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Convenient synthesis of 5-methylene-4-substituted-2(5H)-furanones
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Abstract—A synthesis of novel 4-(substituted)benzyl-5-methylene-2(5H)-furanones involving Stobbe condensation of substituted
aldehydes with ethyl levulinate followed by treatment with acetic anhydride in the presence of sodium acetate, has been developed.
� 2004 Elsevier Ltd. All rights reserved.
The furanone moiety is present in a number of natural
products and can be an important platform for the total
synthesis of various natural products as well as for the
development of new asymmetric methodologies.1

Recently, increasing attention has been given to devel-
oping new synthetic routes for polysubstituted fura-
nones, 5-alkylidenefuranones in particular, due to their
widespread occurrence and biological activity.2

Protoanemonin3 1 is the simplest representative of this
class, which forms the core of several naturally occur-
ring molecules4a–e (Fig. 1). In the class of 5-alkylidene
0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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Figure 1.
furanones, it was found that the exomethylene moiety
is responsible for the biological activity of these mole-
cules.4a Very few methods are available for the synthesis
of substituted 5-alkylidenefuranones and the utility of
these methods suffers from certain drawbacks such as re-
stricted generality,5a multistep sequences5b and the use
of expensive chemicals.5c,d We disclose here a synthesis
of novel 4-(substituted)benzyl-5-methylene-2(5H)-fura-
nones, involving Stobbe condensation6 of substituted
arylaldehydes with ethyl levulinate to give the key inter-
mediate 7 followed by cyclization (Scheme 1).

The regioselectivity of the condensation was greatly
dependent upon the temperature of the reaction and
the substitution pattern of the aromatic aldehyde. The
reaction was conducted at different temperatures for
optimization of conditions to achieve a maximum yield
of the desired product 7. At room temperature the prod-
uct was a mixture of 7 and 8 in equal ratio, whereas the
yield of 7 could be increased when the reaction was
performed at lower temperature (�10 �C). Acid 8
was obtained exclusively using DBU in refluxing dry
THF.

The acid 7 was further treated with anhydrous sodium
acetate and acetic anhydride to give furanone 9. The
quantity of acetic anhydride used and the reaction tem-
perature controlled the nature of product. Formation of
substituted naphthalene derivative 11 predominated
(85–95%) at 110–120 �C, whereas the reaction proceeded
to give furanone 9 as the major product at 80–90 �C.
More than 5 equiv of acetic anhydride and high temper-
ature resulted in a decrease in the proportion of fura-
none. The competing formation of E mixed anhydride
10 and the naphthalene derivative 11 could not be to-
tally avoided. A plausible mechanism for the formation
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Scheme 2. (a) Reagents and conditions: 6, aq NaOH, ethanol, �10 �C,
4–5 h, (13, 82%); (b) anhydr NaOAc, Ac2O, 80 �C, 3 h, (14, 51%; 15,

24%).
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Scheme 1. Reagents and conditions: (a) aq NaOH, ethanol, �10 �C, 4–5 h, (7, 80–95%); or Ref. 6; (b) anhydr NaOAc, Ac2O, 80 �C, 3 h; (c) aq
NaOH, ethanol, rt, 2–3 h.
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of furanone 9 in a single step from the corresponding
intermediate 7 involves firstly isomerization of the dou-
Table 1. Ratio of compounds 9:10:11 in % yield

Entry Product 9 Yielda (%) En

9 10 11

1 O

O
MeO

52 27 11 11

2 O

O

MeO
50 32 13 12

3 O

O
MeO

OMe

64 18 8 13

4 O

OOMe
MeO

56 24 18 14
ble bond from aryl conjugation to carbonyl conjugation
followed by enolization and lactonization. We believe
that the double bond isomerization proceeds to give a
mixture of Z and E products and then the Z isomer of
compound 10 favors the formation of furanone 9, while
its E isomer remains unreacted at 80–90 �C. On the
other hand, a higher temperature 110–120 �C favors
the formation of the more stable E isomer which readily
cyclizes to the naphthalene derivatives 11.

The intermediate 7 could be recovered by hydrolysis of
mixed anhydride 10 using aqueous sodium hydroxide.
It was noteworthy that during hydrolysis the isomerized
double bond regained its original orientation as shown
in Scheme 1. This simple protocol7 proved to be general
for the synthesis of furanones 9 starting from a variety
of aromatic aldehydes and dodecyl aldehyde (an exam-
ple of an aliphatic aldehyde to show the versatility of
the protocol Scheme 2).
try Product 9 Yielda (%)

9 10 11

O

OOMe

MeO

I

MeO

57 33 8

O

O
MeO

O
OAc

OAc
57 34 2

O

O

60 23 —

O

O

67 15 18



Table 1 (continued)

Entry Product 9 Yielda (%) Entry Product 9 Yielda (%)

9 10 11 9 10 11

5
O

OOMe
MeO

MeO

72 17 9 15 O

O
OMe

61 20 —

6
O

OO
O

67 21 5 16 O

O
MeO

62 18 15

7
O

OO
O

55 30 12 17
O

O
OMe

OMe

58 32 —

8 O

O
Cl

OMe

OMe

75 10 6 18 O

O
MeO

57 12 20

9

S
O

O

63 22 10 19 O

O

OMe

OMe

64 17 13

10 O

O

O

MeO
48 20 15 20 O

O
MeO

OMe

52 29 6

a Isolated yield.
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The novel 5-methylene-4-substituted-2(5H)-furanones8

described in the present communication and depicted
in Table 1 were found to be more stable as compared
to protoanemonin. The furanones showed characteristic
IR carbonyl absorptions9 and the 1H NMR spectra were
in full agreement with 5-methylenelactone moiety. The
13C assignments of the furanones were made by 1H
decoupled and DEPT experiments. Signals obtained by
1H–1H COSY and NOESY spectra confirmed the struc-
tures of the corresponding furanones 9 and mixed anhy-
drides 10.

In summary, we have developed an efficient two-step
and conceptually novel strategy for the synthesis of 4-
(substituted)benzyl/naphthylmethylene-5-methylene-2(5H)-
furanones. Our method has the advantages of simplicity
and good yields from commercially available starting
materials.
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