Preparation and nuclear magnetic resonance characterization of N-bonded complexes of platinum(II) with phosphorus-nitrogen rings containing three-coordinate chalcogens: X-ray structure of [PtCl₂(PEt₃)]₂(Ph₄P₂N₄Se₂Et₂)

TRISTRAM CHIVERS,¹ DANIEL D. DOXSEE, ROBERT W. HILTS, AND MASOOD PARVEZ

Department of Chemistry, The University of Calgary, Calgary, AB T2N 1N4, Canada

Received April 21, 1993

TRISTRAM CHIVERS, DANIEL D. DOXSEE, ROBERT W. HILTS, and MASOOD PARVEZ. Can J. Chem. 71, 1821 (1993).

The reaction of 1,5-Ph₄P₂N₄S₂Ph₂ with [PtCl₂(PEt₃)]₂ in chloroform at 60°C produces the 1:1 adduct *trans*-PtCl₂(PEt₃)(Ph₄P₂N₄S₂Ph₂) in which the platinum is attached to a nitrogen atom on the basis of ³¹P nmr spectroscopy. By contrast, the corresponding reactions of 1,5-Ph₄P₂N₄Se₂R₂ (R = Me, Et, Ph) produce the 2:1 adducts [PtCl₂(PEt₃)]₂(Ph₄P₂N₄Se₂R₂) (7*a*, R = Me; 7*b*, R = Et; 7*c*, R = Ph) which have been characterized by ¹H, ³¹P and ⁷⁷Se nmr spectroscopy and, in the case of 7*b*, by X-ray crystallography. Crystals of 7*b* are monoclinic, space group C2/*c*, with *a* = 27.803(7) Å, *b* = 12.378(7) Å, *c* = 15.752(8) Å, β = 115.49(2)°, *V* = 4893(3) Å³, and *Z* = 4. The least-squares refinement with anisotropic thermal parameters for all non-hydrogen atoms converged at *R* = 0.037 and *R_w* = 0.022. The platinum centres in 7*b* are attached to distal nitrogen atoms of the disordered P₂N₄Se₂ ring. The reaction of the six-membered ring Ph₄P₂N₃SPh with [PtCl₂(PEt₃)]₂ in dichloromethane at 23°C occurs in a regiospecific manner to give the 1:1 adduct PtCl₂(PEt₃)(Ph₄P₂N₃SPh) in which, on the basis of ³¹P nmr spectroscopy, the platinum is coordinated to a nitrogen atom between phosphorus and sulfur.

TRISTRAM CHIVERS, DANIEL D. DOXSEE, ROBERT W. HILTS et MASOOD PARVEZ. Can. J. Chem. 71, 1821 (1993).

La réaction du 1,5-Ph₄P₂N₄S₂Ph₂ avec le [PtCl₂(PEt₃)]₂, dans le chloroforme à 60°C conduit à un adduit 1:1, le *trans*-PtCl₂(PEt₃)(Ph₄P₂N₄S₂Ph₂), dans lequel le platine est attaché à l'atome d'azote d'après la rmn du ³¹P. Par opposition, les réactions correspondantes des 1,5-Ph₄P₂N₄Se₂R₂ (R = Me, Et et Ph) conduisent à des adduits 2:1, les [PtCl₂(PEt₃)]₂(Ph₄P₂N₄Se₂R₂) (7*a*, R = Me; 7*b*, R = Et; 7*c*, R = Ph), qui ont été caractérisés par rmn du ¹H, du ³¹P et du ⁷⁷Se et, dans le cas du composé 7*b*, par diffraction des rayons X. Les cristaux du composé 7*b* sont monocliniques, groupe d'espace C2/*c*, avec *a* = 27,803(7), *b* = 12,378(7) et *c* = 15,752(8) Å, β = 115,49(2)°, *V* = 4893(3) Å³ et *Z* = 4. L'affinement par la méthode des moindres carrés pour les paramètres thermiques anisotropiques pour tous les atomes différents de l'hydrogène convergent à *R* = 0,037 et *R_w* = 0,022. Les centres de platine du composè 7*b* sont attachés aux atomes d'azote distales du cycle P₂N₄Se₂ désordonné. La réaction du cycle à six chainons Ph₄P₂N₃SPh avec le [PtCl₂(PEt₃)], dans le dichlorométhane à 23°C, se produit d'une facon régiospécifique pour donner l'adduit 1:1 PtCl₂(PEt₃)(Ph₄P₂N₃SPh) dans lequel, d'après la rmn du ³¹P, le platine est coordiné à un atome d'azote entre le phosphore et le soufre.

[Traduit par la rédaction]

Introduction

The coordination chemistry of unsaturated sulfur-nitrogen and selenium-nitrogen rings has been an active area of investigation recently (1). We have been particularly interested in exploring the range of metal complexes that can be formed by the folded $P_2N_4E_2$ rings 1 and 2 (2-4). The presence of the NPR₂ units in 1 and 2 provides a brace that serves to maintain the integrity of the ring and yields structural information through ³¹P nmr spectroscopy. To date the following bonding modes have been established for 1 and 2: η^{1} -N (2, 4), η^{2} -E,E' (3–6) and η^{2} -E,N- $\mu_{2}\eta^{1}$ -E' (3, 4, 7). The combination of $\eta^1\mathchar`-N$ and $\eta^2\mathchar`-E,E',$ i.e. $\mu^2,\eta^3\mathchar`-E,E',N$ has also been observed for both 1 and 2 (2, 4). The $P_2N_4E_2$ ring can accommodate three (E = S) (2) or two (E = Se) (4) N-bonded PtCl₂(PEt₃) groups. In addition, the organolithium derivatives Li[Ph₄P₂N₄S₂R] form η^1 -S bonded complexes with platinum(II) or palladium(II) (8).

The S,S'- and Se,Se'-diorgano derivatives of these eightmembered rings, **3** and **4**, are readily prepared (9, 10). The $P_2N_4E_2$ ring in **3** and **4** adopts a chair conformation with the two chalcogen atoms disposed on either side of the P_2N_4 plane and the exocyclic substituents on S or Se occupying axial positions (9, 10). These ring systems are potential precursors of hybrid inorganic polymers containing alternating PN and EN (E = S, Se) units. Polymers containing two PN and one SN groups in a repeating unit have been prepared from cyclic precursors (*six*-membered rings) (11, 12).

We report here the formation of platinum(II) complexes of **3** and **4**, which were prepared in order to compare the ligand behaviour of the open rings **3** and **4** with that of the corresponding folded rings **1** and **2** and, in particular, to determine (*a*) the site of coordination, (*b*) the effect of coordination on the structure of the $P_2N_4E_2$ ring, (*c*) the number of Pt(II) groups that can be attached to the $P_2N_4E_2$ ring, and (*d*) any differences between the coordinating ability of the sulfur and selenium systems. A platinum(II) complex of the related six-membered ring **5** was also characterized.

Experimental

Reagents and general procedures

Manipulations of air-sensitive reagents and products were per-

¹Author to whom correspondence may be addressed.

formed under an atmosphere of prepurified nitrogen or argon using standard Schlenk or dry box techniques. Solvents (acetonitrile, chloroform, dichloromethane, hexanes, diethyl ether) were dried with the appropriate desiccant and purged with N₂ or argon. The compounds 1,5-Ph₄P₂N₄Se₂R₂ (R = Me, Et, Ph) (9), Ph₄P₂N₃SPh (13), and [PtCl₂(PEt₃)]₂ (14) were prepared by the literature procedures. The compound 1,5-Ph₄P₂N₄S₂Ph₂ was obtained in 59% yield from Ph₂PN₂(SiMe₃)₃ and three molar equivalents of PhSCl by a modification of the literature method (10) in which acetonitrile was used as a solvent instead of CH₂Cl₂. The solubility of the Ph₂S₂ by-product in acetonitrile facilitates the purification of the product by obviating the need to wash it with n-pentane.

Instrumentation

³¹P nmr spectra were obtained on a Bruker AM-400 MHz spectrometer operating at 161.978 MHz. ³¹P chemical shifts are reported in ppm relative to external 85% H₃PO₄. Proton nmr spectra were recorded on a Bruker ACE-200 MHz spectrometer at 200.1 MHz. ⁷⁷Se nmr spectra were recorded at 76.311 MHz on the Bruker AM-400 instrument. The lock signal for the ³¹P and ⁷⁷Se nmr spectra was provided by sealed D₂O inserts. ⁷⁷Se chemical shifts are referenced to external Ph₂Se₂ [δ⁷⁷Se + 461 ppm relative to SeMe₂ (0 ppm)]. Elemental analyses were performed by the microanalytical service within the Chemistry Department at The University of Calgary.

Preparation of trans-[$PtCl_2(PEt_3)(Ph_4P_2N_4S_2Ph_2)$], 6

A solution of $1,5-Ph_4P_2N_4S_2Ph_2$ (0.200 g, 0.31 mmol) in CHCl₃ (20 mL) was added by cannula to a solution of $[PtCl_2(PEt_3)]_2$ (0.118 g, 0.154 mmol) in CHCl₃ (20 mL). The resulting pale yellow solution was heated at 60°C for 1 h and then stirred for 1 h at 23°C. The solvent was removed under vacuum and the yellow residue was recrystallized from chloroform – diethyl ether at –18°C to give **6** · Et₂O as pale yellow needles (0.107 g, 0.097 mmol, 31%). Anal. calcd. for C₄₆H₅₅Cl₂N₄OP₃PtS₂: C 50.09, H 5.03, N 5.08; found: C 50.83, H 4.44, N 5.71. ¹H nmr (CDCl₃), δ (ppm): 7.22– 8.48 (m, PC₆H₅ and SC₆H₅, 30H), 3.34 (q, O[CH₂CH₃]₂, 4H, ³J(H—H) = 7.5 Hz, 1.07 (t, O(CH₂CH₃)₂, 6H, ³J(H—H) = 7.5 Hz), 1.51 (dq, PCH₂CH₃, 6H, ²J(P—H) = 12 Hz, ³J(H—H) = 7.5 Hz), 0.76 (dt, PCH₂CH₃, 9H, ²J(P—H) = 17 Hz, ³J(H—H) = 7.5 Hz). ³¹P nmr (CH₂Cl₂), δ (ppm): 41.5 (dd, ³J(P—P) = 5 Hz, ⁴J(P—P) = 6 Hz, ²J(Pt—P) = 30 Hz), 31.3 (d, ⁴J(P—P) = 7 Hz), -1.4 (d, ³J(P—P) = 5 Hz, ¹J(Pt—P) = 3696 Hz).

Preparation of $[PtCl_2(PEt_3)]_2(Ph_4P_2N_4Se_2Me_2)$, 7a

A cold (-78° C) solution of [PtCl₂(PEt₃)]₂ (0.309 g, 0.402 mmol) in CH₂Cl₂ (15 mL) was added dropwise by cannula to a slurry of 1,5-Ph₄P₂N₄Se₂Me₂ (0.247 g, 0.402 mmol) in CH₂Cl₂ (15 mL) at -78° C. The mixture was allowed to reach room temperature and stirred for 45 min to give a yellow solution. The volume of the solution was reduced under vacuum to ca. 10 mL and the addition of hexanes (5 mL) produced a yellow precipitate of [PtCl₂(PEt₃)]₂ (1,5-Ph₄P₂N₄Se₂Me₂) (0.538 g, 0.389 mmol, 97%). Yellow crystals of $7a \cdot CH_2Cl_2$ were obtained from CH₂Cl₂ solutions layered with hexanes at 0°C. Anal. calcd. for C₃₉H₅₈Cl₆N₄P₄Pt₂Se₂: C 31.92, H 3.98, N 3.82; found: C 32.35, H 4.04, N 4.07. ¹H nmr (CD₂Cl₂, 23°C), δ (ppm): 7.1–8.4 (m, C₆H₅, 20H), 5.32 (s, CH₂Cl₂, 2H), 1.5–2.0 (m, CH₂CH₃, 12H), 0.6–1.2 (m, CH₂CH₃ and CH₃Se, 24H). ³¹P nmr (CH₂Cl₂), δ (ppm): 44.3 (s, Ph₂P), -0.2 (s, Et₃P, ¹J(P—Pt) = 3620 Hz).

Preparation of $[PtCl_2(PEt_3)]_2(Ph_4P_2N_4Se_2Et_2)$, 7b, and $[PtCl_2(PEt_3)]_2(Ph_4P_2N_4Se_2Ph_2)$, 7c

Compounds 7*b* and 7*c* were obtained as yellow crystals in ca. 95% yield from $[PtCl_2(PEt_3)]_2$ and 1,5-Ph₄P₂N₄Se₂Et₂ or 1,5-Ph₄P₂N₄Se₂Ph₂, respectively, by a procedure similar to that described for the preparation of 7*a*. The products were recrystallized from CH₂Cl₂ solutions layered with hexanes at 0°C.

7b: Anal. calcd. for $C_{40}H_{60}Cl_4N_4P_4Pt_2Se_2$: C 34.05, H 4.30, N 3.97; found: C 33.59, H 4.43, N 3.89. ¹H nmr (CD₂Cl₂, 23°C), δ (ppm): 7.1–8.4 (m, C₆H₅, 20H), 1.5–1.9 (m, PCH₂CH₃ and

TABLE 1. Crystallographic parameters for $[PtCl_2(PEt_3)]_2$ - $[Ph_4P_2N_4Se_2Et_2]$, 7b

Formula	$C_{40}H_{60}Cl_4P_4N_4Se_2Pt_2$
tw	1410.75
Crystal size (mm)	$0.31 \times 0.40 \times 0.10$
Space group ^a	C2/c (No. 15)
<i>a</i> (Å)	27.803(7)
b (Å)	12.378(7)
c (Å)	15.752(8)
β (°)	115.49(2)
$V(Å^3)$	4893(3)
Z	4
D_{calcd} (g/cm ³)	1.915
Radiation, Å	Mo K_{α} ($\lambda = 0.71069$ Å)
	Graphite monochromated
Temperature (K)	170(1)
F(000)	2720
Scan width (°)	$1.31 + 0.35 \tan \theta$
Scan speed (° min ⁻¹)	4.0
Maximum θ (°)	25
Octants	$hk \pm 1$
Unique reflections	4528
Observed reflections (>3.0 σ)	2302
μ (MoK _a) (cm ⁻¹)	75.59
Minimum-maximum	0.75-0.90
absorption correct	
Parameters refined	261
GOF	1.50
R, R, b	0.037: 0.022
	··· ·, ··· ·=

"Space group Cc or C2/c from systematic absences hkl: h + k = 2n + 1 and h0l: l = 2n + 1; the latter was indicated by the E-statistics and confirmed by successful refinement.

 ${}^{b}R = \Sigma(||F_{o}| - |F_{c}||)/\Sigma|F_{o}|; R_{w} = [\Sigma w(|F_{o}| - |F_{c}|)^{2}/\Sigma w|F_{o}|^{2}]^{1/2}$

SeCH₂CH₃, 16H), 0.7–1.2 (m, PCH₂CH₃) and SeCH₂CH₃, 24H). ³¹P nmr (CH₂Cl₂), δ (ppm): 44.9 (s, Ph₂P), -0.6 (d, Et₃P, ¹J(P--Pt) = 3600 Hz, ³J(P--P) = 3 Hz).

7*c*: Anal. calcd. for C₄₈H₆₀Cl₄N₄P₄Pt₂Se₂: C 38.26, H 4.01, N 3.71; found: C 37.38, H 4.08, N 3.63. ¹H nmr (CD₂Cl₂, 23°C), δ (ppm): 7.1–8.6 (m, PC₆H₅ and SeC₆H₅, 30H), 1.41 (q, CH₂CH₃, 12H), 0.74 (t, CH₂CH₃, 18H). ³¹P nmr (CH₂Cl₂), δ (ppm): 43.3 (s, Ph₂P), -1.4 (d, Et₃P, ¹J(P—Pt) = 3646 Hz, ³J(P—P) = 5 Hz).

Preparation of trans- $[PtCl_2(PEt_3)(Ph_4P_2N_3SPh)]$, 8

A solution of $[PtCl_2(PEt_3)]_2$ (0.200 g, 0.26 mmol) in CH_2Cl_2 (20 mL) at 23°C was added dropwise by cannula (10 min) to a solution of $Ph_4P_2N_3SPh$ (0.272 g, 0.52 mmol) in CH_2Cl_2 (20 mL) at 23°C. The resulting yellow solution was stirred for 1 h and then solvent was removed under vacuum. Recrystallization of the residue from diethyl ether at 23°C afforded yellow crystals of *trans*-[PtCl_2(PEt_3)(Ph_4P_2N_3SPh)] (0.211 g, 0.233 mmol, 45%). Anal. calcd. for $C_{36}H_{40}Cl_2N_3P_3PtS$: C 47.74, H 4.45, N 4.64; found: C 46.81, H 4.73, N 4.53. ¹H nmr (CDCl_3), δ (ppm): 6.85–8.3 (m, PC₆H₅ and SC₆H₅, 25H), 1.72 (dq, PCH₂CH₃, 6H, ²J(P—H) = 12 Hz, ³J(H—H) = 8 Hz), 0.98 (dt, PCH₂CH₃, 9H, ³J(P—H) = 17 Hz, ³J(H—H) = 8 Hz). ³¹P nmr (CH₂Cl_2), δ (ppm): 20.5 (d, ³J(P—P) = 10 Hz, ²J(Pt—P) = 40 Hz), 10.0(s), 1.2 (d, ³J(P—P) = 10 Hz, ¹J(Pt—P) = 3637 Hz).

X-ray crystallographic analysis of 7b

Yellow crystals of 7*b* were obtained from a CH_2Cl_2 solution layered with hexane. The crystal was attached to a glass fibre with epoxy. Pertinent crystallographic data are listed in Table 1.

The unit cell constants were determined from the setting angles of 25 reflections with $18.76^{\circ} < 2\theta < 21.29^{\circ}$. All measurements were made on a Rigaku AFC6S diffractometer with the ω -2 θ scan technique and calculations were done using the teXsan programs (15). An empirical absorption correction using the program DIFABS

(16) was applied. The data were corrected for Lorentz and polarization effects.

The structure was solved by direct methods (17) and expanded using Fourier techniques (18). All non-H atoms, except the methylene carbon atom attached to Se which was disordered over two sites, were refined anisotropically and were allowed isotropic temperature factors; the Se atom was also disordered over two sites. All H atoms except those on the ethyl group attached to Se were included in the refinement at geometrically idealized positions. In the full-matrix least-squares refinement, the function minimized was $\Sigma w(|F_o| - |F_c|)^2$, where $w = 4F_o^2/\sigma^2(F_o^2)$. Conventional atomic scattering factors (19), corrected for anomalous dispersion (20), were used. Positional parameters are given in Table 2 and selected bond distances and bond angles are summarized in Table 3.

Hydrogen atom parameters, anisotropic thermal parameters, torsion angles, complete tables of bond lengths and bond angles, and structure factors have been deposited.²

Results and discussion

Synthesis and ${}^{31}P$ nmr characterization of **6**

The reaction of two molar equivalents of 1,5-Ph₄P₂N₄-S₂Ph₂, **3**, with [PtCl₂(PEt₃)]₂ in chloroform at 60°C produces the 1:1 adduct **6** in about 30% yield. On the basis of the ³¹P nmr spectra of the reaction mixture, the low yield of **6** is attributed to the equilibrium shown in reaction [1]. Unlike the selenium-containing rings 4a-c, a 2:1 adduct could not be obtained either by the reaction of **6** with [PtCl₂(PEt₃)]₂ or by treatment of **3** with an excess of [PtCl₂(PEt₃)]₂.

$$[1] \quad 2Ph_4P_2N_4S_2Ph_2 + [PtCl_2(PEt_3)]_2$$

 $\approx 2 trans-PtCl_2(PEt_3)(\eta^1-N-Ph_4P_2N_4S_2Ph_2)$

The composition and structure of **6** were established on the basis of the ¹H and ³¹P nmr spectra. The ³¹P nmr spectrum of **6** shows three equally intense resonances at -1.4, +31.3, and +41.5 ppm consistent with the proposed N-bonded structure. The resonance at -1.4 ppm is a doublet $({}^{3}J(P_{A}-P_{B}) = 5 \text{ Hz})$ with platinum satellites $({}^{1}J(Pt-P_{A}) = 3696 \text{ Hz})$ and is attributed to the PEt₃ ligand. The value of the ${}^{195}Pt-{}^{31}P$ coupling constant is typical for complexes of the type *trans*-PtCl₂(PEt₃)L, where L is an N-bonded unsatu-

rated PNS ring (2, 21). The resonances at 31.3 and 41.5 Hz are assigned to the inequivalent ring phosphorus atoms P_c and

 P_B , respectively, which exhibit a mutual coupling of 7 Hz. The resonance at 41.5 ppm appears as a doublet of doublets and so is readily attributed to P_B .

Synthesis and nmr characterization of 7a-c

In contrast to the behaviour of **3**, the reaction of two molar equivalents of 4a-c with the dimer $[PtCl_2(PEt_3)]_2$ yielded only the 2:1 adducts 7a-c. These adducts could be obtained as yellow, air-sensitive solids in essentially quantitative yields by using the stoichiometry shown in reaction [2].

$$[2] Ph_4P_2N_4Se_2R_2 + [PtCl_2(PEt_3)]_2$$

 \rightarrow [PtCl₂(PEt₃)]₂(Ph₄P₂N₄Se₂R₂)

$$7a, R = Me; 7b, R = Et; 7c, R = Ph$$

The composition of the 2:1 adducts 7a-c was established by elemental analyses and by the integrated ¹H nmr spectra (see Experimental section). The ³¹P nmr spectra of 7a-c all exhibit a singlet at 43-45 ppm (cf. $\delta({}^{31}P) = 32-34$ ppm for 4a-c (9)) for the heterocyclic phosphorus atoms in addition to a resonance at 0 to $-2 \text{ ppm}(^{1}J(\text{Pt}-\text{P}) = 3600 - 100 \text{ ppm})$ 3650 Hz) for the PEt₃ ligand. The $J(PEt_3 - PPh_2)$ coupling of 3-5 Hz is observed (as a doublet) in the PEt₃ resonance of 7b and 7c, but it was not resolved in the case of 7a. Thus the ³¹P nmr data rule out a structure for 7a-c in which the two $PtCl_2(PEt_3)$ groups are attached to nitrogen atoms which are bonded to the same phosphorus atom or a structure in which the platinum atoms are coordinated to selenium, but do not distinguish between "distal" or "vicinal" N-bonded arrangements (see Fig. 1). The ⁷⁷Se nmr spectrum of 7a, however, consists of a virtual triplet, centered at 944 ppm, characteristic of an AA'X spin system (where X is ⁷⁷Se (natural abundance = 7.7%) for the most abundant isotopomer and the phosphorus atoms (represented by A and A') are magnetically inequivalent). The "averaged" value of 40 Hz for ${}^{2}J(P-Se)$ obtained from the ${}^{77}Se$ nmr spectrum of 7a is smaller than the value of 86 Hz found for the ligands 4a-c (9b). These ⁷⁷Se nmr data rule out the "vicinal" N-bonded structure for 7a (see Fig. 1(b)), since this isomer should exhibit two resonances for the inequivalent selenium atoms. In support of the inference based on the ³¹P nmr spectra of 7a-c, the Se-coordinated structure (an A₂X spin system, see Fig. 1(c)) which should give rise to a 1:2:1 triplet, may also be discounted on the basis of the ⁷⁷Se nmr data. Thus the ⁷⁷Se nmr spectrum of 7a is only consistent with the "distal" N-bonded structure (see Fig. 1(a)). This conclusion has been confirmed by an X-ray crystal structure determination of 7b.

X-ray crystal structure of $[PtCl_2(PEt_3)]_2(Ph_4P_2N_4Se_2Me_2)$, 7b

The X-ray analysis of 7*b* establishes that the two $PtCl_2(PEt_3)$ groups are attached to opposite (distal) nitrogen atoms of the $P_2N_4Se_2$ ring with the PEt_3 ligands *trans* to nitrogen. An ORTEP drawing of the structure with the atomic numbering scheme is displayed in Fig. 2.

In the solid state, the complex lies on a twofold axis with the SeC₂H₅ group disordered in such a way that the Se and methylene carbon atoms lie over two sites (Se(1), Se(2) and C(191), C(192), respectively) with half-occupancy factors; the thermal parameters of the methyl carbon atom C(20) indicate a large degree of thermal motion. For clarity, Fig. 2 depicts one long chair conformation of the disordered $P_2N_4Se_2$ ring. There are three possible conformations of the $P_2N_4Se_2$

²Supplementary material mentioned in the text may be purchased from: The Depository of Unpublished Data, Document Delivery, CISTI, National Research Council Canada, Ottawa, Canada, K1A 0S2.

Tables of hydrogen atom parameters and bond lengths and angles have also been deposited with the Cambridge Crystallographic Data Centre and can be obtained on request from The Director, Cambridge Crystallographic Data Centre, University Chemical Laboratory, 12 Union Road, Cambridge, CB2 IEZ, U.K.

TABLE 2. Positional parameters and B(eq) for 7b

Atom ^a	x	y	Z	$\overline{B(\text{eq})^b}$
Pt(1)	0.34861(2)	0.11466(4)	0.71832(3)	2.91(2)
Se(1)'	0.45425(8)	0.13125(16)	0.66747(13)	2.31(8)
Se(2)'	0.42507(9)	0.27215(18)	0.63623(14)	2.9(1)
Cl(1)	0.2992(1)	0.2724(2)	0.6675(2)	4.2(1)
C1(2)	0.4010(1)	-0.0347(2)	0.7781(2)	5.0(2)
P(1)	0.4609(1)	0.2571(3)	0.8348(2)	3.2(1)
P(2)	0.2723(1)	0.0280(2)	0.6862(2)	3.8(1)
N(1)	0.4182(3)	0.2034(6)	0.7373(5)	3.3(4)
N(2)	0.4788(4)	0.2250(8)	0.6334(6)	5.3(5)
C(1)	0.4414(4)	0.2173(8)	0.9258(7)	2.5(4)
C(2)	0.4745(4)	0.1529(8)	0.9980(7)	3.8(5)
C(3)	0.4620(5)	0.1265(11)	1.0735(7)	5.3(6)
C(4)	0.4172(5)	0.1648(10)	1.0741(7)	5.6(7)
C(5)	0.3827(5)	0.2267(10)	1.0021(8)	4.6(6)
C(6)	0.3953(4)	0.2545(8)	0.9291(7)	3.3(5)
C(7)	0.4555(4)	0.4036(9)	0.8268(7)	3.3(5)
C(8)	0.4955(6)	0.4690(11)	0.8843(9)	7.3(8)
C(9)	0.4901(7)	0.5800(11)	0.8766(10)	8(1)
C(10)	0.4448(6)	0.6239(12)	0.8112(10)	6.4(8)
C(11)	0.4065(6)	0.5652(13)	0.7571(13)	11(1)
C(12)	0.4118(6)	0.4498(12)	0.7619(11)	11(1)
C(13)	0.2748(4)	-0.1168(10)	0.6919(7)	5.0(6)
C(14)	0.2871(5)	-0.1699(9)	0.6165(8)	6.6(7)
C(15)	0.2408(5)	0.0660(9)	0.7605(10)	6.4(7)
C(16)	0.2755(6)	0.0394(11)	0.8625(8)	7.0(8)
C(17)	0.2236(5)	0.0582(9)	0.5643(8)	6.7(7)
C(18)	0.1682(6)	0.0063(12)	0.5349(12)	12(1)
C(191)'	0.3894(7)	0.1005(17)	0.5487(12)	4.6(7)
C(192)'	0.3658(7)	0.1999(14)	0.5288(11)	6.7(6)
C(20)	0.3726(7)	0.2117(15)	0.4516(11)	14(1)

^{*a*}Primed atoms were disordered over two sites with equal site occupancy factors; C(191) and C(192) were allowed isotropic temperature factors.

 ${}^{b}B_{cq} = \frac{8}{3}\pi^{2}(U_{11}(aa^{*})^{2} + U_{22}(bb^{*})^{2} + U_{33}(bb^{*})^{2} + 2U_{12}aa^{*}bb^{*}\cos\gamma + 2U_{13}aa^{*}cc^{*}\cos\beta + 2U_{23}bb^{*}cc^{*}\cos\alpha).$

ring which could contribute to the disordered structure, viz. boat–boat (BB), crown (CR), or long chair (LC) (see Fig. 3).³ Three combinations of these ring conformations could give rise to the observed disorder. These are (*i*) equal contributions of BB and CR, (*ii*) equal contributions of two LC conformations, or (*iii*) equal contributions of BB, CR, and two LC conformations. Although it is not possible to distinguish between these alternatives on the basis of the crystallographic data, option (*ii*) (two LC conformations involved in a rotational disorder) seems the most likely explanation since the other combinations require equal contributions of energetically different species.

As a result of the disorder the P—N bond distances fall within the range 1.57(1)-1.65(1) Å with a mean value of 1.61 Å, and the Se—N bond distances vary from 1.56(1) to 1.99(1) with a mean value of 1.77 Å. These distances can be compared with the values of 1.605(3) and 1.773(1) Å found for the P—N and Se—N bonds, respectively, in the uncomplexed ligand 1,5-Ph₄P₂N₄Se₂Me₂, 4a (9). The geometry of the rest of the molecule is not affected by the disorder. The Pt—N bond length of 2.130(8) Å is indicative of a weak interaction. For comparison, the Pt—N bond length in $[PtCl_2(PEt_3)]_2(Ph_4P_2N_4Se_2)$, a closely related "distal" platinum(II) complex of **2** is 2.162(9) Å (4), while values of 2.02–2.03 Å are found for complexes of chelating, anionic Se—N ligands (22).

Preparation and ${}^{31}P$ nmr characterization of 8

Investigations of the Lewis base properties of the sixmembered ring 5 have shown that the interaction of the P_2N_3S ring with Lewis or Brønsted acids is not regiospecific. Whereas methylation occurs at a nitrogen between phosphorus and sulfur, protonation takes place at the unique nitrogen atom (23). Furthermore, the 1:1 boron trihalide adducts of 5 are mixtures of symmetrical and unsymmetrical *N*-bonded isomers and the formation of a 2:1 BCl₃ adduct is indicated on the basis of ³¹P nmr investigations. It was of interest, therefore, to include an examination of the ligand behaviour of 5 towards platinum(II) in the current investigation.

The six-membered ring **5** reacts with $[PtCl_2(PEt_3)]_2$ in dichloromethane at room temperature to give the 1:1 adduct **8** in essentially quantitative yield according to the ³¹P nmr spectrum of the reaction mixture. Attempts to attach a second platinum to the P₂N₃S ring by heating **8** with $[PtCl_2(PEt_3)]_2$ in boiling dichloromethane or chloroform were unsuccessful.

The composition of **8** was established by elemental analyses and the 1 H nmr spectrum (see Experimental section).

³This terminology for the conformation of eight-membered rings is taken from ref. 21.

1825

TABLE 3. Selected bond lengths (Å) and bond angles (deg) for $[PtCl_2(PEt_3)]_2$ - $[Ph_4P_2N_4Se_2Et_2], 7b$

Length	Bond ^a	Length
2.323(3)	Pt(1)-Cl(2)	2.291(3)
2.231(3)	Pt(1)-N(1)	2.130(8)
1.991(8)	Se(1)-N(2)	1.554(9)
2.00(2)	Se(2)-N(1)	1.887(7)
1.622(9)	Se(2)-C(192)	1.99(2)
1.625(7)	P(1)-N(2)'	1.580(9)
1.804(9)	P(1)-C(7)	1.82(1)
1.79(1)	P(2)-C(15)	1.80(1)
1.85(1)	Se(1)Se(1)'	2.746(4)
Angle	Bonds	Angle
176.0(1)	Cl(1)-Pt(1)-P(2)	87.8(1)
89.0(2)	Cl(2)-Pt(1)-P(2)	94.6(1)
88.9(2)	P(2)-Pt(1)-N(1)	175.1(2)
97.9(6)	N(1)-Se(1)-N(2)	104.9(4)
99.6(5)	N(2)-Se(1)-C(191)	99.9(6)
116.2(5)	N(1)-Se(2)-N(2)	106.9(4)
109.7(5)	N(2)-Se(2)-C(192)	104.5(6)
108.5(5)	N(1)-P(1)-C(1)	106.9(4)
117.1(4)	N(2)-P(1)-C(1)	108.7(5)
109.8(4)	Pt(1)-P(2)-C(15)	114.1(4)
109.5(4)	Pt(1)-N(1)-Se(2)	122.0(4)
126.4(4)	Se(2)-N(1)-P(1)	108.3(4)
111.6(5)	Se(1)-N(2)-P(1)'	129.9(6)
139.9(7)		
	Length 2.323(3) 2.231(3) 1.991(8) 2.00(2) 1.622(9) 1.625(7) 1.804(9) 1.79(1) 1.85(1) Angle 176.0(1) 89.0(2) 88.9(2) 97.9(6) 99.6(5) 116.2(5) 108.5(5) 117.1(4) 109.8(4) 109.5(4) 126.4(4) 111.6(5) 139.9(7)	LengthBond"2.323(3) $Pt(1)$ - $Cl(2)$ 2.231(3) $Pt(1)$ - $N(1)$ 1.991(8) $Se(1)$ - $N(2)$ 2.00(2) $Se(2)$ - $N(1)$ 1.622(9) $Se(2)$ - $C(192)$ 1.625(7) $P(1)$ - $N(2)'$ 1.804(9) $P(1)$ - $C(7)$ 1.79(1) $P(2)$ - $C(15)$ 1.85(1) $Se(1)$ $Se(1)'$ AngleBonds176.0(1) $Cl(1)$ - $Pt(1)$ - $P(2)$ 88.9(2) $P(2)$ - $Pt(1)$ - $N(1)$ 97.9(6) $N(1)$ - $Se(1)$ - $N(2)$ 99.6(5) $N(2)$ - $Se(1)$ - $C(191)$ 116.2(5) $N(1)$ - $Se(2)$ - $N(2)$ 109.7(5) $N(2)$ - $Se(2)$ - $C(192)$ 108.5(5) $N(1)$ - $P(1)$ - $C(1)$ 117.1(4) $N(2)$ - $P(1)$ - $C(1)$ 109.8(4) $Pt(1)$ - $P(2)$ - $C(15)$ 109.5(4) $Pt(1)$ - $N(2)$ - $P(1)'$ 111.6(5) $Se(1)$ - $N(2)$ - $P(1)'$ 139.9(7) V

"Primed atoms are related to the unprimed atoms by the symmetry: 1 - x, y, $1\frac{1}{2} - z$.

PEt,

`CI

(c)

FIG. 2. ORTEP drawing for one long chair conformation of $[PtCl_2(PEt_3)]_2[Ph_4P_2N_4Se_2Et_2]$, 7*b*, showing the atomic numbering scheme.

FIG. 3. ORTEP drawings of three conformations of the $P_2N_4Se_2$ ring in 7b; (a) boat-boat (BB), (b) crown (CR), (c) long chair (LC). Only one of the LC conformations is shown.

The ³¹P nmr spectrum of **8** is uniquely consistent with a structure in which the $PtCl_2(PEt_3)$ group is attached to one of the sulfur-bonded nitrogen atoms and the PEt_3 ligand

is *trans* to nitrogen. Three equally intense resonances are observed at 1.2, 10.0, and 20.5 ppm. The resonance at 1.2 ppm, which appears as a doublet (${}^{3}J(P--P) = 10$ Hz) with platinum satellites (${}^{1}J(Pt--P) = 3637$ Hz), is readily attributed to the PEt₃ ligand, while the signals at 10.0 and 20.5 ppm are assigned to the inequivalent ring phosphorus atoms P_c and P_B, respectively. The former appears as a singlet while the latter is a doublet (${}^{3}J(P--P) = 10$ Hz) with platinum satellites (${}^{2}J(Pt--P)\sim 40$ Hz). The two-bond coupling between the inequivalent heterocyclic phosphorus atoms, P_B and P_c, could not be resolved. In the *N*-methylated derivative of **5** this coupling is *ca*. 6 Hz, but it was not resolved in the unsymmetrical 1:1 adducts of **5** with BX₃ (X = Cl, F) (23).

Previous studies of the interaction of PNS rings with electrophiles, have shown that the site of electrophilic attack is governed by electrostatic effects (24, 25). In the specific case of the P_2N_3S ring, however, the interaction with BCl_3 or methyl triflate is not regiospecific whereas protonation occurs exclusively at the unique nitrogen atom. It is possible, therefore, that the observed regiospecific adduct formation with the electrophile $PtCl_2(PEt_3)$ is controlled by steric effects.

Conclusions

The eight-membered rings 1,5-Ph₄P₂N₄E₂R₂ (E = S, Se) form either 1:1 (E = S) or 2:1 (E = Se) adducts with platinum(II). By contrast, the folded eight-membered ring $Ph_4P_2N_4S_2$ (1) forms the 1:1, 2:1, and 3:1 adducts $[PtCl_2(PEt_3)]_n(Ph_4P_2N_4S_2)$ (n = 1-3) (2). An X-ray structure of the 2:1 adduct of the open ring $1,5-Ph_4P_2N_4Se_2Et_2$ (4b) reveals features similar to those found for the corresponding adduct of the folded ring (4). In both cases the platinum atoms are attached to "distal" nitrogen sites of the P2N4Se2 rings and the Pt-N distances are indicative of a weak interaction. The $P_2N_4Se_2$ ring in the 2:1 adduct of 4b exists as a mixture of at least two conformations but, as a result of the disorder, it is not possible to assess the effect of adduct formation on the geometrical parameters of the heterocyclic ring. In contrast to the behavior of Lewis and Brønsted acids, adduct formation between the six-membered ring $Ph_4P_2N_3SPh$ and platinum(II) occurs in a regiospecific manner to give the isomer in which the metal is attached to a nitrogen between the phosphorus and sulfur atoms.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for financial support. We are grateful to one of the reviewers for helpful comments on the crystallographic section of the manuscript.

- P.F. Kelly, A.M.Z. Slawin, D.J. Williams, and J.D. Woollins. Chem. Soc. Rev. 246 (1992).
- 2. T. Chivers and R.W. Hilts. Inorg. Chem. 31, 5272 (1992).
- 3. T. Chivers, M. Edwards, A. Meetsma, J.C. van de Grampel, and A. van der Lee. Inorg. Chem. **31**, 2156 (1992).

- (a) T. Chivers, D.D. Doxsee, R.W. Hilts, A. Meetsma, M. Parvez, and J.C. van de Grampel. J. Chem. Soc. Chem. Commun. 1330 (1992); (b) T. Chivers, D.D. Doxsee, and R.W. Hilts. Inorg. Chem. 32, 3244 (1993).
- T. Chivers, K.S. Dhathathreyan, and T. Ziegler. J. Chem. Soc. Chem. Commun. 86 (1989).
- T. Chivers, M. Cowie, M. Edwards, and R.W. Hilts. Inorg. Chem. 31, 3349 (1992).
- 7. T. Chivers, M. Edwards, P.N. Kapoor, A. Meetsma, J.C. van de Grampel, and A. van der Lee. Inorg. Chem. **29**, 3068 (1992).
- 8. T. Chivers, M. Edwards, R.W. Hilts, A. Meetsma, and J.C. van de Grampel. J. Chem. Soc. Dalton Trans. 3053 (1992).
- (a) T. Chivers, D.D. Doxsee, and J.F. Fait. J. Chem. Soc. Chem. Commun. 1703 (1989); (b) T. Chivers, D.D. Doxsee, J.F. Fait, and M. Parvez. Inorg. Chem. 32, 2243 (1993).
- T. Chivers, S.S. Kumaravel, A. Meetsma, J.C. van de Grampel, and A. van der Lee. Inorg. Chem. 29, 4591 (1990).
- 11. M. Liang and I. Manners. J. Am. Chem. Soc. 113, 4044 (1991).
- J.A. Dodge, I. Manners, H.R. Allcock, G. Renner, and O. Nuyken. J. Am. Chem. Soc. **112**, 1268 (1990).
- 13. T. Chivers and M.N.S. Rao. Inorg. Chem. 23, 3605 (1984).
- 14. J. Chatt and L.M. Venanzi. J. Chem. Soc. 2787 (1955).
- 15. teXsan: Crystal structure analysis packages, Molecular Structure Corporation. 1985 and 1992.

- 16. N. Walker and D. Stuart. Acta Crystallogr. A39, 158 (1983).
- 17. SAPI91: H.-F. Fan. Structure analysis programs with intelligent control. Rigaku Corporation, Tokyo, Japan. 1991.
- DIRDIF92: P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits, and C. Smykalla. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. 1992.
- D.T. Cromer and J.T. Waber. International tables for X-ray crystallography. Vol. IV. Kynoch Press, Birmingham, England. 1974.
- 20. J.A. Ibers and W.C. Hamilton. Acta Crystallogr. 17, 781 (1964).
- V.A. Palyulin, N.S. Zefirov, V.E. Shklover, and Yu.T. Struchkov. J. Mol. Struct. 70, 65 (1981).
- (a) P.F. Kelly, I.P. Parkin, A.M.Z. Slawin, D.J. Williams, and J.D. Woollins. Angew. Chem. Int. Ed. Engl. 28, 1047 (1989); (b) C.A. O'Mahoney, I.P. Parkin, D.J. Williams, and J.D. Woollins. Polyhedron, 8, 2215 (1989).
- 23. T. Chivers, J.F. Fait, and S.W. Liblong. Inorg. Chem. 28, 2803 (1989).
- T. Chivers, S.W. Liblong, J.F. Richardson, and T. Ziegler. Inorg. Chem. 27, 860 (1988).
- T. Chivers, S.W. Liblong, J.F. Richardson, and T. Ziegler. Inorg. Chem. 27, 4344 (1988).