
31.64 ± 4.629 pmol/min/pmol of 

enzyme
aData represent the mean ± SD and were determined by nonlinear regression and the Michaelis-Menten equation.

3.2 Modulation of CYP3A4 and CYP2D6 activity 
by the medicinal plant extracts 
After determining the value of km for each substrate 
used, the enzyme activity modulation analyses were 
performed. Potential modifications in CYP2D6 and 
CYP3A4 enzymatic activity were analyzed using the 
standardized medicinal plant extracts at 500 µg/mL. 
Ketoconazole (2.0 µM) and quinidine (0.08 µM) 
were used as controls since these drugs are selective 
inhibitors of CYP3A4 and CYP2D6, respectively, and 
are recommended by the FDA for in vitro 
metabolism studies 32. 
Both drug enzyme-specific inhibitors, ketoconazole 
and quinidine, significantly (p < 0.001) inhibited the 
production of the respective enzymatic metabolites 
when compared to the control reaction (Fig. 2), 
demonstrating the proper performance of these 
inhibitors under the established enzymatic reaction 
conditions.
A significant reduction (p < 0.05) of OH-midazolam 
production was detected when the CYP3A4 enzyme 
was incubated with most of the extracts tested and 
compared to the control reaction. The production of 
this metabolite was inhibited by all extracts except 
the soy extract (G. max) (Fig. 2A). On the other hand, 
CYP2D6 was significantly (p < 0.05) inhibited only 
by red embaúba (C. glaziovii) extract (Fig. 2B).
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Figure 2. Modulation of CYP3A4 and CYP2D6 
activity in the presence of standardized medicinal 
plant extracts (500 µg/mL). A. CYP3A4 enzymatic 
reactions - % OH-midazolam formation versus samples 
tested. B. CYP2D6 enzymatic reactions - % OH-
metoprolol/O-demethylmetoprolol formation versus 
samples tested. Data are expressed as percentages (%) 
relative to controls. Data were analyzed by two-way 
ANOVA followed by the post-hoc Dunnett's test 
(confidence interval 95%) and compared to the 
controls. Data were obtained from three independent 
experiments (mean ± SD). BF - Bauhinia forficata; CG - 
Cecropia glaziovii; CR - Cimicifuga racemosa; CSc - 
Cynara scolymus; EQ - Echinacea sp; GB - Ginkgo biloba; 
GM - Glycine max;  IP - Ilex paraguariensis; Keto – 
ketoconazole; and MR - Matricaria recutita; Quin – 
Quinidine; ** (p <0.01); **** (p <0.0001).
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7

3.3 Determination of CYP3A4 and CYP2D6 
inhibition curves 
CYP3A4 and CYP2D6 inhibition curves were 
determined for the extracts that demonstrated the 
most relevant inhibition of CYP3A4 (C. glaziovii and 
I. paraguariensis) and CYP2D6 (C. glaziovii) activity, 
and their IC50 values were calculated. Fig. 3, reveals 
that the C. glaziovii extract inhibited CYP2D6 
activity with an IC50 value of 396.0 µg/mL. For 
CYP3A4 reactions, C. glaziovii and I. paraguariensis 
presented IC50 values equal to 102.1 µg/mL and 
124.2 µg/mL, respectively.
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Figure 3. CYP3A4 and CYP2D6 inhibition curves. A and 
B C. glaziovii and C. I. paraguariensis. Data were 
analyzed by non-linear regression and represent each 
extract concentrations (µg/mL) versus % of 
metabolites formation normalized to the control. Data 
were obtained from three independent experiments. 

3.4 Identification of the major 
phytoconstituents of Cecropia glaziovii and Ilex 
paraguariensis by UPLC-MS/MS
In order to establish a relationship with the in vitro 
findings and the chemical composition of the 
extracts that presented the most relevant inhibitory 
effects of CYP3A4 and CYP2D6 activity, the major 
compounds of C. glaziovii and I. paraguariensis 
extracts were identified by UPLC-ESI-QTof-MS/MS. 
Fig. 4 presents the chromatograms in ESI+ and ESI-. 
For C. glaziovii and I. paraguariensis, nine major 

peaks were identified for each extract. Tables 3 and 
4 show the characterization of these compounds as 
well as their retention times, m/z peaks, molecular 
formulas, fragments, and common names.  

Figure 4. Chromatograms of (A) Cecropia glaziovii 
(CG) (ESI-), (B) Ilex paraguariensis (IP) (ESI+), and (C) 
Ilex paraguariensis (IP) (ESI-) obtained by UPLC-
MS/MS for their major compounds. The identification 
of each numbered peak can be seen in Tables 3 and 4. 
The complete chromatograms of the extracts and 
blanks of the solvents used in the analysis can be seen 
in Supplementary Material (Fig. S2 and S3).

4. DISCUSSION
4.1 Drug probes and Km values
Concerning the determination of the Km parameter, 
the values obtained were close to those reported by 
other similar studies with CYP3A4 50, 51, CYP2D6 
enzymes 52, and their respective substrates 
midazolam and metoprolol. Based on both substrate 
saturation curves, the concentrations of 4 μM for 
midazolam and 80 μM for metoprolol were chosen 
for the subsequent in vitro herb-drug interaction 
assays. These concentrations are close to the values 
of Km, and they enabled the detection of drug 
substrates and their metabolites by UPLC-MS. 

4.2 Modulation of CYP3A4 and CYP2D6 activity 
by the standardized medicinal plant extracts
All tested extracts inhibited CYP3A4 activity to some 
degree, except soy extract (G. max) (Fig. 2A). Other 
authors have reported the inhibition of CYP3A4 by 
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several xenobiotics. For example, Ashour and 
coworkers (2017) verified that of the 57 Traditional 
Chinese Medicine extracts tested, all inhibited 
CYP3A4 activity 40. The inhibition of this enzyme by 
most of the extracts tested may be associated with 
the enzyme conformational flexibility and its ability 
to bind to large and structurally diverse compounds, 
which increases the chances of their modulation 53. 
On the other hand, in this study, only the extract of 
red embaúba (C. glaziovii) inhibited CYP2D6 activity 
(Fig. 2B).

4.2.1 Red embaúba (Cecropia glaziovii)
Important pharmacological effects were reported 
for red embaúba 54, such as anti-inflammatory, 
antioxidant 55, hepatoprotective 56, antiviral 56, 57, 
anti-acid secretion 58, hypoglycemic and 
vasorelaxant 59, and antihypertensive 60 activities, 
which have been credited to the presence of 
catechins, procyanidins, flavonoids, and chlorogenic 
and caffeic acids 54.
The extract of red embaúba inhibited the CYP3A4 
and CYP2D6 activity similarly when compared to 
ketoconazole (2.0 µM) and quinidine (0.08 µM) 
(both > 50% of the metabolite production), 
respectively (Fig. 2). To the best of our knowledge, 
there are no previous reported studies about the 
modulation of CYP3A4 and CYP2D6 activity by C. 
glaziovii. However, in a recent paper published by 
our research group, it was reported that the 
treatment of Caco-2 cells with 100 µg/mL of C. 
glaziovii for 48 h induced the expression of CYP3A4 
when assessed via a gene reporter assay, while the 
CYP2D6 expression was not significantly altered 18. 
This increase in the CYP3A4 expression could be 
associated with the feedback in response to a 
previous inhibition of this enzyme activity since the 
analysis was performed 48 h after Caco-2 treatment. 
Also, in this case, the simultaneous activity of 
different compounds on biochemical and molecular 
pathways cannot be excluded due to the complexity 
of the chemical composition of the extracts. For 
example, several polyphenolic compounds inhibit 
CYP3A4 activity, while others act on the nuclear 
receptors such as PXR (Pregnane X Receptor) to 
induce the expression of CYP enzymes, including 
that of CYP3A4 61, 62.

4.2.2 Yerba mate (Ilex paraguariensis)
Another tested sample that significantly inhibited 
CYP3A4 activity was the extract of yerba mate. 
Several pharmacological effects have been 
attributed to this plant, such as: antiatherosclerotic 
63, anticonvulsant, neuroprotective 64, 65, anti-
inflammatory 66, anti-obesity 67, antiviral 68, 
cardioprotective 69, and hypolipidemic 70 activities. 
Additionally, this plant is employed to prevent or 
treat osteoporosis 71 and to reduce oxidative stress 
72.
In this work, the yerba mate extract significantly 
inhibited (p < 0.001) the production of OH-
midazolam metabolite and showed an inhibition 

profile similar to that found for the ketoconazole 
inhibitor (Fig. 2A). No reports on the inhibition of 
CYP3A4 activity using I. paraguariensis extract was 
found in the literature. However, the inhibition of 
CYP2E1 activity has already been reported and, in 
this case, the extract of yerba mate also protected 
against ethanol-induced liver injury 73. 
From the extracts tested, I. paraguariensis stands 
out because it is used in the preparation of 
traditional beverages known as chimarrão, mate 
and tererê, especially in southern and southeastern 
regions of Brazil, Argentina, and Uruguay 74, 75. In 
addition, this extract showed a relatively low IC50 
value when compared to the other samples tested. 
Therefore, herb-drug interactions with this plant 
can cause important effects on the bioavailability of 
drugs metabolized by CYP3A4 due to the chronic 
and considerable amount consumed of this drink 74. 
Thus, it would be important to evaluate in vivo 
interactions involving the beverages prepared with 
this plant.

4.2.3 Other medicinal plant extracts tested
The CYP3A4 activity was inhibited (p < 0.05) weakly 
by the other extracts tested, and it was not inhibited 
by the soy extract. According to the available 
literature, all extracts evaluated herein contain 
phenolic compounds 76-82. The HPLC-UV analyses 
performed with the standardized medicinal plant 
extracts tested showed peaks in the UV spectra, 
confirming the presence of phenolic compounds 
(data not shown). 
Thus, the polyphenols may be responsible for the 
inhibition of CYP3A4 activity observed to a lesser 
extent for C. scolymus (globe artichoke) M. recutita 
(chamomile), Echinacea sp. (echinacea), G. biloba 
(ginkgo), and B. forficata (orchid tree) extracts.
Similar results have been reported for CYP3A4 and 
Echinacea sp. (echinacea), C. racemosa (black 
cohosh), and G. biloba (ginkgo) extracts. For 
Echinacea purpurea, a weak inhibition of CYP3A4 
activity was detected using different enzyme 
substrates 83. C. racemosa inhibited CYP3A4 activity, 
and this effect was attributed to the triterpene 
glycosides present in this plant 84. G. biloba also 
caused a slight inhibition of CYP3A4 activity 85. Thus, 
the inhibition of CYP3A4 activity by these medicinal 
plant extracts corroborate the reports in the 
literature. 
Concerning the G. max (soy) extract, despite the 
presence of polyphenols, such as isoflavonoids, no 
alterations on the metabolism of midazolam were 
observed herein, which have been stated previously 
61. Thus, qualitative and quantitative variations of 
the compounds present in medicinal plants may also 
be crucial for the final observed effects.
Most of the extracts tested on CYP2D6 activity did 
not alter the metabolism of metoprolol. However, a 
study performed with the essential oil of M. recutita 
and their isolated compounds described that the 
CYP2D6 activity was less affected by the isolated 
compounds than by the crude oil. Nevertheless, in 
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the same study, few isolated compounds inhibited 
other CYP enzymes, such as CYP1A2 and CYP3A4 86. 
In the same way, Gurley and coworkers (2008) did 
not detect significant effects in vivo on CYP2D6 
activity caused by E. purpurea and C. racemosa 87. 
The same finding was observed in vitro for C. 
racemosa 37. Furthermore, in vivo assays conducted 
with a soy extract (G. max) containing isoflavones 
did not affect the pharmacokinetics and 
pharmacodynamics of metoprolol 88. 
No relevant information concerning the CYP2D6 
inhibitory activity in vitro of the other tested 
extracts is available in the literature. Indeed, to the 
best of our knowledge, the in vitro evaluation of the 
potential inhibitory effects of CYP2D6 activity 
caused by C. scolymus, I. paraguariensis, and B. 
forficata extracts is being reported here for the first 
time. 

4.3 Identification of the major 
phytoconstituents of Cecropia glaziovii and Ilex 
paraguariensis by UPLC-MS/MS
The major secondary metabolites found in the 
standardized extract of C. glaziovii were catechin, 
epicatechin, caffeoylquinic acid, procyanidins, and 
C-glycosylflavonoids (vitexin, isoorientin and 
isovitexin) (Table 3), which have been previously 
described 54, 89.
For the standardized extract of I. paraguariensis, the 
major compounds identified were caffeoylquinic 
acid, caffeine, theobromine, quinic acid, and rutin 
(Table 4), which have also been previously reported 
75, 90.
In this way, the extracts of C. glaziovii, and I. 
paraguariensis are well known to be rich in 
polyphenolic compounds, and the potential of these 
secondary metabolites to inhibit CYP3A4 activity 
has been described before indicating that they may 
be responsible for the inhibition detected in this 
work 61, 91. These effects, associated with the 
phenolic groups, can be due to their interactions 
with the amino groups of the enzyme (arginine, 
lysine, and histidine) forming hydrogen and ionic 
bonds at the enzyme active sites 40, 62.
Some catechins have been described as CYP3A4 
inhibitors 92, and they could also be responsible for 
the inhibition caused by C. glaziovii. Likewise, I. 
paraguariensis and C. glaziovii present chlorogenic 
acid in their chemical composition, which could 
have contributed to the inhibition of CYP3A4 
activity, since this compound was described as an 
inhibitor of such activity 93. 
The flavonoid rutin, which is one of the major 
compounds of I. paraguariensis extract, also acts as 
a CYP3A4 inhibitor, showing high stability within 
the active enzymatic sites 40. 
Concerning the inhibition of CYP2D6 activity, an in 
silico study investigated the CYP2D6 activity 
inhibitory potential of 43 polyphenolic compounds, 
including catechin, epicatechin, epigallocatechin-3-
O-gallate, and gallocatechin-3-O-gallate, which 
showed low values of Ki (< 6.88 µM), suggesting they 

strongly inhibited CYP2D6 activity 88. The inhibition 
of other CYP enzymes activity, such as CYP1A1, 
CYP2C9, and CYP3A4, by catechin-3-O-gallate, 
gallocatechin-3-O-gallate, and epigallocatechin-3-O-
gallate have already been described 92. For this 
reason, it seems that catechins, which are abundant 
in C. glaziovii (Table 3), may be responsible, at least 
in part, for the inhibition detected. 
The phytochemical, pharmacological, and 
pharmacokinetic properties of C. glaziovii are still 
scarcely studied. However, some of its constituents 
have been investigated concerning potential herb-
drug interactions. An in silico investigation showed 
that the C-glycosylflavonoids, orientin, and 
isoorientin, did not inhibit CYP2D6 activity, while 
isovitexin and vitexin did 94. Additionally, 
chlorogenic acid also inhibited CYP2D6 activity in 
vitro 95. Thus, isovitexin, vitexin and/or chlorogenic 
acid could count for the inhibitory effects of CYP2D6 
activity observed for C. glaziovii. 
Interestingly, the inhibition of CYP2D6 activity by I. 
paraguariensis was not observed, although this 
extract is rich in chlorogenic acid. Nonetheless, 
further studies with these isolated metabolites are 
required to determine their CYP2D6 inhibition 
profiles.
Although these secondary metabolites are known to 
be CYP inhibitors, it is relevant to note that the 
verified enzymatic inhibitory effects may not refer 
just to a single compound. Moreover, additive or 
synergistic effects of the components of the extracts 
tested on CYP enzymes activity cannot be ruled out 
96.
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Table 3. Characterization of the major phytoconstituents of Cecropia glaziovii (red embaúba) standardized extract. 

Peak 
numbera

tR 
(min)

 Expt. 
(m/z)

Molecular 
formulas Fragments (m/z) Common names

ESI (-)
1 0.53 195.0530 [C6H11O7-H]- - Gluconic acid
2 4.53 353.0890 [C16H18O9-H]- 191.0592 Caffeoylquinic acid

3 4.75 577.1353 [C30H26O12-H]- 125.0261, 151.0405, 245.0858, 289.0742, 407.0716 Procyanidin B2, B3, B4, B5, or 
B7

4 4.86 289.0742 [C15H14O6-H]- 109.0289, 123.0424, 125.0261, 137.0147, 151.0379, 188.0458, 203.0714 Catechin or Epicatechin

5 5.26 447.0953 [C21H20O11-H]- 327.0648, 357.0666 Isoorientin or
Luteolin-8-C-glucoside

6 5.37 593.1514 [C27H30O15-H]- 119.0354, 243.0324, 269.0422, 293.0456, 353.0698, 413.0833, 473.1130 Vicenin-2
7 5.45 563.1394 [C26H28O14-H]- 293.0491, 311.0591, 323.0561, 341.0707, 353.0621, 413.0916, 443.1084 Schaftoside or vicenin-1
8 5.56 431.1021 [C21H20O10-H]- 161.0260, 282.0510, 283.0594, 311.0591, 341.0669, 342.0569 Isovitexin or vitexin

9 5.96 473.1130 [C22H22O11-H]- 281.0479, 283.0628, 311.0555, 323.0561, 341.0659, 354.0707, 413.0916, 
431.1021 Acetylvitexin

aCorresponding peaks can be seen in the chromatograms of Fig. 4.

Table 4. Characterization of the major phytoconstituents of Ilex paraguariensis (yerba mate) standardized extract. 
Peak 

numbera
tR 

(min)
Expt. 
(m/z) Molecular formula Fragments (m/z) Common names

ESI (+)
1 5,48 181,0734 [C7H8N4O2+ H]+ 163.0607; 138.0664; 122.0582; 108.0562 Theobromineb

2 6,67 195,0886 [C8H10N4O2 + H]+ 138.0664; 123.0430; 110.0723 Caffeineb

ESI (-)
1 2.70 191.0550 [C7H12O6 - H]- 93.0353; 109.0303;127.0399; 171.0258 Quinic acid
2 5,60 353.0873 [C16H18O9 - H]- 179.0343; 135.0445 5-O-caffeoylquinic acidb

3 5.80 341,0887 [C15H18O9 - H]- 323.0784; 281.0677; 251.0589; 221.0482; 
179.0370 6-O-caffeoylglucose

4 6,34 353,0873 [C16H18O9 - H]- 179.0343; 173.0451; 135.0445 4-O-Caffeoylquinic acid or 3-O-Caffeoylquinic acidb 

5 7,1 515,1195 [C25H24O12 - H]- 191.0550; 179.0343; 173.0451; 135.0445 3,4-di-O-caffeoylquinic acid or 3,5-di-O-caffeoylquinic acid
6 7,42 515,1195 [C25H24O12 - H]- 191.0550; 179.0370; 173.0451; 135.0445 4,5-di-O-caffeoylquinic acid
7 7,54 609,1490 [C27H30O16 - H]- 301.0358 Rutinb

aCorresponding peaks can be seen in the chromatograms of Fig. 4.
bIdentified with authentic standards
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5. CONCLUSION
In summary, this study suggests that the 
concomitant use of C. glaziovii and/or I. 
paraguariensis extracts with xenobiotics (ex. drugs, 
isolated compounds, other medicinal plant extracts) 
metabolized by CYP3A4 or CYP2D6 may interfere in 
vivo with the xenobiotic’s metabolism. 
Due to the chemical composition of these medicinal 
plant extracts, the polyphenolic compounds appear 
to play an important role in the inhibition of CYP3A4 

and CYP2D6 activity. Thus, many other natural 
products containing the same phytoconstituents 
present in those extracts may affect drug 
bioavailability and result in herb-drug interactions. 
Further mechanistic and in vivo experiments are 
required to fully assess their safety profile. 
Likewise, the role of intestinal metabolism of 
natural compounds, in which the microbiota 
actively participates, should also be investigated for 
a better correlation with the results obtained in vitro 
and in vivo.
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ABBREVIATIONS
[S]: Substrate concentration; BF: Bauhinia forficata; 
CAM: Complementary and Alternative Medicine; CG: 
Cecropia glaziovii; CR: Cimicifuga racemosa; CSc: 
Cynara scolymus; CYP: Cytochrome P450 enzymes; 
DMSO: Dimethyl Sulfoxide; EDTA: 
Ethylenediaminetetraacetic acid; EMA: European 
Medicines Agency; EQ: Echinacea sp; FDA: Food and 
Drug Administration; IC50: Half maximal inhibitory 
concentration; IP: Ilex paraguariensis; Keto: 
ketoconazole; Km: Michaelis constant; MR: 
Matricaria recutita; NADPH: Nicotinamide Adenine 
Dinucleotide Phosphate; p: p value; PBS: Phosphate-
buffered Saline; Quin: Quinidine; SD: Standard 
Deviation; tR: Retention time; TFA: Trifluoro acetic 
acid; V: Velocity; Vmax: Maximal velocity.
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