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Phase-transfer catalysis (PTC) has been recognized as a
convenient and highly useful tool in academia and industry
because it offers several advantages for practical organic
synthesis, such as operational simplicity, mild reaction con-
ditions in aqueous media, environmental benefits, and suit-
ability for large-scale reactions.[1,2] Also the development of
efficient methods for the preparation of natural and non-
natural a-alkyl- and a,a-dialkyl-a-amino acids, especially in
their enantiomerically pure forms by asymmetric PTC, has
become very important because of their high synthetic
utility.[3,4] Accordingly, several phase-transfer catalysts have
been developed that lead to products with excellent enantio-
selectivities in high yields.[4] However, despite numerous
studies, truly efficient catalytic systems with high enantiose-
lection at very low catalyst loading (e.g., < 0.1 mol%) are still
rare in asymmetric carbon–carbon bond formation, and major
progress in terms of catalyst loading is still desirable for
practical asymmetric synthesis. Since our recently developed,
chiral spiro-type (R,R)- or (S,S)-3,4,5-trifluorophenyl-NAS
bromide 1 shows exceedingly high enantioselectivity in

asymmetric alkylation of a-amino acid derivatives,[4d,e,m] our
next target was the design of a very active catalyst. Consid-

ering the highly lipophilic nature of 1 and the generation of a
metal enolate in an interfacial layer,[5] such lipophilic 1 (QX)
must move to the interfacial layer to induce a facile exchange
reaction with a metal enolate (Scheme 1). Based on this

assumption, our strategy was to replace the rigid binaphthyl
moiety in 1 by flexible straight-chain alkyl groups to furnish a
new catalyst of type 2, which substantially accelerates the
enolate exchange with 2 because of the increasing polarity of
the dialkylammonium moiety. Herein, we report that such a
designer chiral quaternary ammonium salt 2 behaves as a very
powerful chiral phase-transfer catalyst for the highly practi-
cal, enantioselective alkylation of protected-glycine and a-
alkyl-a-amino acid derivatives.

The requisite catalyst (S)-2 can be readily prepared from
the commercially available (S)-1,1’-binaphthyl-2,2’-dicarbox-
ylic acid (3)[6] in a six-step sequence as outlined in Scheme 2.[7]

Thus, (S)-dicarboxylic acid 3 was transformed with iPrBr,
catalytic Bu4N·HSO4, and KF·2H2O to the corresponding
diisopropyl ester 4 in 95% yield. Treatment of 4 with freshly
prepared Mg(TMP)2 (TMP = 2,2,6,6-tetramethylpiperidide)
in THF and subsequent additon of bromine gave rise to (S)-
3,3’-dibromo-1,1’-binaphthyl-2,2’-dicarboxylic ester 5 in 91%
yield. Suzuki–Miyaura cross coupling of 5 with 3,4,5-trifluor-
ophenylboronic acid in the presence of catalytic Pd(OAc)2,
PPh3, and K2CO3 in N,N-dimethylformamide (DMF)
afforded (S)-3,3’-bis(3,4,5-trifluorophenyl)-1,1’-binaphthyl-
2,2’-dicarboxylic ester (6) in 94% yield. Reduction of 6 with

Scheme 1. Proposed mechanism for the generation of chiral
ammonium enolate.

Scheme 2. a) iPrBr (10 equiv), Bu4N·HSO4 (20 mol%), KF·2H2O (10 equiv),
THF, reflux (95%); b) 1. Mg(TMP)2 (4 equiv), THF, RT; 2. Br2 (8 equiv),
�78 8C!RT (91%); c) (3,4,5-F3C6H2)B(OH)2 (2.4 equiv, Pd(OAc)2 (5 mol%),
PPh3 (15 mol%), K2CO3 (3 equiv), DMF, 90 8C (94%); d) LiAlH4 (3 equiv),
THF, 0 8C!RT; e) PBr3 (0.5 equiv), THF, 0 8C (90% from 6); f) R2NH (R = Me,
Et, Bu, C10H21) (1.1 equiv), K2CO3 (2 equiv), CH3CN, reflux (64–99%).
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LiAlH4 in THF and subsequent treatment of the resulting
crude alcohol 7 with PBr3 in THF furnished (S)-dibromide 8
in 90 % yield. Reaction of 8 with R2NH (R = Me, Et, Bu,
C10H21) and K2CO3 in acetonitrile led to the formation of the
catalyst (S)-2 in yields of 64–99 %. The overall yields of (S)-2
from the starting (S)-dicarboxylic acid 3 were 47–72%. The
structure of (S)-2c as a PF6

� salt determined by X-ray
crystallographic analysis is shown in Figure 1.[8]

The chiral efficiency of the phase-transfer catalyst (S)-2
was examined by carrying out asymmetric alkylation of N-
(diphenylmethylene)glycine tert-butyl ester (9 ; Table 1). (S)-
2a gave a rather disappointing result in terms of reactivity, the
higher homolog (S)-2b was however found to be a very active
phase-transfer catalyst. Indeed, reaction of 9 with benzyl
bromide (1.2 equiv) and 50% aqueous KOH in toluene was
effected in the presence of only 0.05 mol % of catalyst (S)-2b
under argon atmosphere at 0 8C for 3 hours to furnish the
benzylation product 10 (R’= CH2Ph) in 81% yield with
excellent enantioselectivity (97 % ee) (entry 2). Further accel-
eration of the reaction was observed by using 0.05 mol% of
catalyst (S)-2c (98 % yield with 99% ee at 0 8C for 2 hours)
(entry 3).[9] Even 0.01 mol % of catalyst (S)-2c still gave high
enantioselectivity (98 % ee at 0 8C for 9 hours) (entry 4).

Other selected examples are also listed in Table 1. There
are several characteristic features of these alkylation reac-
tions: 1) In contrast to the existing chiral phase-transfer
catalysts, catalyst (S)-2c exhibited a high catalytic perform-
ance (0.01–0.1 mol%) and demonstrated the remarkable
efficiency and practicality of the present approach towards
the enantioselective synthesis of a-alkyl-a-amino acids.
2) The didecyl analogue (S)-2d exhibited a little less reactivity
to (S)-2c without decreasing enantioselectivity (entries 5 and
6). 3) Not only benzylation and allylation, but also alkylation
of 9 with a simple alkyl halide, such as ethyl iodide, proceeded

smoothly under mild conditions to furnish the corresponding
a-alkyl-a-amino acids in high yield and excellent enantiose-
lectivity (entry 13).

The catalyst (S)-2c is, of course, applicable to the
asymmetric alkylation of aldimine Schiff base 11 derived
from d,l-alanine tert-butyl ester (Scheme 3). Thus, reaction of
11 with benzyl bromide (1.2 equiv) and CsOH·H2O (5 equiv)
in toluene in the presence of 0.05 mol% of catalyst (S)-2c
under argon atmosphere at �20 8C for 1 hour gave, after
acidic work-up, rise to benzylation product 12 in 63% yield
with 98 % ee. Asymmetric allylation and ethylation of 11 was
carried out in a similar manner as described below.

In conclusion, we successfully designed very powerful
chiral phase-transfer catalysts of type 2 to realize a general

Figure 1. ORTEP drawing of (S)-2c as a PF6
� salt. PF6

� , solvent, and
hydrogen atoms have been omitted for clarity.

Table 1: Catalytic enantioselective phase-transfer alkylation of glycine
derivative 9.[a]

Entry Catalyst
[mol%]

R’-X T
[8C]

t
[h]

Yield
[%][b]

ee [%]
(Config)[c]

1 (S)-2a (0.05) PhCH2Br 0 4 7 33 (R)
2 (S)-2b (0.05) 0 3 81 97 (R)
3 (S)-2c (0.05) 0 2 98 99 (R)
4[d] (S)-2c (0.05) 0 12 97 99 (R)
5 (S)-2c (0.01) 0 9 92 98 (R)
6 (S)-2d (0.05) 0 4 94 99 (R)
7 (S)-2d (0.01) 0 24 79 98 (R)
8 (S)-2c (0.05) CH2=CHCH2Br 0 3 87 98 (R)
9 (S)-2d (0.05) 0 5 75 97 (R)

10 (S)-2c (0.05) HC�CCH2Br 0 4 88 98 (R)
11 (S)-2d (0.05) 0 6 83 98 (R)

12 (S)-2c (0.05) 0 64 81 97 (R)

13 (S)-2c (0.1) CH3CH2I
[e,f ] �20 1 67 99 (R)

[a] Unless otherwise specified, the reaction of 9 (0.3 mmol) was carried
out with 1.2 equivalents of R’X in the presence of catalytic (S)-2 in 50%
aqueous KOH/toluene (volume ratio= 1:1) under the given reaction
conditions. [b] Yield of isolated product. [c] Enantiopurity of 10 was
determined by HPLC analysis using a column with a chiral stationary
phase (DAICEL Chiralcel OD) with hexane/isopropanol as the solvent.
[d] Reaction scale = 3 mmol. [e] Use of 5 equivalents of alkyl halide and
CsOH·H2O as base. [f ] Attempted reaction of 9 with EtI in the presence
of (S)-2c (0.05 mol%) in 50 % aqueous KOH/toluene at 0 8C for 72 hours
gave 10 (R’= Et) in 12% yield with 91% ee.

Scheme 3. Asymmetric alkylation of Schiff base 11 by using (S)-2c as
catalyst.
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and useful procedure for highly practical enantioselective
synthesis of a-alkyl- and a,a-dialkyl-a-amino acids.
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