ISSN 1070-3632, Russian Journal of General Chemistry, 2006, Vol. 76, No. 8, pp. 1219–1225. © Pleiades Publishing, Inc., 2006. Original Russian Text © L.D. Popov, I.N. Shcherbakov, Yu.N. Tkachenko, S.A. Borodkin, V.A. Kogan, 2006, published in Zhurnal Obshchei Khimii, 2006, Vol. 76, No. 8, pp. 1269–1275.

Synthesis, Structure, and Properties of Phosphorus-Containing Bis(amidrazones)

L. D. Popov, I. N. Shcherbakov, Yu. N. Tkachenko, S. A. Borodkin, and V. A. Kogan

Rostov State University, ul. Zorge 7, Rostov-on-Don, 344090 Russia e-mail: saborod@list.ru

Received March 24, 2006

Abstract—Previously unknown ethenylphosphonic derivatives of bis(amidrazones) were prepared. According to spectroscopic data and quantum-chemical calculations, these compounds exist as phosphonium salts of a symmetrical linear structure with *trans* arrangement of the amidrazone fragments. In alkaline solutions, they are unstable and decompose to form triarylphosphine oxides. In contrast to ordinary amidrazones, their phosphorus-containing derivatives do not tend to form complexes with transition metals. **DOI:** 10.1134/S107036320608007X

Amidrazones form a class of organic compounds whose structure and composition are represented by the formulas $R-C(NH_2)=N-NH_2$ or $R-C(NH_2)=N-NH-R'$. Amidrazones with various R and R' substituents have been described in the literature [1, 2], but there are no data on phosphorus-containing amidrazones. Due to the presence of several donor centers and acidic protons in the NH₂ groups, amidrazones are good complexants, in particular, for transition metal ions [3–7]. Amidrazones and amidrazone complexes exhibit high biological activity [8–10]. It seemed interesting to introduce a phosphorus-containing group into the amidrazone molecule and to reveal its effect on the amidrazone structure and properties, including complexation. For this purpose we synthesized amidrazones **IIIa** and **IIIb**.

X = H (a), OCH₃ (b).

The ¹H NMR spectra of **IIIa** and **IIIb** in DMSO- d_6 (25°C) contain signals of aromatic ring protons at 7.20–7.86 ppm; the spectrum of **IIIb** also contains a singlet of OCH₃ protons at 3.66 ppm. The signals of

the NH and NH₂ protons appear as two broad singlets at 10.9–11.4 (2H) and 6.9–7.0 ppm (4H); the signals decrease on adding D_2O to the sample. The CH–NH protons give a two-proton doublet of triplets at

Comp. no.	Medium	λ, nm	З	logε
IIIa	Neutral	263 sh	8640	3.94
		269	9510	3.98
		276	9510	3.98
		348	28 100	4.45
	+ KOH	267	12900	4.11
		385	10150	4.01
	+ HCl	269	13700	4.14
		355	13 820	4.14
IIIb	Neutral	268 sh	6520	3.81
		275 sh	8180	3.91
		293	10760	4.03
		340	24 240	4.38
	+ KOH	285	11 330	4.05
		390	22500	4.35
	+ HCl	276	13 790	4.14

 Table 1. Electronic absorption spectra of compounds IIIa
 and IIIb

6.4 ppm ($J_{\text{CHNH}} = 4$, $J_{\text{CHCH}} = J_{\text{CHP}} = 14$ Hz), and CHP protons, a two-proton doublet of doublets at 5.7–6.0 ppm ($J_{\text{CHP}} = 16.5$, $J_{\text{CHCH}} = 14$ Hz, exchanges with D₂O). The P–H coupling constants suggest the *trans*

arrangement of ethylene protons in the $Ar_3P^+CH=$ CHNN fragment [11, 12].

Thus, the ¹H NMR data show that at room temperature compounds **IIIa** and **IIIb** have a symmetrical linear structure with amidrazone fragments in the *trans* position.

The UV spectrum of **IIIa** (in methanol) contains a shoulder at λ_{max} 263 nm (log ε_{max} 3.94), two strong bands of $\pi \rightarrow \pi^*$ transition (*E* bands), λ_{max} 269 and 276 nm (both with log $\varepsilon_{max} = 3.98$), and one band of $\pi \rightarrow \pi^*$ transition (*K* band), λ_{max} 348 nm (log ε_{max} 4.45). On acidification (HCl) of a solution of **IIIa**, its UV spectrum changes insignificantly: a ~7-nm bathochromic shift of the long-wave band, accompanied by a hypochromic effect (ε_{max} decresses by ~14000 units), is observed. Similar pattern is observed with **IIIb** (Table 1), suggesting similarity of the structures of both phosphonium salts.

Insofar as molecules of **IIIa** and **IIIb** contain several donor centers and functional groups connected by a system of multiple bonds, they can exist as several relatively stable tautomers. The tautomerism within one amidrazone fragment can be represented as follows (N_{am} is amide nitrogen, N_{h1} and N_{h2} are the nitrogen atoms of hydrazone fragment):

Table 2. Caculated [B3LYP, 6-31G(d,p)] total energies E_{tot} and energies relative to the most stable tautomer E_{rel} for various isomeric forms of **IV**

Comp. no.	Tautomer	E _{tot} , au	$E_{\rm rel},$ kcal mol ⁻¹
IVa	Α	-1484.897325	0.0
IVb	Α	-1484.897741	0.3
IVc	Α	-1484.874523	14.6
IVd	В	-1484.867412	19.0
IVe	С	-1484.846792	32.0
IVf	С	-1484.856461	25.9
IVg	A, B	-1484.878314	12.2

Each tautomer can exist in the form of various conformers differing in the steric repulsion of their fragments and in the number and strength of intramolecular H bonds. To assess the relative stability of alternative molecular structures of **IIIa** and **IIIb**, we performed a quantum-chemical calculation of various structures of molecular dication **IV**. To reduce the computing time, the triphenylphosphonium fragments in **III** were replaced by trimethylphosphonium fragments.

The geometries of the optimized structures are shown in the figures below; their total and relative energies are listed in Table 2.

The most preferable are the conformations corresponding to tautomers A (IVa–IVc). Among them, the

Fig. 1. Geometric structures of isomers IVa-IVc.

most stable are structures **IVa** and **IVb** with *trans* configuration of the bonds relative to the central C–C bond, which is stabilized by four relatively strong H

bonds N_{am} -H···N_{h1} (2.242 Å) and N_{h2} -H···N_{am} (2.446 Å). Conformation **IVa** is slightly more preferable (by 0.3 kcal mol⁻¹) due to additional stabiliza-

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 76 No. 8 2006

Fig. 2. Geometric structures of isomers IVd-IVg.

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 76 No. 8 2006

tion by the attracting interaction of the amidine nirtrogen atom N_{h1} and a proton in the ethylene group (the N_{h2} -H···N_{am} H-bond length increases from 2.402 in **IVb** to 2.446 Å in **IVa**, but owing to additional C-H···N_{h1} H bonding an energy gain is achieved). The central fragment of the molecule is essentially planar; the amide and N_{h2} nitrogen atoms are noticeable pyramidal.

The cisoid conformer (relative to the central C–C bond) **IVc** of tautomer of type **A** is considerably destabilized (by 14.6 kcal mol⁻¹) as compared to the transoid conformers (**IVa**, **IVb**). There are only two H bonds in its structure, and significant repulsion turns the amidrazone fragments by approximately 30° to opposite directions.

The tautomer of type **B** (structure **IVd**) is still less stable. Here the conjugation chain is the shortest, because the peripheral fragments of the molecule are turned by 90° around the single N–N bond of the hydrazone moiety to maintain the best conditions for hydrogen bonding N_{am} -H…N_{h2} in addition to N_{h1} -H…N_{am}.

The conformations of type **C**, **IVe** and **IVf**, are the least stable. The nonplanar structure **IVf** with four intramolecular H bonds (rotation by 25° around the central C–C bond) is preferable over the almost planar structure **IVe** with only two intramolecular H bonds.

Among the possible unsymmetrical tautomers, IVg is the most stable, due to formation of four different H bonds. It contains one amidrazone fragment in tautomeric form **A**, NH₂-C=N–NH, and the second fragment in form **B**, NH=C–NH–NH. The effect of H bonding on the stabilization in this structure is so strong that this structure is more favorable even than the *cis* conformer **IVc** of the type **A** tautomer.

Deprotonation of dication **IV** leads to a planar structure of type **V** with four practically equivalent H bonds formed by hydrogen atoms of NH₂ groups with the nitrogen atoms of hydrazine groups. The position of the long-wave maximum λ_{max} of **V**, calculated in the TDDFT approximation, is 338 nm, which is 24 nm higher than that calculated for conformer **IVa**, 314 nm. Thus, the bathochromic shift of the maximum of the long-wave absorption band upon alkalization in compounds **IIIa** ($\Delta\lambda_{max}$ 47 nm) and **IIIb** ($\Delta\lambda_{max}$ 50 nm) may be due to deprotonation of the parent cation.

A structural feature of V is the preference of the flagstaff conformation of trimethylphosphonium fragments relative to the plane of the central part of the molecule and significant loosening of one of the P–CH₃ bonds (elongation to 1.857 Å, as compared to

Table 3. Calculated [B3LYP/6-31G(d,p)] parameters of vibrations of **IVa** in comparison with the experimental vibration frequencies of **IIIa**

1 711 / 1	Frequency, cm ⁻¹		
Vibration mode	calculated	experimental	
NH ₂ stretching (as)	3528 (2.30)	3380	
NH_2 stretching (s)	3418 (1.27)	3250	
NH [*] stretching	3394 (1.54)	3185	
Ethylene C–H	3090 (0.2)	3060	
stretching	1656 (0.00)	1 < 1 7	
C=C, C=N stretching	1656 (0.80)	1645	
	1629 (5.00)	1625	
	1597 (52.3)	1592	
NH ₂ bending	1576 (1.20)	1575 sh	
NH [•] bending	1493 (0.40)	1500	

1.835 Å for the other bonds). This fact suggests easiness of chemical degradation processes and can be responsible for the observed instability of amidrazones **IIIa** and **IIIb** in alkaline medium.

Thus, the calculation results and NMR data indicate that structure **IVa** prevails for the compounds synthesized.

The IR spectra of the compounds contain the following bands: band in the region of 1440 cm⁻¹ characteristic of a P–C bond [13], strong band in the region of 1600 cm⁻¹ [probably due to overlapping v(C=C) and v(C=N) bands], and several bands at 3200– 3500 cm⁻¹ due to NH and NH₂ stretching vibrations.

To interpret the IR spectra, we calculated the frequency of the harmonic vibrations of IVa in the B3LYP/6-31G(d,p) approximation. The results obtained [an empirical factor of 0.9614 proposed by A. Scott and L. Radom [14] is taken to correct the frequency of the normal modes calculated in the framework of B3LYP/6-31G(d) approach] are compared in Table 3 with the experimental spectrum of IIIa.

The experimental and calculated parameters are well consistent, confirming correctness of determination of the most stable form of **IIIa** and **IIIb**.

One of our goals was the study of the complexing ability of bisphosphonium salts **IIIa** and **IIIb**. Data on the complexion of the related amidrazones with transition metal salts have been published [15–20].

Adding a methanolic solution of copper, nickel, or zinc acetate to a methanolic solution of a phosphonium salt **III** results in a change in the color. However, we failed to isolate a complex after prolonged

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 76 No. 8 2006

Fig. 3. Geometric structure of compound V.

refluxing of the reaction solution followed by evaporation. Attempted synthesis of a complex in an alkaline medium resulted in recovery of the corresponding triarylphosphine oxide contaminated with a metal salt. In our opinion, the low complexing ability of **IIIa** and **IIIb** is due to the presence in the ligand molecules of positive charges which decrease the donor power of the nitrogen lone pairs. Adding alkali to a solution of phosphonium salt **IIIa** or **IIIb** leads to its decomposition; therefore, it is impossible to prepare a complex with such a ligand in an alkaline medium. Thus, addition of the positively charged phosphonium group to the amidrazone fragment does not promote the complex formation.

EXPERIMENTAL

The IR spectra were recorded on a Unicam-SP1200 spectrophotometer from mulls in mineral oil. The ¹H NMR spectra were taken on a Bruker AM-300 instrument with internal TMS. The electronic spectra were measured on an SF-200 spectrophotometer in the range 220–500 nm from ethanolic solutions.

Oxamidrazone II. A mixture of 2.6 g of dithiooxamide (hydrorubeanic acid), 12 ml of ethanol, and 3 ml of 95% hydrazine hydrate was heated on a water bath for 30 min. The precipitate was filtered off, washed with ethanol, and recrystallized from aqueous methanol. Yield 75%, mp > 300° C.

(1*Z*,2*Z*)-*N*¹, *N*²-Bis[(*E*)-2-triphenylphosphonio]oxamidrazone chloride IIIa. To a hot solution of 0.002 mol of (formylmethyl)triphenylphosphonium chloride Ia [18] in 10 ml of ethanol, a hot solution of 0.001 mol of dihydrazide II [19] in 10 ml of ethanol was added, and the mixture was refluxed for 5 h. The precipitate of IIIa was filtered off, washed with ethanol, and recrystallized from methanol. Yield 75%, mp >300°C. ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 5.98 d.d (2H, P⁺HC=, *J*_{PH} 16.4, *J*_{CHCH} 14 Hz), 6.43 d.t (2H, H–C=C– H_{trans} N, J_{PH} 14, J_{CHCH} 14, J_{CHNH} 3.7 Hz), 6.92 br.s (4H, NH₂), 7.67–7.86 m (30H, C₆H₅), 10.93 br.s (2H, NH). Found, %: C 65.78; H 5.33; N 11.22; P 8.02; Cl 8.92. C₄₂H₄₀·N₆P₂Cl₂. Calculated, %: C 66.23; H 5.29; N 11.03; P 8.13; Cl 9.31.

 $(1Z,2Z)-N^{1}, N^{2}$ -Bis[(E)-2-{(2-methoxyphenyl)diphenyl}phosphonio]oxamidrazone chloride IIIb. To a hot solution of 0.002 mol of (formylmethyl)(2methoxyphenyl)diphenylphosphonium chloride Ib (prepared by the same procedure as Ia) in 10 ml of ethanol, a hot solution of 0.001 mol of dihydrazine II in 10 ml of ethanol was added, and the mixture was refluxed for 5 h. Then the mixture was evaporated to 1/3 of the initial volume, and 15 ml of ethyl acetate was added. The precipitate of IIIb was filtered off, washed with ethyl acetate, and recrystallized from methanol-ethyl acetate, 1:3. Yield 58%, mp >300°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.66 s (6H, OCH₃), 5.73 d.d (2H, P⁺HC=, \hat{J}_{PH} 16.7, J_{CHCH} 14.1 Hz), 6.38 d.t (2H, H–C=C– H_{trans} N, J_{PH} 14, J_{CHCH} 14.1, J_{CHNH} 4.3 Hz), 7.01 br.s (4H, NH₂), 7.20–7.82 m (28H, Ar), 11.38 br.s (2H, NH). Found, %: C 64.78; H 5.43; N 9.75; P 7.72; Cl 8.42. C₄₄H₄₄N₆P₂P₂Cl₂. Calculated, %: C 64.31; H 5.40; N 10.23; P 7.54; Cl 8.63.

Quantum-chemical calculations. Geometry optimization and calculation of the electronic structure and vibration spectra of the conformers were performed in the framework of density functional theory (DFT) with B3LYP hybrid functional [20–22] in the 6-31G(d,p) basis set. All the calculations were performed using PCGAMESS package [23, 24]. Input data preparation, presentation of structures, and visualization of the calculation results were made using ChemCraft program [25]. The optical spectra of model compounds were calculated in the TDDFT approximation [26–28]. All the considered structures correspond to minima on the potential energy surface (no imaginary vibration frequencies).

ACKNOWLEDGMENTS

The authors are grateful to G. Zhurko for the license on the use of the ChemCraft program.

REFERENCES

- Grekov, A.P., Organicheskaya khimiya gidrazina (Organic Chemistry of Hydrazine), Kiev: Tekhnika, 1966.
- Neilson, D.G., Roger, J.R., Heatlie, I.W.M., and Newlands, L.R., *Chem. Rev.*, 1970, vol. 70, no. 1, p. 151.
- Toleva, A.D., Gerbeleu, N.V., Syrtsova, G.P., Shishkov, A.N., and Manole, S.F., *Zh. Neorg. Khim.*, 1981, vol. 26, no. 5, p. 1288.
- Samus', N.V., Toleva, A.D., Shishkov, A.N., and Tsapkov, V.I., *Koord. Khim.*, 1984, vol. 10, no. 10, p. 1366.
- Rusanov, A.L., Usp. Khim., 1974, vol. 43, no. 9, p. 1669.
- Toleva, A.D., Samus', N.V., and Shishkov, A.N., *Zh. Neorg. Khim.*, 1983, vol. 28, no. 11, p. 2848.
- Toleva, A.D., Samus', N.V., and Shishkov, A.N., *Koord. Khim.*, 1983, vol. 9, no. 12, p. 1655.
- Samus', N.V., Toleva, A.D., Shishkov, A.N., Shlyakhov, E.N., Burdenko, T.A., Chaika, T.S., and Tsapkov, V.I., *Khim.-Farm. Zh.*, 1985, no. 11, p. 1352.
- Mikhalev, A.I., Falaleeva, L.B., Shramm, N.I., Polukhina, L.M., Zalesov, V.S., and Pershin, G.N., *Khim.-Farm. Zh.*, 1981, vol. 15, no. 1, p. 36.
- 10. Spasov, A. and Golovinski, E., Zh. Obshch. Khim., 1962, vol. 32, no. 10, p. 3394.
- 11. Zyablikova, T.A. and Buzykin, B.I., *Zh. Obshch. Khim.*, 1996, vol. 66, no. 3, p. 470.
- 12. Cristau, H.-J., Bottaro, D., Plenat, F., Pietrasanta, F.,

and Christol, H., *Phosphorus Sulfur*, 1982, vol. 14, no. 1, p. 63.

- Purdela, D. and Vilceanu, R., Chimia compusitor organici ai fosforului si ai acizilor lui, Bucharest: Acad. Republicii Socialiste Romania, 1965.
- 14. Scott, A.P. and Radom, L., J. Phys. Chem., 1996, vol. 100, no. 41, p. 16502.
- Panyushkin, V.T., Fursina, A.B., Bukov, N.N., and Gorokhov, R.V., *Zh. Obsch. Khim.*, 2004, vol. 74, no. 7, p. 1223.
- 16. Cocco, M.T., Onnis, V., and Ponticelli, G., *Polyhed*ron, 1998, vol. 17, nos. 11–12, p. 2065.
- Ponticelli, G., Cocco, M.T., Congiu, C., Ianelli, S., and Cossu, F., *Transit. Met. Chem.*, 2001, vol. 26, p. 24.
- Trippett, S. and Walker, D.M., J. Chem. Soc., 1961, no. 3, p. 1266.
- 19. Case, F.H., J. Org. Chem., 1965, vol. 30, no. 3, p. 931.
- 20. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.
- 21. Lee, C., Yang, W., and Parr, R.G., *Phys. Rev.* (B), 1988, vol. 37, no. 2, p. 785.
- Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., *J. Phys. Chem.*, 1994, vol. 98, no. 45, p. 11623.
- 23. Granovsky, A.A., http://classic.chem.msu.su/gran/ gamess/index.html.
- Nemukhin, A.V., Grigorenko, B.L., and Granovsky, A.A., *Moscow Univ. Chem. Bull.*, 2004, vol. 45, no. 2, p. 75.
- 25. Zhurko, G.A., http://www.chemcraftprog.com/ description.html.
- 26. Stratmann, R.E., Scuseria, G.E., and Frisch, M.J., J. Chem. Phys., 1998, vol. 109, no. 19, p. 8218.
- 27. Bauernschmitt, R. and Ahlrichs, R., *Chem. Phys. Lett.*, 1996, vol. 256, nos. 4–5, p. 454.
- Casida, M.E., Jamorski, C., Casida, K.C., and Salahub, D.R., *J. Chem. Phys.*, 1998, vol. 108, no. 11, p. 4439.