

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 5768-5771

Design and synthesis of opioidmimetics containing 2',6'-dimethyl-L-tyrosine and a pyrazinone-ring platform

Kimitaka Shiotani,^a Tingyou Li,^a Anna Miyazaki,^b Yuko Tsuda,^{a,b} Toshio Yokoi,^{a,b} Akihiro Ambo,^c Yusuke Sasaki,^c Sharon D. Bryant,^d Lawrence H. Lazarus^d and Yoshio Okada^{a,b,*}

^aThe Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan ^bFaculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan ^cDepartment of Biochemistry, Tohoku Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan ^dMedicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences,

Research Triangle Park, NC 27709, USA

Received 19 June 2007; revised 16 August 2007; accepted 24 August 2007 Available online 28 August 2007

Abstract—Twelve 2',6'-dimethyl-L-tyrosine (Dmt) analogues linked to a pyrazinone platform were synthesized as 3- or 6-[H-Dmt-NH(CH₂)_n],3- or 6-*R*-2(1*H*)-pyrazinone (n = 1-4). 3-[H-Dmt-NH-(CH₂)₄]-6- β -phenethyl-5-methyl-2(1*H*)-pyrazinone 11 bound to μ -opioid receptors with high affinity ($K_{i\mu} = 0.13 \text{ nM}$; $K_{i}\delta/K_{i\mu} = 447$) with μ -agonism (GPI IC₅₀ = 15.9 nM) and weak δ -antagonism (MVD p $A_2 = 6.35$). Key factors affecting opioid affinity and functional bioactivity are the length of the aminoalkyl chain linked to Dmt and the nature of the R residue. These data present a simplified method for the formation of pyrazinone opioidmimetics and new lead compounds.

© 2007 Elsevier Ltd. All rights reserved.

The N-terminal Tyr residue is essential for the opioid receptor interactions in opioid peptides,¹⁻⁶ except nociceptin,7 which contains Phe instead of Tyr. It is well known that replacement of Tyr in opioid peptides and opioidmimetics with 2',6'-dimethyl-L-tyrosine (Dmt) dramatically enhances receptor affinity and functional bioactivity.⁸ While H-Dmt-NHCH₃ specifically interacts with μ -opioid receptor ($K_{\mu} = 7.45 \text{ nM}$), indicating that Dmt itself could act as a part of message domain, it was insufficient to trigger a biological reaction.9 Recently, the dimerization of the Dmt pharmacophore through diaminoalkane¹⁰ or diaminoalkyl-pyrazinone,¹¹ exhibited high µ-affinity and potent in vitro and in vivo functional bioactivity. It could be assumed that one Dmt residue interacts within message-binding domain, while another might lie in the address domain of the receptor.

The antinociceptive activity of one of Dmt-pyrazinone dimers, 3-[4'-(H-Dmt)-aminobuty]]-6-[3'-(H-Dmt)-aminopropy]]-5-methyl-2(1*H*)-pyrazinone was 65–71 times greater than with morphine after icv administration in mice based on the tail-flick and hot-plate tests.¹² On the other hand, after sc administration it was equivalent to morphine in tail-flick test and 89% as effective by the hot-plate test; however, after oral administration it exhibited only 65% and 16% the activity of morphine on these tests, respectively.¹² The results indicated a degree of enzymatic stability and the ability to transit epithelial membranes through the gastrointestinal tract and blood–brain barrier.^{12–14} Thus, the pyrazinone-ring may be an ideal platform on which to develop stable opioids with sufficient lipophilicity suitable for clinical and therapeutic applications.

To further examine the role of the pyrazinone-ring in opioidmimetics, we prepared compounds (1-12) as shown in Figure 1 and examined their receptor affinities and in vitro functional bioactivities.

Compounds (1–12) were synthesized according to Scheme 1 starting from dipeptidyl chloromethyl ketones

 $[\]label{eq:keywords: 2',6'-Dimethyl-L-tyrosine; Pyrazinone; μ-Selective opioid ligand; μ-Agonist/δ-antagonist; μ-Antagonist/δ-antagonist.}$

^{*}Corresponding author. Tel.: +81 78 974 1551; fax: +81 78 974 5689; e-mail: okada@pharm.kobegakuin.ac.jp

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.08.058

Figure 1. The structure of Dmt-pyrazinone derivatives (1-12).

(1a–1).¹⁵ After removal of the Boc group from the dipeptidyl chloromethyl ketones (1a-l), the resulting amine hydrochlorides were treated in methanol at 60 °C to give Z-protected pyrazinone derivatives (2a–I), in which the different and desired moieties are covalently bound to positions 3 and 6. Z-Protection was removed by HBr/ CH₃COOH to release the amine group, which was then coupled with Boc-Dmt-OH^{8b,16} using PyBop to produce Boc-protected Dmt analogues containing a pyrazinonering (3a-1). The Boc group was removed by 7 M HCl/ dioxane to give the crude final compounds as hydrochloride salt (1-12), which were purified by semi-preparative HPLC [column: Cosmosil ODS (20 × 250 mm) in an initial 0.05% TFA acetonitrile/0.05% TFA water gradient (10:90) to (90:10) for 80 min, flow rate: 10 mL/min]. The identification and purity of the final compounds were assessed using MS, ¹H and ¹³C NMR, analytical HPLC,¹⁷ and elemental analysis.¹⁸ The compounds exhibited greater than 98% purity.

The radioreceptor assay¹⁹ used [³H]DAMGO (H-Tyr-D-Ala-Gly-*N*-MePhe-Gly-ol) and [³H]deltorphin II for μ and δ -opioid receptors, respectively. The affinities of compounds 1–12 are summarized in Table 1. Compounds 1, 9, 10, 11 and 12 exhibited subnanomolar affinities ($K_i\mu$). All the compounds exhibited μ -selectivity ($K_i\delta/K_i\mu = 1.2-447$). Compounds 1 and 3 exhibited 92fold and 3.6-fold higher μ -affinity relative to 2 and 4, respectively, indicating that the Dmt residue at position 3 is preferable relative to position 6 of the pyrazinonering. Compound **3** exhibited the highest μ -affinity, indicating that the H-Dmt-NH-(CH₂)₄-moiety is the most suitable derivative among compounds **3**,**5**–7. Compound **1** (R₁ = H) exhibited subnanomolar μ -affinity, indicating that the pyrazinone-ring played a role to enhance affinity. Although the $K_{i\mu}$ of **9** (R¹ = benzyl) is only 1.5-fold higher than that of **12** (R¹ = 2',6'-dimethylbenzyl), the increase in hydrophobicity introduced by dimethylation on phenyl-ring of benzyl moiety at position 6 did not substantially or significantly affect μ -affinity. Compound **11** (R¹ = β -phenethyl) exhibited the highest μ -affinity ($K_{i\mu} = 0.125$ nM) of the substances in Table 1. The phenyl moiety at R¹ contributed to increased μ -affinity.

The GPI (guinea-pig ileum) and MVD (mouse vas deferens) functional bioactivity assays were performed as described previously.¹⁹ The results are summarized in Table 1. All the compounds exhibited a relatively weak δ -antagonism (p A_2 = 5.5 to 6.61) with very low agonist potency (less than 34% inhibition at a dose of 10 μ M).

Compound 11 (n = 4, $\mathbb{R}^1 = \beta$ -phenethyl) exhibited mixed μ -agonism/ δ -antagonism. The phenyl moiety at \mathbb{R}^1 of 11 might be able to bind to the μ -opioid receptor as part of the address domain of the ligand. While 10 (n = 3, $\mathbb{R}^1 = \beta$ -phenethyl) and 12 (n = 4, $\mathbb{R}^1 = 2'$, 6'-dimethylbenzyl) had very weak μ -agonism (IC₅₀ = 5547 and 6273 nM, respectively), 1-9 exhibited essentially no μ agonism with inhibition of less than 47% at a dose of 10 μ M. Interestingly, only compounds 2–4, 10 and 12 behaved as weak antagonists toward the μ -opioid receptor as well, which were not previously observed with other Dmt-pyrazinone analogues.^{10–12}

In the series of opioidmimetics which contains a single Dmt residue, μ -affinity is consistently lower than that of the opioidmimetic analogues with two Dmt residues.^{10–12} In the case of Dmt dimers, both Dmt residues might participate in binding to the μ -opioid receptor as constituents of the message and address domains, while in the Dmt monomeric analogues, the Dmt residue could act by anchoring the compound only within μ -opioid receptors. The distance between the two Dmt pharmacophores in the dimerized ligands might be better accommodated in the μ -opioid receptor. On the other hand, the distance between Dmt and another aromatic

Scheme 1. Synthetic method for pyrazinone-ring containing opioidmimetics (1–12). Reagents and condition: (i) 4MHCl/dioxane; (ii) CH₃OH, at 60 °C; (iii) 25% HBr/CH₃COOH; (iv) Boc-Dmt-OH, PyBop, DIPEA.

Compound	$K_{i}\mu$ (nM) (n) ^a	$K_{\rm i}\delta~({\rm nM})~(n)^{\rm a}$	$K_{\rm i}\delta/K_{\rm i}\mu$	GPI IC ₅₀ ^b (nM)		pA_2^{c}	MVD IC ₅₀ ^b (nM)		pA_2^c
DAMGO ^d	2.29	130	57	11.5		_	76		
Deltorphin II ^e	272 ± 50 (11)	0.24 ± 0.06 (6)	1135 ^e	420 ± 95		_	0.14 ± 0.06		
1	0.62 ± 0.068 (6)	73.80 ± 6.40 (5)	119	>10,000	(47.6%)	_	>10,000	(25.7%)	<5.5
2	56.9 ± 5.30 (3)	343.7 ± 26.0 (5)	6	>10,000	(37.1%)	<6.0	>10,000	(28.1%)	<5.5
3	4.23 ± 0.65 (3)	77.7 ± 6.1 (4)	18	>10,000	(35.1%)	6.70	>10,000	(26.2%)	5.60
4	15.4 ± 1.36 (3)	208.5 ± 23.0 (6)	14	>10,000	(30.1%)	<6.0	>10,000	(0.0%)	5.63
5	8.88 ± 0.77 (3)	269.4 ± 29.0 (3)	30	>10,000	(22.7%)	_	>10,000	(31.1%)	<5.5
6	76.5 ± 9.20 (7)	93.10 ± 16.0 (5)	1.2	>10,000	(45.0%)	_	>10,000	(25.2%)	5.87
7	129.1 ± 19.00 (3)	698.1 ± 30.0 (5)	5.4	>10,000	(20.6%)	_	>10,000	(28.1%)	5.83
8	1.00 ± 0.02 (3)	59.60 ± 5.30 (4)	60	>10,000	(36.7%)	_	>10,000	(34.6%)	5.91
9	0.42 ± 0.01 (3)	8.60 ± 0.70 (3)	20	>10,000	(39.5%)	_	>10,000	(19.9%)	6.23
10	0.55 ± 0.09 (3)	38.2 ± 2.60 (3)	69	5547 ± 741		<6.0	>10,000	(4.1%)	5.87
11	0.125 ± 0.002 (3)	55.9 ± 8.30 (3)	447	15.9 ± 2.8		_	>10,000	(12.8%)	6.35
12	0.66 ± 0.05 (5)	5.3 ± 0.8 (5)	8	6273 ± 895		<6.0	>10,000	(6.4%)	6.61

Table 1. Opioid receptor binding affinity and functional bioactivity of compounds (1-12)

—, denotes no antagonism.

^a Repetitions (n) are 5–7 times for each bioassay.

^b Agonists inhibited the electrically evoked twitch (IC₅₀). Values in parentheses indicate maximal inhibition of the tissue contraction at the concentration of 10,000 nM. Endomorphin 2 and deltorphin II were used as the μ - and δ -opioid receptor agonist standard peptides, respectively.

^c The pA_2 (antagonism) is the negative logarithm (M = concentration) required to double the concentration of a δ -opioid receptor agonist (deltorphin II) in MVD assay or of a μ -opioid receptor agonist (endomorphin 2) in GPI assay to achieve the original response.

^d DAMGO is the standard µ-selective opioid agonist (data from Ref. 21).

^e Deltorphin II is a δ -selective ($K_i \mu / K_i \delta = 1135$) amphibian opioid agonist (data from Ref. 22).

residue or the residue itself might not be appropriate for binding to the μ -opioid receptor. While μ -antagonists are important pharmacological tools, not only to delineate critical biochemical, pharmacological, and physiological roles played by these receptors, but also to serve as clinically and therapeutically relevant agents,²⁰ compounds **10** and **12** may be lead compounds for the further development of new μ -opioid receptor antagonists.

Acknowledgments

This work was supported in part by a grant from Kobe Gakuin University to K.S., in part by the Intramural Research Program of the NIH, and NIEHS, and in part by Grant-in-Aid for Scientific Research and by 'Academic Frontier' Project for Private Universities: matching fund subsidy from the Japanese Ministry of Education, Culture, Sports, Science and Technology, 2006–2010.

References and notes

- (a) Cox, B. M.; Goldstein, A.; Li, C. H. Proc. Natl. Acad. Sci. U.S.A. 1976, 73, 1821; (b) Ling, N.; Burgus, R.; Guillemin, R. Proc. Natl. Acad. Sci. U.S.A. 1976, 73, 3042.
- Goldstein, A.; Tachibana, S.; Lowney, L. H.; Hunkapiller, M.; Hood, L. Proc. Natl. Acad. Sci. U.S.A. 1979, 77, 6666.
- Hughes, J.; Smith, T. W.; Kosterlitz, H. W.; Forthergill, L. A.; Morgan, B. A.; Morris, H. R. *Nature* 1975, 258, 577.
- Zadina, J. E.; Hackler, L.; Ge, L. J.; Kastin, A. J. Nature 1997, 386, 499.
- (a) Erspamer, V.; Melchiorri, P. *Trends Pharmacol. Sci.* 1980, 1, 391; (b) Broccardo, M.; Erspamer, V.; Falconieri-Erspamer, G.; Improta, G.; Linari, G.; Melchiorri, P.; Montecucchi, P. C. *Br. J. Pharmacol.* 1981, 73, 625; (c) Montecucchi, P. C.; de Castiglione, R.; Piani, S.;

Gozzini, L.; Erspamer, V. *Int. J. Pept. Protein Res.* **1981**, *17*, 275; (d) Montecucchi, P. C.; de Castiglione, R.; Erspamer, V. *Int. J. Pept. Protein Res.* **1981**, *17*, 316; (e) Melchiorri, P.; Negri, L. *Gen. Pharmacol.* **1996**, *27*, 1099.

- (a) Kreil, G.; Barra, D.; Simmaco, M.; Erspamer-Falconieri, G.; Melchiorri, P.; Negri, L.; Severini, C.; Corsi, R. *Eur. J. Pharmacol.* 1989, *162*, 123; (b) Lazarus, L. H.; de Castiglione, R.; Guglietta, A.; Wilson, W. E. *J. Biol. Chem.* 1989, *264*, 3047; (c) Erspamer, V.; Melchiorri, P.; Erspamer-Falconieri, G.; Negri, L.; Corsi, R.; Severini, C.; Barra, D.; Simmaco, M.; Kreil, G. *Proc. Natl. Acad. Sci. U.S.A.* 1989, *86*, 5188; (d) Lazarus, L. H.; Bryant, S. D.; Cooper, P. S.; Salvadori, S. *Prog. Neurobiol.* 1999, *57*, 377.
 Meunier, J. C.; Mollereau, C.; Toll, L.; Suaudeau, C.;
- Meunier, J. C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand, C.; Alvinerie, P.; Butour, J. L.; Guillemot, J. C.; Ferrara, P.; Monsarrat, B.; Mazarguil, H.; Vassart, G.; Parmentier, M.; Costentin, J. *Nature* 1995, *377*, 532.
- (a) Okada, Y.; Fujita, Y.; Motoyama, T.; Tsuda, Y.; Yokoi, T.; Li, T.; Sasaki, Y.; Ambo, A.; Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H. *Bioorg. Med. Chem.* 2003, *11*, 1983; (b) Li, T.; Fujita, Y.; Tsuda, Y.; Miyazaki, A.; Ambo, A.; Sasaki, Y.; Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H.; Okada, Y. *J. Med. Chem.* 2005, *48*, 586.
- Fujita, Y.; Tsuda, Y.; Motoyama, T.; Li, T.; Miyazaki, A.; Yokoi, T.; Sasaki, Y.; Ambo, A.; Niizuma, H.; Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H.; Okada, Y. *Bioorg. Med. Chem. Lett.* 2005, 15, 599.
- Okada, Y.; Tsuda, Y.; Fujita, Y.; Yokoi, T.; Sasaki, Y.; Ambo, A.; Konishi, R.; Nagata, M.; Salvadori, S.; Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H. J. Med. Chem. 2003, 46, 3201.
- Jinsmaa, Y.; Miyazaki, A.; Fujita, Y.; Li, T.; Fujisawa, Y.; Shiotani, K.; Tsuda, Y.; Yokoi, T.; Ambo, A.; Sasaki, Y.; Bryant, S. D.; Lazarus, L. H.; Okada, Y. *J. Med. Chem.* **2004**, *47*, 2599.
- Jinsmaa, Y.; Okada, Y.; Tsuda, Y.; Shiotani, K.; Sasaki, Y.; Ambo, A.; Bryant, S. D.; Lawrence, L. H. J. Pharmacol. Exp. Ther. 2004, 309, 432.
- Igarashi, K.; Murabayashi, Y.; Hotta, K.; Kitamura, Y.; Kasuya, F.; Shiotani, K.; Li, T.; Miyazaki, A.; Tsuda, Y.; Okada, Y.; Fukushima, S. J. Chromatography B. 2004, 806, 53.

- Koda, Y.; Shiotani, K.; Toth, I.; Tsuda, Y.; Okada, Y.; Blanchfield, J. T. *Bioorg. Med. Chem. Lett.* 2007, 17, 2043.
- Okada, Y.; Tsukatani, M.; Taguchi, H.; Yokoi, T.; Bryant, S. D.; Lazarus, L. H. *Chem. Pharm. Bull.* 1998, 46, 1374.
- Dygos, J. H.; Yonan, E. E.; Scaros, M. D.; Goodmomson, O. J.; Getman, D. P.; Periana, R. A.; Beck, J. R. *Synthesis* 1992, 741.
- The analytical HPLC condition for Compounds 1–12. HPLC conditions: column, Cosmosil ODS (4.6 × 250 mm); solvents program, A: 0.05%TFA (trifluoroacetic acid)/water, B: 0.05%TFA/acetonitrile, A:B (90:10) to A:B (10:90) in 40 min; flow rate: 1 mL/min; detection: UV 220 nm.
- 18. Elemental analysis data of compounds 1-12. 3-[4'-(H-Dmt)-aminobutyl]-5-methyl-2(1H)-pyrazinone hydrochloride (1): Calcd for C₂₀H₂₈N₄O₃ · HCl · 2.5 H₂O: C, 47.2; H, 6.85; N, 10.0. Found:C, 46.9; H, 6.93; N, 10.3. 6-[4'-(H-Dmt)-aminobutyl]-5-methyl-2(1H)-pyrazinone hydrochloride (2): Calcd for $C_{20}H_{28}N_4O_3 \cdot HCl \cdot H_2O$: C, 46.9; H, 6.93; N, 11.0. Found:C, 46.5 H, 6.88, N, 10.7. 3-[4'-(H-Dmt)-aminobutyl]-5,6-dimethyl-2(1H)-pyrazinone hydrochloride (3): Calcd for C₂₁H₃₀N₄O₃·HCl·2.5H₂O: C, 50.6; H, 6.93; N, 10.3. Found:C, 50.3; H, 7.13, N, 10.7. 6-[4'-(H-Dmt)-aminobutyl]-3,5-dimethyl-2(1H)-pyrazinone hydrochloride (4): Calcd for $C_{21}H_{30}N_4O_3 \cdot HCl \cdot 4$ -H₂O: C, 48.3; H, 6.87; N, 9.79. Found:C, 48.5 H, 6.82, N, 10.0. 3-[3'-(H-Dmt)-aminopropyl]-5,6-dimethy-2(1H)-pyrazinone hydrochloride (5): Calcd for $C_{20}H_{28}N_4O_3 \cdot HCl \cdot$ H₂O: C, 48.9; H, 6.53; N, 10.5. Found:C, 49.0; H, 6.38; N, 10.4. 3-[2'-(H-Dmt)-aminoethyl]-5,6-dimethy-2(1H) pyr-

azinone hydrochloride (6): Calcd for C₁₉H₂₆N₄O₃ · H-Cl · 3H₂O: C, 47.9; H, 6.32; N, 10.7. Found:C, 47.9; H, 6.42; N, 10.6. 3-[(H-Dmt)-aminomethyl]-5,6-dimethy-2(1*H*)-pyrazinone hydrochloride (7): Calcd for $C_{18}H_{24}N_4O_4 \cdot HCl \cdot 2H_2O$: C, 51.9; H, 7.01; N, 13.4. Found:C, 51.7 H, 6.93, N, 13.5. 6-Benzyl-3-[3'-(H-Dmt)aminopropyl]-5-methyl-2(1H)-pyrazinone hydrochloride (8): Calcd for $C_{26}H_{32}N_4O_3 \cdot HCl \cdot 3H_2O$: C, 54.9; H, 6.37; N, 9.09. Found:C, 54.5; H, 6.31, N, 8.83. 6-Benzyl-3-[4'-(H-Dmt)-aminobutyl]-5-methyl-2(1H)-pyrazinone hydrochloride (9): Calcd for $C_{27}H_{34}N_4O_3 \cdot HCl \cdot H_2O$: C, 62.7; H, 7.21; N, 10.8. Found:C, 62.9; H, 7.23; N, 11.2. 6β-phenethyl-3-[3'-(H-Dmt)-aminopropyl]-5-methyl-2(1H)pyrazinone hydrochloride (10): Calcd for $C_{27}H_{34}N_4O_3$. HCl · 2.5H₂O: C, 59.6; H, 7.41; N, 10.3. Found:C, 59.6; H, 6.99; N, 10.7. 6-β-phenethyl-3-[4'-(H-Dmt)-aminobutyl]-5methyl-2(1H)-pyrazinone hydrochloride (11): Calcd for $C_{28}H_{36}N_4O_3\cdot HCl\cdot 2H_2O:$ C, 61.3; H, 7.53; N, 10.2. Found: C, 61.5; H, 7.66; N, 9.81. 3-[4'-(H-Dmt)-aminobutyl]-6-[2',6'-dimethylbenzyl]-5-methyl-2(1H)-pyrazinone hydrochloride (12): Calcd for $C_{29}H_{38}N_4O_3$. HCl · 1.3H₂O: C, 60.2; H, 6.88; N, 9.22. Found: C, 60.2; H, 6.95; N, 9.25.

- Sasaki, Y.; Suto, T.; Ambo, A.; Ouchi, H.; Yamamoto, Y. Chem. Pharm. Bull. 1999, 47, 1506.
- Stromberg, M. F.; Casale, M.; Volpicelli, L.; Volicelli, J. R.; O'Brien, C. P. Alcohol 1998, 15, 281.
- 21. Hruby, V. J.; Gehrig, C. A. Med. Res. Rev. 1989, 9, 343.
- 22. Salvadori, S.; Bianchi, C.; Lazarus, L. H.; Scaranari, V.; Attila, M.; Tomatis, R. *J. Med. Chem.* **1992**, *35*, 4651.