August, 1980]

The Reaction Process between a-Iron(III) Oxide and Sulfur Dioxide in the Presence of Carbon

Hiromitsu Araki, Young Hong Ryoo, Motonori Eguchi, Ryoko Matsuzaki, and Yuzo Saeki*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 227 (Received January 9, 1980)

The reaction products obtained by heating a mixture of α-Fe₂O₃ and carbon in a SO₂ stream at various temperatures were examined. The possible reactions during the above process were also examined. The solid products obtained by heating a mixture of α -Fe₂O₃ and carbon in a SO₂ stream were Fe₃O₄ at 500—700 °C, pyrrhotite and Fe₃O₄ at 750 °C, and pyrrhotite (Fe_{0.88}S) alone at 800 °C. Sulfur was obtained outside the heating zone throughout the temperature range. The process of the formation of pyrrhotite by the reaction between α-Fe₂O₃ and SO₂ in the presence of carbon can be represented as follows: The reaction between carbon and SO₂ occurs even at 350 °C to form sulfur, and the reaction proceeds markedly above ca. 700 °C. Above ca. 500 °C, the reductions of α-Fe₂O₃ with carbon and sulfur occur to form Fe₃O₄. Above ca. 750 °C, pyrrhotite is formed by the reaction between Fe₃O₄ and sulfur. These results were supported by the thermodynamical consideration based on the chemical potential diagram for the Fe-S-C-O system.

As sulfidizing agents for synthesizing the transitionmetal sulfides, sulfur, hydrogen sulfide and carbon disulfide have been well known. It is not only interesting from the viewpoint of the synthesis of the transitionmetal sulfide itself, but also important for the development of sulfur dioxide(SO₂) utilization, to obtain knowledge of the chemical process for synthesizing the sulfide from the oxide using SO₂ as a sulfidizing agent. In this work, the reaction process between α -iron(III) oxide(\alpha-Fe2O3) and SO2 in the presence of carbon was investigated in order to understand the above chemical process.

Pechkovskii1) has reported that iron sulfide is formed at 650-800 °C by heating a mixture of Fe₂O₃ and carbon in a SO₂ stream and that 99.7% of the charged Fe₂O₃ is sulfidized at 800 °C by using a 8:1 mixture of carbon and Fe₂O₃ (molar ratio). Pechkovskii and Mal'tseva²⁾ have carried out a differential thermal analysis for the mixture of Fe₂O₃ and carbon (Fe₂O₃: C=1:5 by molar ratio) in a SO₂ stream and have observed the formation of pyrrhotite(Fe_{1-x}S) above 640 °C. Also, they have estimated that the pyrrhotite may be formed through the reaction between FeO and gaseous sulfur, both substances having been formed during the reaction between Fe₂O₃ and SO₂ in the presence of carbon. The composition of the pyrrhotite formed was not mentioned.

In this work, the reaction products between α-Fe₂O₃ and SO₂ in the presence of carbon were examined. The reactions between carbon and SO2, \alpha-Fe2O3 and carbon, $\alpha\text{-Fe}_2\mathrm{O}_3$ or $\mathrm{Fe}_3\mathrm{O}_4$ and sulfur in a SO_2 stream, and Fe₃O₄ and sulfur in the presence of carbon were examined in order to elucidate the reaction process between α-Fe₂O₃ and SO₂ in the presence of carbon. Some thermodynamical consideration were also made of the formation of pyrrhotite.

Experimental

Bull. Chem. Soc. Jpn., 53, 2271-2274 (1980)

Materials. The α -Fe₂O₃ used was prepared by the thermal decomposition of the guaranteed reagent, Fe(NO₃)₃. 9H₂O, and confirmed as α-Fe₂O₃3) by X-ray analysis. The chemical analysis gave Fe, 70.00% (Calcd for Fe₂O₃; Fe, 69.94%). The Fe₃O₄ was synthesized by Harber's method⁴⁾ and confirmed as Fe₃O₄⁵⁾ by X-ray analysis. The chemical analysis gave Fe, $72.2_6\%$ (Calcd for Fe_3O_4 ; Fe, 72.36%). The carbon was prepared by the thermal decomposition of the guaranteed reagent glucose. The above materials were used as powders under 150 mesh. Gaseous SO₂ was dried by passing it through concd H₂SO₄ and over P₂O₅.

A mixture of α-Fe₂O₃ and carbon in a quartz boat (length: 72 mm, width: 16 mm, depth: 9 mm) was placed in a transparent quartz reaction tube (inner diameter: 28 mm, length: 1000 mm). Gaseous SO₂ was then introduced into the reaction tube. The sample part was positioned in the middle of a tubular electric furnace (heating length: 300 mm) maintained at a specified temperature for 1 h. The temperature of the sample part was controlled within ± 2 °C. After heating, the sample was held at 100 °C for 1 h in an argon stream in order to release the adsorbed SO₂ on unreacted carbon. The reactions between carbon and SO₂, α-Fe₂O₃ and carbon in an argon stream, α-Fe₂O₃ or Fe₃O₄ and sulfur in a SO₂ stream, and Fe₃O₄ and sulfur in the presence of carbon in an argon stream were examined in a similar manner.

Analytical. The X-ray analysis of the sample was performed with an X-ray powder diffractometer equipped with a proportional counter using Mn filtered Fe radiation.

Concerning the chemical analysis of pyrrhotite, the sample was oxidatively decomposed in HNO₃ with KClO₃. The iron and sulfur contents were determined by the volumetric method with KMnO₄ and the gravimetric method as BaSO₄, respectively. In the case of a mixture of pyrrhotite, unreacted carbon, and sulfur adsorbed on the carbon, the sample was oxidatively decomposed and the contents of iron and total sulfur in the filtrate were determined by the above techniques. Then, after dissolving pyrrhotite in the sample selectively with dilute HCl, the undissolved residue, which consisted of unreacted carbon and sulfur adsorbed on it, was oxidatively decomposed in HNO₃ with KClO₃, and the amount of sulfur adsorbed on the carbon was gravimetrically determined. The

[†] Present address: College of Engineering, Korea University, 1, Anam-Dong, Sungbuk-ku, Seoul 132, Korea.

amount of sulfur due to pyrrhotite was calculated as the difference between the above total sulfur and the sulfur adsorbed on the carbon. From this value and the foregoing iron content, the composition of pyrrhotite was determined.

Results and Discussion

Reaction Products between α -Fe₂O₃ and SO₂ in the Presence of Carbon. The products obtained by heating the mixture of α -Fe₂O₃ (2.00 g) and carbon (1.20 g) (Fe₂O₃: C=1:8 by molar ratio) at various temperatures for 1 h in a SO₂ stream at a flow-rate of 100 cm³/min were examined. The results are shown in Table 1, together with the weight changes in the samples. The solid products were identified by X-ray analysis.³,5,6)

Table 1. Products obtained by heating a mixture of $\alpha\text{-Fe}_2O_3$ and carbon in a SO_2 stream at various temperatures

Temp/	Weight change/%	Sample in the boat	Amount of sulfur obtained outside the heating zone/g
350	+0.2	α -Fe ₂ O ₃	Trace
400	+0.1	α -Fe $_2$ O $_3$	Trace
450	+0.1	$lpha ext{-} ext{Fe}_2 ext{O}_3$	Trace
500	+0.1	$lpha$ -Fe $_2$ O $_3$ \gg Fe $_3$ O $_4$	Trace
550	-0.1	$lpha$ -Fe $_2$ O $_3$ \gg Fe $_3$ O $_4$	0.01
600	-0.2	$lpha$ -Fe $_2$ O $_3$ $pprox$ Fe $_3$ O $_4$	0.01
650	-1.1	${ m Fe_3O_4}{\gg}lpha ext{-}{ m Fe_2O_3}$	0.06
700	-2.2	$\mathrm{Fe_3O_4}$	0.14
750	-12.3	$Fe_{1-x}S>Fe_3O_4$	0.39
800	-25.5	$Fe_{1-x}S$	1.11

The formation of $\mathrm{Fe_3O_4}$ was observed above 500 °C, while the formation of pyrrhotite($\mathrm{Fe_{1-x}S}$) in addition to $\mathrm{Fe_3O_4}$ was observed above 750 °C. The only solid product obtained at 800 °C was pyrrhotite. Sulfur was obtained outside the heating zone throughout the temperature range in this experiment, and the amount of sulfur markedly increased above ca. 700 °C. Also, the sample weight markedly decreased above ca. 700 °C. The slight increase in the sample weight at 350—500 °C was due to the adsorption of the sulfur formed by the reaction on the unreacted carbon, as will be described later.

The composition of the pyrrhotite obtained at 800 °C was determined by chemical analysis. The analysis gave Fe, $59.1_4\%$; S, 38.6%. From the results, the composition of the pyrrhotite formed was determined to be Fe_{0.88}S.

Possible Reactions during the Reaction between α -Fe₂O₃ and SO_2 in the Presence of Carbon. To elucidate the reaction process between α -Fe₂O₃ and SO_2 in the presence of carbon, the following experiments were carried out under conditions similar to those described above.

Reaction between Carbon and SO_2 : Carbon (1.20 g) was heated in a SO_2 stream (100 cm³/min) for 1 h. Under such conditions as in this experiment, sulfur is formed at temperatures below ca. 1000 °C.⁷ Hence, the amounts of sulfur formed at various reaction tempera-

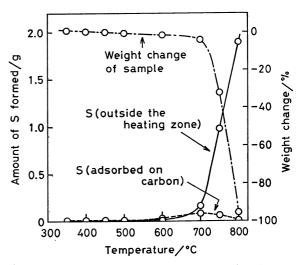


Fig. 1. Experimental results for the reaction between carbon and SO₂.

tures were determined. A part of the sulfur was deposited outside the heating zone, while the other part was adsorbed on the unreacted carbon in the boat. The amount of adsorbed sulfur was determined by chemical analysis. The amount of sulfur formed is shown in Fig. 1, together with the weight change in the sample.

A slight amount of sulfur was formed even at ca. 350 °C, and the amount was markedly increased above ca. 700 °C. Also, the sample weight markedly decreased above ca. 700 °C. These facts indicate that the reaction between carbon and SO_2 ;

$$C(s) + SO_2(g) \longrightarrow S_n^{\dagger\dagger}(g) + CO_2(CO)(g)$$
 (1)

occurs even at 350 °C and proceeds markedly above $\it ca.700$ °C.

Reaction between α -Fe₂O₃ and Carbon: The products formed by heating a mixture of α -Fe₂O₃ (2.00 g) and carbon (1.20 g) in an argon stream (100 cm³/min) for 1 h were examined by X-ray analysis. The results are shown in Table 2.

The results indicate that the following known reactions;

$$Fe_2O_3(s) + C(s) \longrightarrow Fe_3O_4(s) + CO(CO_2)(g)$$
 (2)

Table 2. Reaction products between $\alpha\text{-Fe}_2O_3$ and carbon at various temperatures

Temp/°C	Sample in the boat
350	α -Fe ₂ O ₃
400	$lpha ext{-} ext{Fe}_{2} ext{O}_{3}\!\!\gg\! ext{Fe}_{3} ext{O}_{4}$
450	$lpha ext{-} ext{Fe}_2 ext{O}_3\!\gg\! ext{Fe}_3 ext{O}_4$
500	$lpha ext{-} ext{Fe}_2 ext{O}_3\!\gg\! ext{Fe}_3 ext{O}_4$
550	$lpha ext{-} ext{Fe}_2 ext{O}_3\!\gg\! ext{Fe}_3 ext{O}_4$
600	$lpha ext{-} ext{Fe}_2 ext{O}_3\!pprox\! ext{Fe}_3 ext{O}_4$
650	$Fe_3O_4>\alpha-Fe_2O_3$
700	$\mathrm{Fe_3O_4}$
750	$\mathrm{Fe_3O_4}$
800	${ m Fe_3O_4}{ ightarrow}{ m FeO}$

^{††} Above 650 °C, the S_2 is dominant in all species. At lower temperatures the S_6 , S_7 , and S_8 species become important constituents.⁸⁾

$${\rm Fe_3O_4(s)+C(s)} \longrightarrow {\rm FeO(s)+CO(CO_2)(g)}$$
 (3) proceed above *ca.* 400 and *ca.* 800 °C respectively.

Reaction between α -Fe₂O₃ and Sulfur: The reaction between α -Fe₂O₃ and sulfur formed by the reaction of carbon with SO₂ was examined.

 $\alpha\text{-Fe}_2\text{O}_3$ (2.00 g) was heated in a stream of SO₂ containing a specified amount of gaseous sulfur at various temperatures for 1 h. The gaseous sulfur was formed by heating liquid sulfur and was carried by a stream of SO₂ (100 cm³/min). The heating temperature of the sulfur was controlled so as to give the same amounts of gaseous sulfur as those obtained by the reaction between carbon and SO₂, described in the previous paragraph. The amounts of sulfur introduced were 0.01 g for the experiments at 400 and 500 °C and 0.03 g for the experiment at 600 °C.

X-Ray analyses of the samples in the boat showed them to be unreacted α -Fe₂O₃ alone at 400 °C, α -Fe₂O₃>Fe₃O₄ at 500 °C, and α -Fe₂O₃≈Fe₃O₄ at 600 °C

These results show that, even in a SO_2 stream, the reaction between α -Fe₂O₃ and gaseous sulfur proceeds above ca. 500 °C to form Fe₃O₄, according to the reaction,

$$\operatorname{Fe_2O_3(s)} + \operatorname{S}_n(g) \longrightarrow \operatorname{Fe_3O_4(s)} + \operatorname{SO_2(g)}.$$
 (4)

From the above results, it could be explained that the sulfur and Fe_3O_4 , formed by heating a mixture of α - Fe_2O_3 and carbon in a SO_2 stream (Table 1), were formed by Reaction 1 and by Reactions 2 and 4 respectively.

Formation Reaction of Pyrrhotite from Fe_3O_4 : As has been mentioned before, when a mixture of α -Fe₂O₃ and carbon was heated in a SO₂ stream, pyrrhotite was formed above ca. 750 °C. Above this temperature, the amount of sulfur formed increased markedly and α -Fe₂O₃ was reduced to Fe₃O₄. Considering these results, the possible reactions giving the pyrrhotite were considered to be;

$$\operatorname{Fe}_{3}\operatorname{O}_{4}(s) + \operatorname{S}_{n}(g) \longrightarrow \operatorname{Fe}_{1-x}\operatorname{S}(s) + \operatorname{SO}_{2}(g),$$
 (5)

and;

$$\begin{aligned} \text{Fe}_3 \text{O}_4(\textbf{s}) + \text{C}(\textbf{s}) + \text{S}_n(\textbf{g}) &\longrightarrow \\ \text{Fe}_{1-x} \text{S}(\textbf{s}) + \text{CO}(\text{CO}_2)(\textbf{g}). \end{aligned} \tag{6}$$

Therefore, Reaction 5 was examined in a SO_2 stream. Fe_3O_4 (2.00 g) was heated in a stream of SO_2 containing a specified amount of gaseous sulfur at 700—800 °C for 1 h. The amounts of sulfur introduced were controlled so as to be the same as those obtained by the reaction between carbon and SO_2 , being 0.25 g for the experiment at 700 °C, 1.12 g at 750 °C, and 1.90 g at 800 °C.

X-Ray analyses of the samples in the boat showed them to be unreacted Fe_3O_4 alone at 700 °C, Fe_3O_4 > Fe_{1-x} S at 750 °C, and Fe_{1-x} S> Fe_3O_4 at 800 °C. From these results, it is revealed that Reaction 5 proceeds above ca. 750 °C, even in a SO_2 stream.

The chemical analysis of the pyrrhotite free from unreacted Fe_3O_4 , obtained at 800 °C for 2 h, gave Fe, $60.4_5\%$; S, 39.5%. From this result, the composition of the pyrrhotite formed by the reaction between Fe_3O_4 and sulfur was evaluated to be $Fe_{0.88}S$. This composition

agreed with that of the pyrrhotite formed by heating a mixture of α -Fe₂O₃ and carbon in a SO₂ stream.

In order to examine Reaction 6, a mixture of Fe_3O_4 (2.00 g) and carbon (1.20 g) was heated in a stream of argon containing a specified amount of gaseous sulfur at 700—800 °C for 1 h. The amount of sulfur introduced was controlled so as to be the same (1.90 g) as that obtained by the reaction between carbon and SO_2 at 800 °C. The experimental results are shown in Table 3.

Table 3. Experimental results for the reaction between $\mathrm{Fe_3O_4}$ and sulfur in the presence of Carbon

Temp/°C	Sample in the boat	Amount of SO ₂ formed/g
700	$Fe_{1-x}S\gg Fe_3O_4$	0.80
750	$\mathrm{Fe_{1-x}S} \gg \mathrm{Fe_3O_4}$	0.77
800	$Fe_{1-x}S$	0.34

Pyrrhotite and SO₂ were formed at all experimental temperatures.

From the results, it is found that the formation of pyrrhotite is due to Reaction 5, in which SO_2 is also formed. When 2.00 g of the Fe_3O_4 used is converted to $Fe_{0.88}S$ by Reaction 5, the formation of 1.11 g of SO_2 must be expected. However, the values of SO_2 formed, shown in Table 3, were less than the calculated value. This suggests that the SO_2 formed by Reaction 5 tends to react with carbon according to Reaction 1. For this reason, it is considered that carbon does not directly take part in the sulfidizing reaction, but contributes to sulfur formation by reacting with SO_2 .

From the above-mentioned experimental results, the formation process of pyrrhotite by the reaction between α -Fe₂O₃ and SO₂ in the presence of carbon can be represented as follows: (i) Reaction 1 occurs even at 350 °C to form sulfur, and the reaction markedly proceeds above ca. 700 °C. (ii) Above ca. 500 °C, α -Fe₂O₃ is reduced to Fe₃O₄ by Reactions 2 and 4. (iii) Above ca. 750 °C, Reaction 5 occurs between Fe₃O₄ and sulfur, which are formed by the reactions mentioned above, to form Fe_{0.88}S.

This result disagrees with the above-mentioned estimation of Pechkovskii and Mal'tseva²) that pyrrhotite is formed by the reaction between FeO and sulfur.

Thermodynamical Consideration. In order to discuss the present experimental results from the thermodynamical point of view, the chemical potential diagrams for the Fe-S-C-O system were constructed in a manner similar to that described by Yazawa⁹⁾ on the basis of the available thermodynamic data¹⁰⁻¹³⁾ and phase relations.¹⁴⁾ As an example, the diagram at 800 °C is shown in Fig. 2. $N_{\rm s}/N_{\rm Fe}$ represents the atomic ratio of sulfur to iron in pyrrhotite. The broken line shows the oxygen and sulfur potentials in the gas phase formed by the reaction between carbon and SO_2 , depending on the carbon content in the gas phase. The activity of carbon is unity at the dot mark. In these calculations, CO, CO₂, O₂, COS, CS₂, SO₂, SO₃, S₂, S₄, S₆, and S₈ were assumed to be gaseous products between carbon and SO₂.

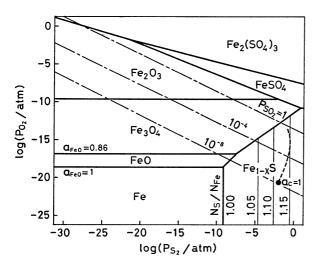


Fig. 2. Chemical potential diagram for the Fe–S–C–O system at 800 $^{\circ}$ C.

From the results shown in Fig. 2, it is clear that the reduction of Fe_2O_3 to Fe_3O_4 occurs at first when Fe_2O_3 is heated in the presence of carbon in a SO_2 stream. It is also shown that Fe_3O_4 is converted to pyrrhotite via FeO under a low pressure of SO_2 below ca. 10^{-7} atm, and that Fe_3O_4 is converted to pyrrhotite without FeO formation under a higher partial pressure of SO_2 . Considering the experimental conditions in this work, the results in Fig. 2 support the above-mentioned estimation that pyrrhotite is formed through the $Fe_2O_3 \rightarrow Fe_3O_4 \rightarrow Fe_{1-x}S$ path without any FeO formation. $Fe_{0.88}S$ $(N_s/N_{Fe} \approx 1.14)$ was obtained in this work.

This composition of pyrrhotite is in the range of values shown by the broken line in Fig. 2. From this fact, it can be said that pyrrhotite with nearly an equilibrium composition is formed in this experiment.

References

- 1) V. V. Pechkovskii, J. Appl. Chem. USSR, 30, 873 (1957).
- 2) V. V. Pechkovskii and T. G. Mal'tseva, J. Appl. Chem. USSR, 38, 1190 (1965).
 - 3) JCPDS, Powder Diffraction File, 13-534.
- 4) "Mukikagōbutsu No Gōsei [I], Shin-Zikkenkagaku-Kōza 8," ed by the Chemical Society of Japan, Maruzen, Tokyo (1976), p. 297.
 - 5) JCPDS, Powder Diffraction File, 11-614.
- 6) JCPDS, Powder Diffraction File, 17-201, 20-534, 22-358, 22-1120, 25-410.
- 7) K. I. Ushakov, O. V. Nadinskaya, I. G. Dobrochiver, and S. P. Zharova, "Fiziko-Khimicheskie Osnovy Metallurgicheskikh Protsessov," Metallugia, Moskva (1967), p. 168.
- 8) M. Wakihara, J. Nii, T. Uchida, and M. Taniguchi, Chem. Lett., 1977, 621.
 - 9) A. Yazawa, Metall. Trans., 10B, 307 (1979).
- 10) O. Kubaschewski, E. Ll. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," 4th ed, Pergamon Press (1967).
- 11) F. D. Richardson and J. H. E. Jeffes, J. Iron Steel Inst., **171**, 165 (1952).
- 12) J. M. Skaeff and A. W. Espelund, *Can. Metall. Quart.*, **12**, 445 (1973).
- 13) L. S. Darken and R. W. Gurry, J. Am. Chem. Soc., 67, 1398 (1945).
- 14) E. M. Levin and H. F. McMurdie, "Phase Diagram for Ceramists, 1975 Supplement," Am. Ceram. Soc., (1975), p. 412.