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Design and synthesis of opioidmimetics containing
2 0,6 0-dimethyl-LL-tyrosine and a pyrazinone-ring platform
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Abstract—Twelve 2 0,6 0-dimethyl-LL-tyrosine (Dmt) analogues linked to a pyrazinone platform were synthesized as 3- or 6-[H-Dmt-
NH(CH2)n],3- or 6-R-2(1H)-pyrazinone (n = 1–4). 3-[H-Dmt-NH-(CH2)4]-6-b-phenethyl-5-methyl-2(1H)-pyrazinone 11 bound to
l-opioid receptors with high affinity (Kil = 0.13 nM; Kid/Kil = 447) with l-agonism (GPI IC50 = 15.9 nM) and weak d-antagonism
(MVD pA2 = 6.35). Key factors affecting opioid affinity and functional bioactivity are the length of the aminoalkyl chain linked to
Dmt and the nature of the R residue. These data present a simplified method for the formation of pyrazinone opioidmimetics and
new lead compounds.
� 2007 Elsevier Ltd. All rights reserved.
The N-terminal Tyr residue is essential for the opioid
receptor interactions in opioid peptides,1–6 except noci-
ceptin,7 which contains Phe instead of Tyr. It is well
known that replacement of Tyr in opioid peptides and
opioidmimetics with 2 0,6 0-dimethyl-LL-tyrosine (Dmt)
dramatically enhances receptor affinity and functional
bioactivity.8 While H-Dmt-NHCH3 specifically interacts
with l-opioid receptor (Kil = 7.45 nM), indicating that
Dmt itself could act as a part of message domain, it
was insufficient to trigger a biological reaction.9 Re-
cently, the dimerization of the Dmt pharmacophore
through diaminoalkane10 or diaminoalkyl-pyrazinone,11

exhibited high l-affinity and potent in vitro and in vivo
functional bioactivity. It could be assumed that one
Dmt residue interacts within message-binding domain,
while another might lie in the address domain of the
receptor.
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The antinociceptive activity of one of Dmt-pyrazinone
dimers, 3-[4 0-(H-Dmt)-aminobutyl]-6-[3 0-(H-Dmt)-ami-
nopropyl]-5-methyl-2(1H)-pyrazinone was 65–71 times
greater than with morphine after icv administration in
mice based on the tail-flick and hot-plate tests.12 On
the other hand, after sc administration it was equivalent
to morphine in tail-flick test and 89% as effective by the
hot-plate test; however, after oral administration it
exhibited only 65% and 16% the activity of morphine
on these tests, respectively.12 The results indicated a de-
gree of enzymatic stability and the ability to transit epi-
thelial membranes through the gastrointestinal tract and
blood–brain barrier.12–14 Thus, the pyrazinone-ring may
be an ideal platform on which to develop stable opioids
with sufficient lipophilicity suitable for clinical and ther-
apeutic applications.

To further examine the role of the pyrazinone-ring in
opioidmimetics, we prepared compounds (1–12) as
shown in Figure 1 and examined their receptor affinities
and in vitro functional bioactivities.

Compounds (1–12) were synthesized according to
Scheme 1 starting from dipeptidyl chloromethyl ketones
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Figure 1. The structure of Dmt-pyrazinone derivatives (1–12).
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(1a–l).15 After removal of the Boc group from the dipep-
tidyl chloromethyl ketones (1a–l), the resulting amine
hydrochlorides were treated in methanol at 60 �C to give
Z-protected pyrazinone derivatives (2a–l), in which the
different and desired moieties are covalently bound to
positions 3 and 6. Z-Protection was removed by HBr/
CH3COOH to release the amine group, which was then
coupled with Boc-Dmt-OH8b,16 using PyBop to produce
Boc-protected Dmt analogues containing a pyrazinone-
ring (3a–l). The Boc group was removed by 7 M HCl/
dioxane to give the crude final compounds as hydrochlo-
ride salt (1–12), which were purified by semi-preparative
HPLC [column: Cosmosil ODS (20 · 250 mm) in an ini-
tial 0.05% TFA acetonitrile/0.05% TFA water gradient
(10:90) to (90:10) for 80 min, flow rate: 10 mL/min].
The identification and purity of the final compounds
were assessed using MS, 1H and 13C NMR, analytical
HPLC,17 and elemental analysis.18 The compounds
exhibited greater than 98% purity.

The radioreceptor assay19 used [3H]DAMGO (H-Tyr-DD-
Ala-Gly-N-MePhe-Gly-ol) and [3H]deltorphin II for l-
and d-opioid receptors, respectively. The affinities of
compounds 1–12 are summarized in Table 1. Com-
pounds 1, 9, 10, 11 and 12 exhibited subnanomolar affin-
ities (Kil). All the compounds exhibited l-selectivity
(Kid/Kil = 1.2–447). Compounds 1 and 3 exhibited 92-
fold and 3.6-fold higher l-affinity relative to 2 and 4,
respectively, indicating that the Dmt residue at position
3 is preferable relative to position 6 of the pyrazinone-
N C C
R3

O
N C C

R4
CH2Cl

O
Boc

N
H

N

O

R

R4

N
H

N

O

R5

R6

i, ii

N
H

N

O

R2

R1

iii, iv

i

1a-l
2a-l

3a-l

1-12

R3, R4 = H,  CH3, benzyl, β-phenethyl,
 2',6'-dimethylbenzyl or Z-NH-(CH2)1-4

HH HH

2

Scheme 1. Synthetic method for pyrazinone-ring containing opioidmimetics

60 �C; (iii) 25% HBr/CH3COOH; (iv) Boc-Dmt-OH, PyBop, DIPEA.
ring. Compound 3 exhibited the highest l-affinity, indi-
cating that the H-Dmt-NH-(CH2)4-moiety is the most
suitable derivative among compounds 3,5–7. Compound
1 (R1 = H) exhibited subnanomolar l-affinity, indicating
that the pyrazinone-ring played a role to enhance affin-
ity. Although the Kil of 9 (R1 = benzyl) is only 1.5-fold
higher than that of 12 (R1 = 2 0,6 0-dimethylbenzyl), the
increase in hydrophobicity introduced by dimethylation
on phenyl-ring of benzyl moiety at position 6 did not
substantially or significantly affect l-affinity. Compound
11 (R1 = b-phenethyl) exhibited the highest l-affinity
(Kil = 0.125 nM) of the substances in Table 1. The phe-
nyl moiety at R1 contributed to increased l-affinity.

The GPI (guinea-pig ileum) and MVD (mouse vas def-
erens) functional bioactivity assays were performed as
described previously.19 The results are summarized in
Table 1. All the compounds exhibited a relatively weak
d-antagonism (pA2 = 5.5 to 6.61) with very low agonist
potency (less than 34% inhibition at a dose of 10 lM).

Compound 11 (n = 4, R1 = b-phenethyl) exhibited
mixed l-agonism/d-antagonism. The phenyl moiety at
R1 of 11 might be able to bind to the l-opioid receptor
as part of the address domain of the ligand. While 10
(n = 3, R1 = b-phenethyl) and 12 (n = 4, R1 = 2 0,6 0-dim-
ethylbenzyl) had very weak l-agonism (IC50 = 5547 and
6273 nM, respectively), 1-9 exhibited essentially no l-
agonism with inhibition of less than 47% at a dose of
10 lM. Interestingly, only compounds 2–4, 10 and 12
behaved as weak antagonists toward the l-opioid recep-
tor as well, which were not previously observed with
other Dmt-pyrazinone analogues.10–12

In the series of opioidmimetics which contains a single
Dmt residue, l-affinity is consistently lower than that
of the opioidmimetic analogues with two Dmt resi-
dues.10–12 In the case of Dmt dimers, both Dmt residues
might participate in binding to the l-opioid receptor as
constituents of the message and address domains, while
in the Dmt monomeric analogues, the Dmt residue
could act by anchoring the compound only within l-opi-
oid receptors. The distance between the two Dmt phar-
macophores in the dimerized ligands might be better
accommodated in the l-opioid receptor. On the other
hand, the distance between Dmt and another aromatic
3
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2',6'-dimethylbenzyl or  Boc-Dmt-NH-(CH2)1-4
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Table 1. Opioid receptor binding affinity and functional bioactivity of compounds (1–12)

Compound Kil (nM) (n)a Kid (nM) (n)a Kid/Kil GPI IC50
b (nM) pA2

c MVD IC50
b (nM) pA2

c

DAMGOd 2.29 130 57 11.5 — 76 —

Deltorphin IIe 272 ± 50 (11) 0.24 ± 0.06 (6) 1135e 420 ± 95 — 0.14 ± 0.06 —

1 0.62 ± 0.068 (6) 73.80 ± 6.40 (5) 119 >10,000 (47.6%) — >10,000 (25.7%) <5.5

2 56.9 ± 5.30 (3) 343.7 ± 26.0 (5) 6 >10,000 (37.1%) <6.0 >10,000 (28.1%) <5.5

3 4.23 ± 0.65 (3) 77.7 ± 6.1 (4) 18 >10,000 (35.1%) 6.70 >10,000 (26.2%) 5.60

4 15.4 ± 1.36 (3) 208.5 ± 23.0 (6) 14 >10,000 (30.1%) <6.0 >10,000 (0.0%) 5.63

5 8.88 ± 0.77 (3) 269.4 ± 29.0 (3) 30 >10,000 (22.7%) — >10,000 (31.1%) <5.5

6 76.5 ± 9.20 (7) 93.10 ± 16.0 (5) 1.2 >10,000 (45.0%) — >10,000 (25.2%) 5.87

7 129.1 ± 19.00 (3) 698.1 ± 30.0 (5) 5.4 >10,000 (20.6%) — >10,000 (28.1%) 5.83

8 1.00 ± 0.02 (3) 59.60 ± 5.30 (4) 60 >10,000 (36.7%) — >10,000 (34.6%) 5.91

9 0.42 ± 0.01 (3) 8.60 ± 0.70 (3) 20 >10,000 (39.5%) — >10,000 (19.9%) 6.23

10 0.55 ± 0.09 (3) 38.2 ± 2.60 (3) 69 5547 ± 741 <6.0 >10,000 (4.1%) 5.87

11 0.125 ± 0.002 (3) 55.9 ± 8.30 (3) 447 15.9 ± 2.8 — >10,000 (12.8%) 6.35

12 0.66 ± 0.05 (5) 5.3 ± 0.8 (5) 8 6273 ± 895 <6.0 >10,000 (6.4%) 6.61

—, denotes no antagonism.
a Repetitions (n) are 5–7 times for each bioassay.
b Agonists inhibited the electrically evoked twitch (IC50). Values in parentheses indicate maximal inhibition of the tissue contraction at the con-

centration of 10,000 nM. Endomorphin 2 and deltorphin II were used as the l- and d-opioid receptor agonist standard peptides, respectively.
c The pA2 (antagonism) is the negative logarithm (M = concentration) required to double the concentration of a d-opioid receptor agonist (deltorphin

II) in MVD assay or of a l-opioid receptor agonist (endomorphin 2) in GPI assay to achieve the original response.
d DAMGO is the standard l-selective opioid agonist (data from Ref. 21).
e Deltorphin II is a d-selective (Kil/Kid = 1135) amphibian opioid agonist (data from Ref. 22).
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residue or the residue itself might not be appropriate for
binding to the l-opioid receptor. While l-antagonists
are important pharmacological tools, not only to delin-
eate critical biochemical, pharmacological, and physio-
logical roles played by these receptors, but also to
serve as clinically and therapeutically relevant agents,20

compounds 10 and 12 may be lead compounds for
the further development of new l-opioid receptor
antagonists.
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