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ABSTRACT ARTICLE HISTORY

A solvent-free procedure is developed for the reaction of benzoth- Received 15 January 2016
iazinones with benzaldehyde derivatives, where the solid KF-Al,03 Accepted 6 March 2016
support and ball milling synergistically leads to a green and effi-

cient synthesis of several 2-arylidene-benzothiazinones. Therefore, a g:‘r{)x\i’;ﬁg_s

cooperative effect of the solid support and ball milling leads to excel- benzothiazinones;

lent yields of the target dienes, while the catalyst can be recycled for 4-benzothiazin-3-ones; ball

subsequent reactions without significant loss of its activity. milling; KF-alumina; green
chemistry
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1. Introduction

Considerable effort has been devoted in recent decades by synthetic chemists to design
and develop green processes.[1] This has led to increasing use of environmentally cleaner
solvents, reagents, and catalysts [2] and as a result an everyday growth has been witnessed
in the development of solvent-free procedures [3,4] and solid-supported synthesis.[5,6]
Nowadays, solid-support catalyzed reactions constitute a very powerful synthetic tool in
organic chemistry.[7] In specific, potassium fluoride on alumina (KF-Al,O3) has been
used as a very popular system since KF-Al,O3 possesses a mild basic character, exhibits
increased reactivity and selectivity in its reactions, and requires no special work-up
conditions.[8,9]

On another green chemistry front, many investigations have been carried out in a search
for new energy source for activation of reactants for various transformations. This has led
to the development of useful synthetic methods involving the adoption of microwave [10]
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Scheme 1. Optimization of the conditions for the synthesis of 3a.

and ultrasonic [11,12] techniques. Another rapidly growing alternative energy sources has
been ball milling,[13,14] a method which provides the required energy via mechanical
grinding of the reactants in solid form and has succeeded in emerging as a green method
for conducting different synthetic reactions.[13,15]

The 2-arylidene-benzothiazinones constitute a class of heterocyclic compounds which
are significant for their antimalarial,[16] medicinal,[17,18] aldose reductase inhibition,[19]
and anti-bacterial [20] properties. In addition, they have potential as precursors in con-
structing more complex heterocyclic structures via dipolar [21] and Diels- Alder cycloaddi-
tion reactions,[22] further simultaneously being useful for the synthesis of larger benzoth-
iazepine rings.[23] Perhaps the most efficient and straightforward route for the synthesis
of these dienes goes through the Knoevenagel condensation of the respective benzothiazi-
nones with aromatic aldehydes,[24,25] although they have also been obtained via ring con-
traction of 1,4-thiazepin-5-one [26,27] or Horner—Wadsworth-Emmons reactions.[28,29]

In continuation of our investigations to develop environmentally attractive synthetic
procedures [30,31] and in the framework of our studies on heterocyclic systems,[32,33]
we here report a synergistic phenomenon caused by concurrent use of KF-alumina
support and ball milling which promotes the solvent-free synthesis of a group of (Z)-2-
arylidene-benzothiazinone derivatives 3, as shown in Scheme 1 for the reaction between
benzothiazinones 1 and aromatic aldehydes 2 to produce dienes 3.

2. Results and discussion

Initially the condensation of 1a with benzaldehyde 2a was chosen as the model reaction
to optimize the conditions (Table 1). A 1.0:1.0 solvent-free mixture of the two reactants
was shaken at 20 Hz in a ball mill reactor for 70 min gave no products (Entry 1). Addition
of 1.0 mmol of either alumina (Entry 2) or KF (Entry 3) to this mixture produced 18% or
25% of 3a, respectively, after the same time period. When both KF and alumina were used
together the yield increased to 40% (Entry 4), while the same mixture without ball milling
gave only 20% of 3a (Entry 5), indicating the crucial effect of ball milling in the process.

For further optimization of the conditions for the synthesis of 3a, we examined the
influence of ball milling, catalyst, and the time on the reaction progress, as summarized
in Table 2. Thus, an improved yield for 3a was observed when the reaction was carried
out at a frequency of 30 Hz (Table 2, Entry 1). Variation in the catalyst amount indicated
that 1.5 mmol of KF-alumina is the optimum amount (Entries 2-5). Similarly, the best
ratio for 1a/2a was determined to be 1.0:1.5 (Entries 6 and 7). Under the optimized ratio
of the reactants and the reagent (1.0:1.5:1.5), the optimum reaction time at 30 Hz was
demonstrated to be 50 min (Entries 6-9).



Downloaded by [Tulane University] at 12:40 21 April 2016

JOURNAL OF SULFUR CHEMISTRY e 3

Table 1. Study the effect of catalyst on solvent-free synthesis of 3a.

Entry Catalyst Time (min) Yield (%)2-°
1 None 70 -
2 Alumina 70 18
3 KF 70 25
4 KF-alumina 70 40
5 KF-alumina 70° 20

3solated yield.
bNo ball milling.

Table 2. Optimization of the synthesis of 3a.

Entry 1a:2a:catalyst Time (min) Yield (%)2
1 1.0:1.0:1.0 50 47
2 1.0:1.0:0.8 50 42
3 1.0:1.0:1.2 50 55
4 1.0:1.0:1.5 50 57
5 1.0:1.0:2.0 50 57
6 1.0:1.5:1.5 50 92
7 1.0:2.0:1.5 50 70
8 1.0:1.5:1.5 25 51
9 1.0:1.5:1.5 40 62

3solated yield.

To extend the scope of the reaction, we then applied the optimized conditions to various
substrates, as summarized in Table 3. Besides the reaction with benzaldehyde (Entry 1),
la reacted with p-methoxybenzaldehyde as well to produce 3b (Entry 2). The N-Me
substituted benzothiazinone derivative 1b also reacted successfully under the optimized
conditions to efficiently produce products 3c-3g (Entries 3-7). This was also the case for
the reactions of the unsubstituted reactant 1¢ with 2a-b (Entries 8 and 9). In all cases, NMR
spectroscopy verified the structure of the products.

The reusability of the catalyst was studied next, where the recovered KF-Al,O3 was
reused several times in the reaction between 1la and 2a (Figure 1). For this reason, the
suspension of the reaction mixture in ethyl acetate was filtered to separate the catalyst.
The recovered catalyst was then dried and reactivated in a microwave oven (360 watt) for
5 min before being reused in the subsequent runs and without any makeup. As a result, it
could be reused for four runs with only showing a gradual decrease in its activity after each
recovery.

3. Conclusion

In summary, a versatile benign route to product 3 is developed which under solvent-free
conditions leads to high yields of 2-arylidene-benzothiazinones. The attractive features of
the procedure are the mild reaction conditions, the use of acid-free reagents, and to overall
very low waste generation. These make the method a useful and attractive green addition
to the literature archive for the preparation of the target compounds. For a more direct
comparison, some previously reported conditions used to produce compounds similar to
those reported here are presented in Table 4.
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Table 3. Evaluation of the reaction scope.

Entry Reactants Product Time (min)  Yield (%)? Mp (°C)
1 1a+ CgHsCHO C6H5 50 92 71-73 (this work)
N (6]
Ph
2 1a + p-MeOCgH4CHO C6H4 p-OMe) 65 90 110-112 (this work)
Ph
3 1b + C¢HsCHO 50 92 86-88 [28]
CeHs
N O
3c |
4 1b + p-MeCgH4CHO C6H4(p-Me) 60 90 138-139[28]
N (@)
3d |
5 1b 4 p-MeOCsH4CHO CgHa(p-OMe) 60 88 101-104 (this work)
N (6]
I
6 1b + p-CICgH4CHO CGH4 p- Cl) 65 87 120-122 (this work)
7 1b + CgHsCH = CHCHO C6H5 65 85 109-111[28]
=

Crx
N O
39 |

(Continued)
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Table 3. Continued.

Entry Reactants Product Time (min) Yield (%)? Mp (°C)
8 1c + CgHsCHO C6H5 55 87 201-203 [28]
Y
N O
H
3h
9 1c+ p-MeOCgH4CHO C6H4(p-OMe) 80 90 207-210[28]
X
N (@)
. H
3i

3solated yield.

90 -
80 -
70 -
60 -
50 -
40 -
30 -
20 -
10 -
0

Yield%

1 2 3 4

Number of cycle

Figure 1. The reusability of the catalyst for the synthesis of 3a.

Table 4. Comparison of the present procedure with some other recent methods.

Entry Method Condition (Reference) Yield%

1 Knoevenagel condensation (i) SO,Cly, CH,Cly (2-5h); 50-94
(ii) triethyl phosphite, reflux (28 h);
(iii) CoHs OH, NaOEt [28]

2 Ring contraction CsHsN, SOCl,, rt (2d), 55°C (4 h) [26] 14
3 Horner-Wadsworth-Emmons reaction DMF, NaOMe (excess), 125°C, 3 h [24] 69
4 Knoevenagel condensation KF-Alumina, Ball mill, rt, 45 min (This work) 87-92

4. Experimental design

Reactions were monitored by thin-layer chromatography (TLC). FT-IR spectra were
recorded using KBr disks on a Bruker Vector-22 infrared spectrometer and absorptions
were reported as wave numbers (cm~!). NMR spectra were obtained on an FT-NMR
Bruker Ultra Shield” (500 MHz) as CDCls solutions and the chemical shifts were expressed
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as 6 units with Me4Si as the internal standard. Mass spectra were obtained on a Finnigan
Mat 8430 apparatus at ionization potential of 70 eV. Elemental analyses were performed
by a Thermo Finnigan Flash EA 1112 instrument. Compounds 1 were prepared using
available methods. All other chemicals were purchased from commercial sources and were
freshly used after being purified by standard procedures.

4.1. Typical synthesis of 3

A 5 mL stainless steel vial was charged with a derivative of benzothiazinones 1 (1.0 mmol),
benzaldehyde 2a (1.5 mmol) and KF-alumina (0.24 g) together with a 10 mm stainless steel
ball. The vial was sealed with a Teflon’ gasket. The reaction was shaken at 30 Hz in an oscil-
latory ball mill for the appropriate length of time. After completion of the reaction, based
on TLC monitoring, the crude reaction mixture was diluted with ethyl acetate (10 mL) and
filtered to separate the catalyst. The filtrate was concentrated under reduced pressure and
the residue was purified by column chromatography using silica gel and EtOAc/hexanes
mixture (1/10) as the eluent. The identity of known products was confirmed by compar-
ison of their spectroscopic data with those available in the literature. New products were
characterized by 'H NMR, *C NMR, IR, CHN and mass spectra and their purity was
confirmed by elemental analysis.

4.2. Spectral data of new products

4.2.1. (Z)-4-Benzyl-2-benzylidene-2H-benzo[b][1,4]thiazin-3(4H)-one (3a)

Yellow solid; 71-73 mp°C; IR (KBr) 3032, 1632, 1583, 1485, 1439cm~!; 'H NMR
(500 MHz, CDCl3) § 8.03 (s, 1H), 7.71 (d, ] = 7.5Hz, 2H), 7.50 (t, ] = 7.5 Hz, 2H),
7.44-7.38 (m, 3H), 7.32-7.29 (m, 4H), 7.11-7.09 (dt, J = 1.5, 7.5Hz, 1H), 7.05 (d,
J = 7.5Hz, 1H), 7.00 (d, ] = 7.5Hz, 1H), 5.41 (s, 2H); 3C NMR (125 MHz, CDCl3) §
162.6,137.2,136.9,135.6, 135.2,130.7, 129.4, 129.3, 128.8, 127.6, 127.4, 126.7, 126.6, 124.0,
121.0, 119.8, 117.9, 49.8; MS (70 ev) m/z 343 (M™), 252, 224, 102, 91, 77; Anal. Calcd for
C2,H17NOS: C, 76.94; H, 4.99; S, 9.34. Found: C, 76.59%; H, 4.78%; S, 9.15%.

4.2.2. (Z)-4-Benzyl-2-(4-methoxybenzylidene)-2H-benzo[b][1,4]thiazin-
3(4H)-one (3b)

Yellow solid; 110-112 mp°C; IR (KBr) 3039, 2339, 1622, 1492, 1292cm™~!; 'H NMR
(500 MHz, CDCl3) 8§ 7.91 (s, 1H), 7.66 (d, ] = 8.5Hz, 2H), 7.34 (dd, J = 8.0, 8.0 Hz,
2H), 7.25 (m, 4H), 7.07 (t, ] = 8.0 Hz, 1H), 6.99-6.92 (m, 4H), 5.35 (s, 2H), 3.86 (s,
3H); 13C NMR (125 MHz, CDCl3) 8 163.1, 160.6, 137.4, 137.0, 135.5, 132.6, 129.3, 128.0,
127.6, 127.4, 126.7, 126.6, 123.9, 120.0, 118.2, 117.9, 114.4, 55.8, 49.8; Anal. Calcd for
C3H9NO,S: C, 73.97; H, 5.13; S, 8.59. Found: C, 74.115; H, 4.995; S, 8.75%.

4.2.3. (Z)-2-(4-Methoxybenzylidene)-4-methyl-2H-benzo[b][1,4]thiazin-3

(4H)-one (3e)
Yellow solid; 101-104 mp°C; IR (KBr) 2954, 2312, 1631, 1495cm™'; 'H NMR (500 MHz,
CDCl3) § 7.83 (s, 1H), 7.62 (d, ] = 8.5Hz, 2H), 7.25-7.19 (m, 2H), 7.03-6.98 (m, 2H),
6.95 (d, ] = 8.5, 2H), 3.83 (s, 3H), 3.53 (s, 3H); 1*C NMR (125 MHz, CDCl3) 8§ 163.4,
160.5, 138.1, 135.1, 132.5, 127.9, 127.4, 126.7, 123.7, 119.9, 118.3, 116.9, 114.3, 55.7, 33.2;
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MS (70 ev) m/z 297 (M), 264, 190, 159, 136, 108; Anal. Calcd for C17H15NO,S: C, 68.66;
H, 5.08; S, 10.78. Found: C, 68.89%; H, 4.92%; S, 10.84%.

4.2.4. (Z)-2-(4-Chlorobenzylidene)-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (3f)
Yellow solid; mp 120-122°C; IR (KBr) 3429, 2904, 1643, 1471 cm~—'; 'H NMR (500 MHz,
CDCl3) 8 7.84 (s, 1H), 7.58 (d, ] = 8.5Hz, 2H), 7.41 (d, ] = 8.5 Hz, 2H), 7.28-7.24 (m,
2H), 7.10-7.03 (m, 2H), 3.57 (s, 3H); >C NMR (125 MHz, CDCl3) § 162.6, 137.8, 135.1,
133.8,133.6,131.9,129.1,128.7,127.6, 126.8, 123.9,119.2, 117.1, 33.3; MS (70 ev) m/z 301
(M), 268, 190, 136; Anal. Caled for C;4H;,CINOS: C, 63.68; H, 4.01; S, 10.62. Found: C,
63.81%; H, 4.11%; S, 10.75%.
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