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Summary: A new strategy for the asymmetric synthesis of 1-benzyl-1,2,3,4-tetrahydroisoquinolines 7 - 9
has been developed. The route involves introduction of asymmetry via enantioselective epoxidation or
dihydroxylation of corresponding stilbene precursors followed by aminolysis and Pomeranz-Fritsch
cyclization. The strategy has been successfully applied to the asymmetric synthesis of (R)-reticuline (9),
the key-intermediate in the synthesis of morphine alkaloids on the biomimetic route.

According to their pharmacological and economical importance, a variety of strategies have been
developed for the total synthesis of morphine alkaloids,! including the biomimetic route.!®° Considering
stereochemical aspects this approach seems to be the most promissing one. Starting with just one
stereocentre in the morphinane-precursor (R)-reticuline, the asymmetric information is doubled first by
transformation into the morphinanedienone salutaridine, a pretentious reaction, which has been subject of
a series of investigations.? Due to the rigidity of the morphine sceleton the other asymmetric centres, in
morphine there are five in total, are gained almost automatically during a well established synthesis.?
Thus the asymmetric synthesis of (R)-reticuline and its transformation into salutaridine are the
key-technologies for the total synthesis of morphine alkaloids following the biomimetic route (scheme 1).
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All previous syntheses of reticuline usually build up the two aromatic subunits separately, which
are combined later in the key-step of the synthesis. Typically this is accomplished either by classical
Bischler-Napieralski cyclization® or by modern enantioselective alkylation methodologies.> All these
syntheses are tedious, none of them is feasible economically. In order to avoid this complicated
proceeding we developed a completely new strategy, that was based on the symmetry of the target
molecule. By abstracting reticuline to an appropriately substituted stilbene a useful synthon for the target
was found. The overall synthetic approach is outlined in scheme 1.
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Commercially available isovanillin derivative 1 was reductively coupled by McMurry reaction® to give
the trans-stilbene 2 in high yield and high stereospecifity.” 2 was readily oxidized by several methods®
under non-acidic conditions (scheme 2) to give the trans-stilbene oxide 3. As the absolute configuration
of the epoxide 3 determines’the absolute configuration of the final product (e.g. (R)-reticuline), it was
necessary to use an enantioselective epoxidation technique at this point. Regard to economical aspects
the catalytic enantioselective epoxidation employing chiral manganese-salene catalysts® seemed most
promissing. Unfortunately the enantiomeric excess (ee) achieved by this method did not exceed 30%.
Alternatively, the synthesis of the epoxide analoga 4a and 4b was accomplished via catalytic
enantioselective Sharpless dihydroxylation” (ee= 79-93%), and subsequent transformation into the
cyclic sulfite or sulfate intermediate.” Cleavage of the epoxide 3 by methylaminoacetaldehyde
dimethylacetal (MADMA) proceeded smoothly to give the erythro-aminoalcohol 5a in high yield and
high stereospecifity.’ However aminolysis of the cyclic sulfite- (4a) or sulfate-analogon (4b) under the
same conditions (MADMA, SiO,, n-butanol) gave minor amounts (circa 10 - 20%) of the corresponding
threo-isomer™® as by-product, which was a clear indicator for the mixed Syl / Sy2-character of the
reaction. By omitting the SiQ,-catalyst and changing to more polar solvents - MADMA itself was the
best - the formation of the undesired threo-isomer could almost be avoided completely.

After protection of the benzylic alcohol the isoquinoline prc-cursor"e Sb was ready for
Pomeranz-Fritsch cyclization, which, when carried out under carefully controlled conditions (tlc),
proceeded smoothly and yielded the 4-hydroxy-isoquinolines 7b as a mixture of diastereoisomers.”f This
is not a trivial result, normally the Pomeranz-Fritsch cyclization is not a feasible reaction for the
synthesis of 1-benzyl-4-hydroxy-1,2,3,4-tetrahydroisoquinolines and usually yields pavine- and
isopavine-type main-products.!® In our case, however, the reaction clearly stopped at the
4-hydroxy-isoquinolines 7b and no pavines or isopavines were detectable. Under non-controlled
conditions the reaction proceeded to give the cyclic ether 6. Finally, removal of the protecting groups and
of the surplus benzylic alcohol functions was achieved either by hydride reduction of the corresponding
benzylic chlorides or acetates with subsequent hydrolysis of the phenolic benzyl protecting groups, or
straightforward by catalytic hydrogenation of the diacetate 7¢, respectively of the Pomeranz-Fritsch
product 7b in the presence of oxalic acid.

(R)-reticuline (9) was obtained in 82% ee, thus the enantiomeric excess, achieved in the
dihydroxylation-step was successfully transferred into the target. By simply changing the chiral ligand in
the dihydroxylation step from dihydroquinidine 4-chlorobenzoate to its pseudo-enantiomeric
dihydroquinine congener, the corresponding R,R-diol was obtained with similar asymmetric induction
(ee= 72%), thus allowing the asymmetric synthesis of (S)-reticuline as well.

The outlinéd new synthetic strategy should be applicable to the synthesis of a variety of
isoquinolines. It allows the introduction of asymmetry at an early stage of the synthesis using established
catalytic methods. By the appropriate choice of the catalyst’s ligands both enantiomers of the desired
final products are available. As demonstrated in the synthesis of reticuline, the shortest route is a 7-step
sequence starting from technical isovanilline; this strategy allows extremely short and efficient
asymmetric syntheses, especially for "symmetric 1-benzyl-1,2,3,4-tetrahydroisoquinolines”. To our
knowledge, this is not only the shortest racemic and asymmetric synthesis of reticuline, but it is also an
economical route which is technically practicable, e.g. on a 10kg-scale. Having an efficient access to
(R)-reticuline, we are currently focussing on the phenolic coupling to salutaridine.
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Scheme 2

Reagents: (a) TiCly, py., Zn, THF, refux, 2h, 93%; (b) m-CPBA, CH,Cly/NaHCO3(aq), r.t., 96%, m.p.~ 102°C (ethanol); (c) 2mol%
Ni-sslene, 10mol% BnBusCl, NaOCL, CHyClyNaHCO4(sq), 1.4; (d) Smol% Mn<S,S)-diphenylsalene, Me3PHIO, CHyClo, 5°C (ee= 30%);
() 2mol% OsClz, 10mol% dihydroquinidine 4-chlorob N-methylmorpholine N-oxide, acetone/HaO (9:1), r.t., 1d slow addition,
88%, o= 106" (e= 1, CHyCly, ee= 82%), m.p.= 41-43" (petroleum benzene/diethylether 95:5); (f) SOCIy, NEt3, diethylether, 0°C to r.t., 1h;
(8) RuCl3, NsOCL, CH3CN; (h) 2 MADMA, 10weight% SiOg, n-butanol, r.1. to 90°C, 2h, 79%; (i) MADMA (as solvent), r.t. 1o 130°C, 2h,
57% from 2; (k) Acz0, Smol% NaOAc, xylene, reflux, 2h, 85%; (1) HC (aq)/scetone (4:6), 0°C W r.1., tic-control, 87%; (m) as described
for ), nr .c-control; (n) i SOCly, py.. CHyCly; ii: LIAIHg, THF, 54% from 7a; (o) i: NaBH, TFA, THF, r..; ii: 25% NaOH, 72% from
7a; (p) NeOH, methanol/HO, S0°C, 1h, 88%; (q) 20weight% PA(10%)/C. Hy(50atm), i-propanol/Ho0 (3:2), 88%; (1) 20weight%
PA(10%)/C, 6eq. (COOH),, Ho(50atm), i-propanol, 69%; (s) cat. PA/C, Hy(1atm), methanol, 93%; (t) HCI (sq¥methanol, reflux, Sh, 81%
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