FULL PAPER

Synthesis and characterisation of neutral dialkylaluminium complexes stabilised by salicylaldiminato ligands, and their conversion to monoalkylaluminium cations †

Paul A. Cameron, Vernon C. Gibson,* Carl Redshaw, John A. Segal, Gregory A. Solan, Andrew J. P. White and David J. Williams

Department of Chemistry, Imperial College, South Kensington, London, UK SW7 2AY

Received 22nd January 2001, Accepted 8th March 2001

First published as an Advance Article on the web 3rd April 2001 Treatment of the salicylaldimine ligands $3,5-Bu_2^t-2-(OH)C_6H_2CHNR$ [R = $2,6-Me_2C_6H_3$ (1a), $2,6-Pr_2^iC_6H_3$ (1b), $3,5-(CF_3)_2C_6H_3$ (1c), $4-(NO_2)C_6H_4$ (1d), $4-ClC_6H_4$ (1e), 1-naphthyl (1f), Bu^t (1g)] with Me₃Al in toluene yields, after work-up, the highly crystalline (except 2c - an oil) complexes {3,5-Bu^t,-2-(O)C₆H₃CH=NR}AlMe₂ [R = 2,6-Me₂C₆H₃ (2a), 2,6-Prⁱ₂C₆H₃ (2b), 3,5-(CF₃)₂C₆H₃ (2c), 4-(NO₂)C₆H₄ (2d), 4-ClC₆H₄ (2e), 1-naphthyl (2f), Bu^t (2g)] respectively. Reaction of these systems with $B(C_6F_5)_3$ in the presence of THF leads smoothly to [$\{3,5-Bu_2^t-2-(O)C_6H_2CH=NR\}$ - $AIMe(THF)]^{+}[R = 2,6-Me_{2}C_{6}H_{3}(3a), 2,6-Pr_{2}C_{6}H_{3}(3b), 3,5-(CF_{3})_{2}C_{6}H_{3}(3c), 4-(NO_{2})C_{6}H_{4}(3d), 4-CIC_{6}H_{4}(3e), 4-(NO_{2})C_{6}H_{4}(3c), 4-(NO_{2})C_{6}H_{4}(3c$ 1-naphthyl (**3f**), Bu^t (**3g**)], as the B(C_6F_5)₃Me⁻ salts. By contrast, the same reaction performed in dichloromethane solution without THF gives complex mixtures: the NMR spectrum of the product mixture obtained from the reaction of 2g with $B(C_6F_5)_4$ in CD₂Cl₂ indicated, *inter alia*, the presence of both {3,5-Bu^t₂-2-(O)C₆H₂CH=NBu^t₃-AlMe(C_6F_5)] and B(C_6F_5)₂Me. Compounds **2a** and **2b** have been characterised by single crystal X-ray structure determinations and shown to have virtually identical conformations. In both systems there is a marked distortion in the tetrahedral geometry at the aluminium centre.

Introduction

Organoaluminium complexes are currently generating considerable interest due to their increasing role in polymerisation chemistry, e.g., in cationic,1,2 anionic3-6 and ring-opening7 polymerisation, and as cocatalysts/activators in transition metal-catalysed olefin polymerisation.⁸ In addition, neutral aluminium alkyls have long been known to promote the oligomerisation of ethylene to α -olefins at elevated temperature and pressure.9 More recently, cationic aluminium alkyls have been shown to polymerise ethylene under mild conditions.^{10,11} These polymerisation-active cationic aluminium alkyls are stabilised by means of monoanionic ligands, namely the bidentate N,Namidinate ligand and the tridentate N,N,N pyridylimineamide ligand as reported by Jordan et al.¹⁰ and ourselves¹¹, respectively. We have subsequently described¹² an extension of this work to include a series of aluminium alkyl cations employing tridentate O,N,N and O,N,O Schiff base ligands derived from salicylaldimine and bearing a pendant donor arm joined at the imine nitrogen. These monoalkylaluminium cations, which are formed from the corresponding neutral dialkylaluminium systems, were similarly found to be active in the polymerisation of ethylene.

The readily accessible potentially bidentate salicylaldimine ligand family is closely related to the tridentate family referred to above but, by having no pendant arm, the former constitutes a simpler N,O ligand type. In our programme directed at stabilising both mono- and di-alkylaluminium systems we decided to target these simpler chelates. We noted in an earlier communication¹² that it appeared possible to employ the N,O bidentate ligands to stabilise cationic monoalkylaluminium species provided they were used in conjunction with an independent donor ligand such as THF. Here we report the synthesis and characterisation of a series of neutral aluminium alkyls stabilised by bidentate salicylaldimine ligands and the conversion of these to the corresponding THF-coordinated monoalkylaluminium cations

Results and discussion

All of the salicylaldimine ligands studied were prepared in good yields (61-95%) as yellow to orange crystalline solids by condensation of 3,5-di-tert-butyl-4-hydroxybenzaldehyde with the appropriate aniline in refluxing ethanol in the presence of a catalytic amount of formic acid. Satisfactory elemental analyses were obtained for all of the ligands. Spectroscopic data are consistent with the formulations depicted in Scheme 1.

The ¹H NMR spectra of **1a–1g** in C₆D₆ exhibit resonances in the region δ 7.60–8.13 for the imine CH proton, with the corresponding ¹³C NMR signals occurring in the range δ 161.1– 168.4. Ligands 1a-1g also display two characteristic doublets $({}^{4}J(HH)$ ca. 2.5 Hz) in the ¹H NMR for the aromatic ring protons of the But₂C₆H₂(OH)CHNR ring, whilst the phenolic protons appear as low field resonances in the region δ 13.1– 14.9. The infrared absorption band of the imine is clearly visible between 1587 and 1655 cm⁻¹, and molecular ion peaks are observed in the EI mass spectrum for all of the compounds.

Reaction of these new ligands 1a-1g with Me₃Al (one equivalent) in toluene at ambient temperature affords, after work-up, the corresponding highly crystalline yellow to orange/ red complexes {3,5-Bu $_2^t$ -2-(O)C₆H₂CH=NR}AlMe₂, 2a-2g; the exception is the $3,5-(CF_3)_2C_6H_2$ derivative 2c which is an orange oil (see Scheme 1). The complexes are presumed to form via formal loss of methane, and their spectroscopic data indicate that all are constituted similarly to the crystallographically characterised examples (vide infra).

Crystals of 2a and 2b suitable for X-ray analysis were grown from acetonitrile at room temperature. The structures of 2a and

[†] Electronic supplementary information (ESI) available: further synthetic details and characterisation for ligands and for aluminium compounds and cations. See http://www.rsc.org/suppdata/dt/b1/b100743m/

	2a	2b		2a	2b	
Al–O	1.755(3)	1.773(3)	Al–N	1.972(3)	1.972(3)	
Al-C(1)	1.950(5)	1.959(5)	Al-C(2)	1.960(5)	1.948(5)	
O-C(3)	1.319(5)	1.321(4)	N-C(9)	1.285(5)	1.300(5)	
N-C(10)	1.457(5)	1.460(5)	C(3) - C(4)	1.411(5)	1.413(5)	
C(4)–C(9)	1.433(6)	1.442(5)				
O-Al-C(1)	111.8(2)	114.0(2)	O-Al-N	93.9(2)	93.6(1)	
O-Al-C(2)	111.8(2)	110.4(2)	C(1)–Al–N	111.8(2)	109.7(2)	
C(2)–Al–N	111.2(2)	112.2(2)	C(3) - O - Al	133.5(3)	132.2(2)	
C(1)-Al- $C(2)$	114.5(3)	115.1(2)	C(9)-N-Al	121.9(3)	122.6(3)	
C(9) - N - C(10)	117.4(3)	117.2(3)	O-C(3)-C(4)	120.7(4)	121.3(3)	
C(10)-N-Al	120.7(3)	120.3(2)	N-C(9)-C(4)	127.7(4)	126.8(4)	
C(3) - C(4) - C(9)	122.2(4)	122.0(3)	. / . /		. /	

Scheme 1 Reagents: (i) AlMe₃, C₇H₈; (ii) B(C₆F₅)₃, THF in C₆D₆ or C₇H₈.

Fig. 1 The molecular structure of 2b (that of 2a has an essentially identical conformation) showing also the weak $C-H \cdots N(p\pi)$ stabilising interactions; the $H \cdots N$ distances (Å) and $C-H \cdots N$ angles (°) are a, 2.46, 109; b, 2.48, 108.

2b show the complexes to have virtually identical geometries, the principal difference being in the relative orientations of the *tert*-butyl groups – Fig. 1. In both structures the aluminium centre has a distorted tetrahedral geometry with angles ranging between 93.9(2) and 114.5(3)° in **2a** and 93.6(1) and 115.1(2)° in **2b**, the most "acute" angle in each case being associated with the bite of the chelating ligand (Table 1). The chelate ligand in each structure binds to the aluminium in an unsymmetrical fashion with the bond to the oxygen atom being typical of an alkoxide [1.755(3) and 1.773(3) Å in **2a** and **2b** respectively], whilst that to the imino nitrogen atom is, as expected, appreciably longer at 1.972(3) Å in each complex. In both structures the chelate C=N bond retains its double bond character, being 1.285(5) Å in **2a** and 1.300(5) Å in **2b**. There are small differences in the geometries of the six-membered chelate rings in the

two structures with that in **2b** having a slightly folded, sofa conformation (the aluminium atom lying 0.17 Å out of the plane of the other five atoms which are co-planar to within 0.04 Å) whereas in **2a** the chelate ring is essentially planar (the maximum deviation from planarity being only 0.02 Å).

In both structures the pendant 2,6-dialkylphenyl rings are oriented virtually orthogonally (89°) to the plane of the sixmembered metallocyclic ring. There is evidence in **2b** that this conformation is stabilised by a pair of weak C–H ··· N($p\pi$) interactions between the isopropyl methine hydrogen atoms and the non-bonding p orbitals of the ring nitrogen atom (linkages **a** and **b** in Fig. 1).¹³ In neither structure are there any notable intermolecular interactions, the packing being dominated by the hydrophobic methyl and *tert*-butyl groups resulting in very low packing densities ($D_c = 1.047$ and 1.053 g cm⁻³ in **2a** and **2b** respectively).

The ¹H NMR spectra (in C_6D_6) of compounds **2a–2g** exhibit resonances in the region δ 7.05–7.83 due to the imine groups, with corresponding ¹³C NMR signals between δ 169.1 and 174.8. Characteristic Al–Me signals appear in the region δ –0.20 to –0.36 in the ¹H NMR, and δ –6.4 to –9.1 in the ¹³C NMR. The NMR data for the structurally characterised systems **2a** and **2b** indicate that the solid state forms remain essentially unchanged in solution. The infrared absorption band for the imine C=N stretches of **2a–2g** occur in the region 1613–1618 cm⁻¹. Satisfactory elemental analyses were obtained for all the compounds.

Arene solutions of the dimethyl complexes **2a–2g**, when treated sequentially with one equivalent of tetrahydrofuran and then with one equivalent of $B(C_6F_5)_3$, were observed to separate into two layers. Isolation of the lower layer and evaporation of this to dryness yielded the cationic systems [{3,5-But}_2-2-(O)C_6H_2CH=NR}AlMe(THF)]⁺, **3a–3g**, with [MeB(C₆F₅)₃]⁻ as

the counter ion (see Scheme 1). It was also found possible to generate the cations by adding the THF donor after the addition of B(C₆F₅)₃, but the cleanest products were obtained when the donor was added first. However, in the absence of the THF donor, no immediate reaction was observed, e.g. when 2b and $B(C_6F_5)_3$ were mixed in C_6D_6 solution at ambient temperature. In CD₂Cl₂, by contrast, all of 2a-2g reacted rapidly with $B(C_6F_5)_3$ to form complex mixtures. For example, the ¹H NMR spectrum of a solution of 2g and $B(C_6F_5)_3$ in CD_2Cl_2 (after standing for 24 hours at ambient temperature) revealed inter alia a high field triplet at $\delta - 0.31 [J(HF) 1.5 Hz]$ characteristic of an Al-Me resonance coupled to the a-fluorines of a coordinated C₆F₅ group. This suggests the presence of the species $\{3,5-Bu_2^t-2-(O)C_6H_2CH=NBu^t\}AlMe(C_6F_5)$ which is formed, presumably, by abstraction of a C_6F_5 group from $[B(C_6F_5)_3Me]^-$ by the first-formed coordinatively unsaturated and therefore highly reactive cationic intermediate (i.e. not having the THF donor to stabilise it). Further evidence for the abstraction of a C₆F₅ group is the appearance of a quintet in the same ¹H NMR spectrum at δ 1.33 [J(HF) 1.8 Hz] which is assigned to the methyl of the resulting $MeB(C_6F_5)_2$, this methyl being coupled to the four equivalent α -fluorines of the C₆F₅ groups. Our observations parallel those of Smith and coworkers ¹⁴ for the similar reaction of the β -diketiminato complex $[(2,6-Pr_{2}^{i}C_{6}H_{3})NC(Me)CHC(Me)N(2,6-Pr_{2}^{i}C_{6}H_{3})]A1Me_{2}$ with $B(C_6F_5)_3$, in the absence of a donor, which led to the isolation and characterisation of the analogous [ligand]-AlMe(C_6F_5) system.

The THF coordinated aluminium methyl cations, 3a-3g, were formed in high purity, as demonstrated by their ¹H, ¹³C (and in some cases ¹⁹F) NMR spectra recorded in CD₂Cl₂. Crystalline materials were however not obtained. A typical ¹H NMR spectrum is shown in Fig. 2 (i.e. as obtained for 3e). The ¹H NMR spectra of this series of cations have the imine resonance appearing in the range δ 8.74 to 8.41 and the resonance of the remaining aluminium methyl in the range $\delta - 0.16$ to -0.43; the corresponding ¹³C NMR signals lie between δ 174.8 and 179.9 and between δ -10.9 and -14.5 respectively. A comparison of the ¹H NMR spectra of *e.g.* 2a and 3a (both run in CD₂Cl₂) shows that the resonances for the cation are shifted downfield relative to the corresponding resonances for the neutral AlMe₂ precursor compound, with the largest shift being that for the Al–Me resonance (from δ –0.83 to –0.43). This effect is ascribed principally to the presence of the positive charge in **3a**. The methyl resonance of $[B(C_6F_5)_3Me]^-$ in **3a–3g**, which is broadened by the boron quadrupole, is seen in the range δ 0.39 to 0.44, as is anticipated for the free ion.¹⁵ This observation supports our formulation of the complexes as separated ions as opposed to the ion pairs (i.e. with Al · · · Me-B association) observed by Coles and Jordan.¹⁶ Moreover, the fact that the positions of the broad BMe ¹³C resonance (at *ca.* δ 10.4) and the C₆F₅ ¹⁹F resonances (at δ -135.5, -167.5, -170.0) in the anion are virtually identical throughout the series is further evidence that this charge separated arrangement occurs in all the products **3a-3g**.

When excess THF is added to CD_2Cl_2 solutions of the cations **3a–3g**, the original two resonances of the coordinated THF are replaced by two more intense resonances shifted towards those of free THF (*i.e.* δ 3.68, 1.82 in CD_2Cl_2). With **3c**, for example, a 1.5 molar excess of THF led to a shift in the resonance positions from δ 4.21, 2.15 to δ 3.90, 1.95. The fact that only one set of resonances is seen in the presence of excess THF implies that a rapid intermolecular exchange process occurs between the bound and the free ligand. This behaviour demonstrates the highly labile nature of the coordinated THF which we anticipate will be important in chemical processes involving these cationic species.

Concluding remarks

This work provides an extension of our earlier study¹² of aluminium alkyl systems employing salicylaldiminate ligands bearing pendant donor arms. Here we have shown that it is possible to access cleanly and in high yield a family of cationic aluminium alkyls bearing an independent donor ligand (THF), as opposed to one that is pendant to the salicylaldiminate group. The synthetic pathway is crucial to the successful isolation of these bidentate cationic alkylaluminium species; the reactions are best carried out by addition of one mole equivalent of THF to the neutral precursor in an aromatic solvent prior to the addition of $B(C_6F_5)_3$. In the absence of the donor ligand, abstraction of C₆F₅ by the electron-deficient aluminium centre occurs. The ability to use an independent rather than a pendant donor group to stabilise the (L,X)AlMe⁺ system broadens appreciably the scope and potential of the original study as now, clearly, a much wider array of other potential donors may be employed. We are currently exploring the role of these cations and their derivatives in facilitating various polymerisation processes; the results of these studies will be presented elsewhere.

Experimental

General

All manipulations were carried out under an atmosphere of dry nitrogen either using standard Schlenk and cannula techniques, or in a conventional nitrogen-filled glove-box. Solvents were refluxed over an appropriate drying agent, and distilled and degassed prior to use. Elemental analyses were performed by the microanalytical services of the Department of Chemistry at Imperial College or by Medac Ltd. ¹H, ¹³C and ¹⁹F NMR spectra were recorded in C₆D₆ for the ligands and neutral compounds (unless stated otherwise), and in CD₂Cl₂ for the cationic complexes, on Bruker DRX400 or AC250 machines at ambient temperature; chemical shifts were referenced to the residual protio impurity of the deuterated solvent; ¹³C chemical shift assignments were based on DEPT experiments. Infrared spectra (Nujol mulls, KBr/CsI windows) were run on Perkin-Elmer 577 and 457 grating spectrophotometers and mass spectra were measured either on a VG Autospec or a VG Platform II spectrometer. Selected synthetic details are given below, the remainder are supplied as ESI. †

Preparation of ligands

3,5-Bu'₂-2-(OH)C₆H₂CHN-2,6-Me₂C₆H₃ (1a). 2,6-Dimethylaniline (5.72 cm³, 46.4 mmol) was added *via* syringe to a solution of 3,5-di-*tert*-butyl-4-hydroxybenzaldehyde (10.88 g, 46.4 mmol) in EtOH (120 cm³). Formic acid (5 drops) was added, and the solution refluxed for 20 h. The resulting solution was dried over MgSO₄ and filtered. Slow concentration of the EtOH solution yielded large yellow plates of **1a**. Yield 14.47 g, 92%. Found C 81.6; H 9.0; N 4.2%; C₂₃H₃₁NO requires C 81.9; H 9.3; N 4.2%. IR/cm⁻¹: 3375w, br (O–H stretch), 1774m, 1748s, 1705s, 1655m (C=N stretch), 1625s, 1588s, 1312m, 1287m, 1274s, 1252s, 1216s, 1193s, 1171s, 1133m, 1095m, 1026m, 979m, 919w, 887w, 863s, 825s, 803s, 768s, 734m, 646m, 602m. ¹H NMR: δ 13.84 (br s, 1H, -OH), 7.66 (s, 1H, CH=N), 7.65 [d, 1H, ^{4}J (HH) 2.5 Hz, OAr–H], 6.99 [d, 1H, ^{4}J (HH) 2.5 Hz, OAr–H], 6.94–6.91 (m, 3H, NAr–H), 1.97 (s, 6H, Ar–CH₃), 1.65 [s, 9H, C(CH₃)₃], 1.33 [s, 9H, C(CH₃)₃]. ¹³C NMR: δ 168.4 (CH=N), 158.1, 148.9, 140.9, 137.6, 128.6, 128.4, 127.6, 127.2, 125.0, 118.8 (all Ar–C), 35.5 [C(CH₃)₃], 34.3 [C(CH₃)₃], 31.7 [C(CH₃)₃], 29.8 [C(CH₃)₃], 18.4 (NAr–CH₃). MS (EI, *m/z*) 337 [M]⁺, 322 [M – CH₃]⁺.

3,5-Bu¹₂-2-(OH)C₆H₂CHN-2,6-Prⁱ₂C₆H₃ (1b). 2,6-Diisopropylaniline (4.19 cm³, 22.2 mmol) was added via syringe to a solution of 3,5-di-tert-butyl-4-hydroxybenzaldehyde (5.21 g, 22.2 mmol) in EtOH (100 cm³). Formic acid (5 drops) was added, and the solution refluxed for 20 h. The solution was dried over MgSO₄, filtered, and the volatiles removed under reduced pressure. Extraction into pentane (5 cm³) followed by cooling to -30 °C afforded yellow crystals of **1b**. Yield 5.30 g, 61%. Found C 82.5; H 10.0; N 3.4%; C₂₇H₃₉NO requires C 82.4; H 10.0; N 3.4%. IR/cm⁻¹: 3397w, br (O-H stretch), 1776m, 1749m, 1705s, 1654m, 1624s (C=N stretch), 1586s, 1322m, 1274s, 1251s, 1231m, 1203s, 1169s, 1133m, 1109m, 1058m, 1043m, 1026m, 980m, 933m, 881m, 862s, 823m, 796s, 773m, 758s, 731m, 720m, 644w, 603w. ¹H NMR: δ 13.94 (br s, 1H, -OH), 7.98 (s, 1H, CH=N), 7.64 [d, 1H, ⁴J(HH) 2.5 Hz, OAr-H], 7.14-7.10 (m, 3H, NAr-H), 7.09 [d, 1H, ⁴J(HH) 2.5 Hz, OAr-H], 3.02 [sept., 2H, ³J(HH) 6.9 Hz, CH(CH₃)₂], 1.64 [s, 9H, C(CH₃)₃], 1.30 [s, 9H, C(CH₃)₃], 1.06 [d, 12H, ³J(HH) 6.9 Hz, CH(CH₃)₂]. ¹³C NMR: δ 168.4 (CH=N), 159.2, 147.1, 141.0, 139.1, 137.8, 127.2, 127.1, 125.7, 123.5, 118.6 (all Ar-C), 35.5 [C(CH₃)₃], 34.3 [C(CH₃)₃], 31.6 [C(CH₃)₃], 29.8 [C(CH₃)₃], 28.5 [CH(CH₃)₂], 23.5 [CH(CH₃)₂]. MS (EI, m/z) 393 [M]⁺, 378 $[M - CH_3]^+$

Preparation of complexes

{3,5-Bu¹₂-2-(O)C₆H₂CH=N-2,6-Me₂C₆H₃}AlMe₂ (2a). Trimethylaluminium (2.0 M, 1.60 cm³, 3.2 mmol) was added dropwise to a solution of **1a** (1.05 g, 3.11 mmol) in toluene (30 cm³) at -78 °C. The reaction was allowed to warm to room temperature and then stirred for 12 h. Volatiles were removed in vacuo, and the product was extracted into hot MeCN (20 cm³). Filtration followed by cooling to room temperature afforded large golden blocks of 2a. Yield 0.87 g, 71%. Found C 75.9; H 9.1; N 3.7%. C₂₅H₃₆AlNO requires C, 76.3; H 9.2; N 3.6%. IR/ cm⁻¹: 1613s, 1598s, 1588s, 1555s, 1540s, 1408m, 1359m, 1336m, 1323m, 1279m, 1257s, 1237m, 1211m, 1199m, 1173s, 1137m, 1097m, 1025w, 996w, 966w, 927w, 918w, 878m, 857s, 813w, 783m, 768s, 760m. ¹H NMR: δ 7.72 [d, 1H, ⁴J(HH) 2.6 Hz, OAr-H], 7.17 (s, 1H, CH=N), 6.92-6.80 (m, 3H, NAr-H), 6.71 [d, 1H, ⁴J(HH) 2.6 Hz, OAr-H], 1.97 (s, 6H, Ar-CH₃), 1.60 [s, 9H, C(CH₃)₃], 1.28 [s, 9H, C(CH₃)₃], -0.32 (s, 6H, Al-CH₃). ¹H NMR (CD₂Cl₂): δ 8.07 (s, 1H, CH=N), 7.61 [d, 1H, ⁴J(HH) 2.6 Hz, OAr-H], 7.15 (m, 3H, NAr-H), 7.05 [d, 1H, 4J(HH) 2.6 Hz, OAr–H], 2.22 (s, 6H, Ar–CH₃), 1.44 [s, 9H, C(CH₃)₃], 1.30 [s, 9H, C(CH₃)₃], -0.83 (s, 6H, Al–CH₃). ¹³C NMR: δ 174.8 (CH=N), 163.0, 145.2, 141.3, 139.3, 133.0, 131.9, 129.4, 129.0, 127.3, 119.1 (all Ar-C), 35.6 [C(CH₃)₃], 34.2 [C(CH₃)₃], 31.5 [C(CH₃)₃], 29.6 [C(CH₃)₃], 18.5 (NAr-CH₃), -8.5 (Al-CH₃). MS (EI, m/z) 379 [M - CH₃]; (CI, NH₄⁺) 395 [M - CH₃ + NH_4]⁺, 378 [M - CH₃ + H]⁺.

 ${3,5-Bu'_{2}-2-(O)C_{6}H_{2}CH=N-2,6-Pr'_{2}C_{6}H_{3}}AIMe_{2}$ (2b). Trimethylaluminium (2.0 M, 1.30 cm³, 2.6 mmol) was added

dropwise to a solution of 1b (1.00 g, 2.54 mmol) in toluene (30 cm³). The reaction was stirred at room temperature for 12 h and then the volatiles were removed in vacuo. The product was extracted into hot MeCN (10 cm³). Filtration and cooling to room temperature afforded 2b as bright yellow crystals. Yield 0.99 g, 87%. Found C 77.6; H 9.6; N 3.1%. C₂₉H₄₄AlNO requires C 77.5; H 9.9; N 3.1%. IR/cm⁻¹: 1614s, 1598s, 1587s, 1557m, 1541s, 1407m, 1364s, 1321s, 1276m, 1256s, 1235m, 1202m, 1190m, 1170s, 1134m, 1109m, 1097m, 1057m, 1043m, 1029m, 935m, 921m, 889w, 876m, 854m, 800m, 785m, 764s, 723m, 700m, 678s, 659m, 641m, 608m, 544w, 525w.¹H NMR: δ 7.85 (s, 1H, *p*-NAr-*H*), 7.73 [d, 1H, ⁴*J*(HH) 2.5 Hz, OAr-*H*], 7.15-7.0 (m, 2H, NAr-H), 7.05 (s, 1H, CH=N), 6.91 [d, 1H, ⁴J(HH) 2.6 Hz, OAr-H], 3.16 [sept., 2H, ³J(HH) 6.8 Hz, CH(CH₃)₂], 1.59 [s, 9H, C(CH₃)₃], 1.25 [s, 9H, C(CH₃)₃], 1.19 [d, 6H, ³J(HH) 6.8 Hz, CH(CH₃)₂], 0.81 [d, 6H, ³J(HH) 6.8 Hz, $CH(CH_{3})_{2}], -0.27$ (s, 6H, Al-CH₃). ¹³C NMR: δ 174.5 (CH=N), 163.2, 142.83, 142.76, 141.6, 139.8, 133.3, 129.0, 124.5, 118.8 (all Ar-C, one peak obscured), 35.7 [C(CH₃)₃], 34.1 [C(CH₃)₃], 31.3 [C(CH₃)₃], 29.6 [C(CH₃)₃], 28.4 [CH(CH₃)₂], 25.8 [CH(CH₃)₂], 22.8 [CH(CH₃)₂], -9.0 (Al-CH₃).MS (EI, m/z) 434 [M - CH₃]⁺.

Preparation of cations

[{3,5-Bu^t₂-2-(O)C₆H₂CH=N-2,6-Me₂C₆H₃}AlMe(THF)]⁺ $[B(C_6F_5)_3Me]^-$ (3a). The compound 2a (23.6 mg, 0.06 mmol) was dissolved in C₆D₆ (0.5 ml). THF (4.86 µl, 0.06 mmol) was added to the solution via syringe and then a solution of B(C₆F₅)₃ (30.72 mg, 0.06 mmol) in C₆D₆ (0.8 ml) was added dropwise; this caused the formation of two layers. The solution of the aluminium compound was agitated during the addition. Residual $B(C_6F_5)_3$ was washed into the reaction solution using C_6D_6 (0.6 ml). The resulting mixture was shaken briefly and was then left to stand for 20 minutes. After this period the upper layer was carefully separated and discarded. The lower layer was evaporated to dryness leaving a yellow foam (37 mg). ¹H NMR: δ 8.44 (s, 1H, CH=N), 7.91 [d, 1H, ⁴J(HH) 2.5 Hz, C_6H_2], 7.30 [d, 1H, 4J (HH) 2.5 Hz, C_6H_2], 7.30 (m, 3H, C₆H₃Me₂), 4.25 (m, 4H, OCH₂CH₂), 2.21 (m, 4H, OCH₂CH₂), 2.19 [s, 6H, C₆H₃(CH₃)₂], 1.49 (s, 9H, C₄H₉), 1.32 (s, 9H, C₄H₉), 0.45 (br s, 3H, BCH₃), -0.43 (s, 3H, AlCH₃). ¹³C NMR: δ (cation part only) 179.86 (CH=N), 160.53, 144.08, 141.25, 118.88 [four quaternary resonances of C₆H₂Bu^t₂(O)C ring], 141.98 (one quaternary of C₆H₃Me₂ ring, the other is obscured), 137.30, 131.38 [2 CH resonances of C₆H₂Bu^t₂(O)C ring], 130.26, 129.45 (two CH resonances of C₆H₃Me₂N ring), 75.76 (OCH₂), 35.69 (CMe₃), 34.65 (CMe₃), 31.03 [C(CH₃)₃], 29.57 [C(CH₃)₃], 25.70 (OCH₂CH₂), 18.46 [C₆H₃(CH₃)₂], -14.50 (br, AlCH₃), also CH₃B of anion seen as broad resonance at δ 10.3. ¹⁹F NMR: δ –135.5 (6F, BC₆F₅), –167.6 (3F, BC₆*F*₅), -170.2 (6F, BC₆*F*₅).

$[{3,5-Bu_2^t-2-(O)C_6H_2CH=N-2,6-Pr_2^tC_6H_3}AlMe(THF)]^+$

[**B**(**C**₆**F**₅)₃**Me**]⁻ (**3b**). This complex was prepared similarly to **3a** but using **2b** (27.0 mg, 0.06 mmol) and toluene was used in place of benzene-d₆. ¹H NMR: δ 8.41 (s, 1H, *CH*=N), 7.91 [d, 1H, ⁴*J*(HH) 2.5 Hz, C₆*H*₂], 7.49 [dd, 1H, ³*J*(HH) 8.7 Hz, ³*J*(HH) 6.7 Hz, C₆*H*₃**Pr**ⁱ₂], 7.36 [d, 1H, ³*J*(HH) 8.7 Hz, C₆*H*₃**Pr**ⁱ₂], 7.36 [d, 1H, ³*J*(HH) 8.7 Hz, C₆*H*₃**Pr**ⁱ₂], 7.36 [d, 1H, ³*J*(HH) 8.7 Hz, C₆*H*₃**Pr**ⁱ₂], 7.36 [d, 1H, ³*J*(HH) 6.7 Hz, C₆*H*₃**Pr**ⁱ₂], 7.26 [d, 1H, ⁴*J*(HH) 2.5 Hz, C₆*H*₂], 4.25 (m, 4H, OCH₂), 2.68 (sept., 2H, ³*J*(HH) 6.8 Hz, CHMe₂), 2.21 (m, 4H, OCH₂C*H*₂), 1.49 (s, 9H, C₄*H*₉), 1.32 (s, 9H, C₄*H*₉), 1.32 [d, 6H, ³*J*(HH) 6.8 Hz, CH(C*H*₃)₂], 1.14 [d, 6H, ³*J*(HH) 6.8 Hz, CH(C*H*₃)₂], 0.44 (br s, 3H, BC*H*₃), -0.37 (s, 3H, AlCH₃). ¹³C NMR: δ (cation part only) 179.02 (CH=N), 160.61, 144.38, 141.32, 118.51 [four quaternary resonances of C₆H₂Bu^t₂(O)C ring], 130.42, 125.57 (2 CH resonances of C₆H₂Bu^t₂O)C ring], 130.42, 125.57 (2 CH resonances of C₆H₃Prⁱ₂N ring), 129.32, 128.52 (two quaternary resonances of C₆H₃Prⁱ₂N ring), 75.82 (OCH₂), 35.74 (CMe₃), 34.71

(CMe₃), 31.05 [C(CH₃)₃], 29.62 [C(CH₃)₃], 29.33 (CHMe₂), 26.00 [(CH(CH₃)₂], 25.69 (OCH₂CH₂), 22.76 [(CH(CH₃)₂], -14.52 (br, AlCH₃), also CH₃B of anion seen as broad resonance at δ 10.3.

Crystallography

Crystal data for **2a**: C₂₅H₃₆NOAl, M = 393.5, orthorhombic, *Pbca* (no. 61), a = 13.865(2), b = 15.721(3), c = 22.912(4) Å, V = 4994(1) Å³, Z = 8, $D_c = 1.047$ g cm⁻³, μ (Mo-K α) = 0.95 cm⁻¹, T = 293 K, orange prisms; 4355 independent measured reflections, F^2 refinement, $R_1 = 0.066$, $wR_2 = 0.141$, 2118 independent observed reflections [$|F_o| > 4\sigma(|F_o|)$], $2\theta \le 50^\circ$], 254 parameters.

Crystal data for **2b**: $C_{29}H_{44}$ NOAl, M = 449.6, orthorhombic, $P2_12_12_1$ (no. 19), a = 9.316(2), b = 10.277(1), c = 29.617(1) Å, V = 2835.5(6) Å³, Z = 4, $D_c = 1.053$ g cm⁻³, μ (Cu-K α) = 7.52 cm⁻¹, T = 203 K, yellow plates; 2616 independent measured reflections, F^2 refinement, $R_1 = 0.052$, $wR_2 = 0.129$, 2257 independent observed reflections [$|F_o| > 4\sigma(|F_o|)$, $2\theta \le 126^\circ$], 290 parameters. The absolute structure was determined by a combination of *R*-factor tests [$R_1^+ = 0.0524$, $R_1^- = 0.0531$] and by use of the Flack parameter [$x^+ = +0.22(8)$, $x^- = +0.78(8)$]. CCDC reference numbers 157073 and 157074. See http://www.rsc.org/suppdata/dt/b1/b100743m/ for crystallographic data in CIF or other electronic format.

Acknowledgements

ICI, BP-Amoco, The Leverhulme Trust (Special Research Fellowship to CR) and the Royal Society (Industry Fellowship to JAS) are thanked for financial support.

References

1 Cationic Polymerisations: Mechanisms, Synthesis and Applications, ed. K. Matyjaszewski, Marcel Dekker, New York, 1996.

- 2 M. Bochmann and D. M. Dawson, Angew. Chem., Int. Ed. Engl., 1996, 35, 2226.
- 3 M. Kuroki, T. Aida and S. Inoue, J. Am. Chem. Soc., 1987, 109, 4737; M. Kuroki, T. Watanabe, T. Aida and S. Inoue, J. Am. Chem. Soc., 1991, 113, 5903.
- 4 D. Mardare, K. Matyjaszewski and S. Coca, *Macromol. Rapid* Commun., 1994, **15**, 37.
- 5 M. Dimonie, D. Mardare, S. Coca, V. Dragutan and I. Ghiviriga, Macromol. Rapid Commun., 1992, 13, 283.
- 6 F. Coslédan, P. B. Hitchcock and M. F. Lappert, *Chem. Commun.*, 1999, 705.
- 7 See e.g. S. Inoue, J. Polym. Sci., Part A: Polym. Chem., 1998, 21, 3114 and refs therein; J. A. Jegier and D. A. Atwood, Inorg. Chem., 1997, 36, 2034.
- 8 For recent reviews see: W. Kaminsky, J. Chem. Soc., Dalton Trans., 1998, 1413; R. M. Waymouth, Chem. Rev., 1998, 98, 2587; G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., Int. Ed., 1999, 38, 428.
- 9 (a) K. Ziegler and H. G. Gellert, *Justus Liebigs Ann. Chem.*, 1950, 567, 195; (b) W. A. Skinner, E. Bishop, P. Cambour, S. Fuqua and P. Lim, *Ind. Eng. Chem.*, 1960, 52, 695; (c) J. Skupinska, *Chem. Rev.*, 1991, 91, 613; A. M. Al-Jarallah, J. A. Anabtawi, M. A. B. Siddiqui and A. W. Al-Sa'doun, *Catal. Today*, 1992, 14, 42.
- 10 (a) M. P. Coles and R. F. Jordan, J. Am. Chem. Soc., 1997, 119, 8125; (b) E. Ihara, V. G. Young, Jr and R. F. Jordan, J. Am. Chem. Soc., 1998, 120, 8277; (c) S. Dagorne, I. A. Guzei, M. P. Coles and R. F. Jordan, J. Am. Chem. Soc., 2000, 122, 274.
- 11 M. Bruce, V. C. Gibson, C. Redshaw, G. A. Solan, A. J. P. White and D. J. Williams, *Chem. Commun.*, 1998, 2523.
- 12 P. A. Cameron, V. C. Gibson, C. Redshaw, J. A. Segal, M. D. Bruce, A. J. P. White and D. J. Williams, *Chem. Commun.*, 1999, 1883.
- 13 This has been observed previously, see: P. N. Jagg, P. F. Kelly, H. S. Rzepa, D. J. Williams, J. D. Woollins and W. Wylie, *J. Chem. Soc., Chem. Commun.*, 1991, 942; V. C. Gibson, C. Newton, C. Redshaw, G. A. Solan, A. J. P. White and D. J. Williams, *Eur. J. Inorg. Chem.*, in press.
- 14 B. Qian, D. L. Ward and M. R. Smith, III, *Organometallics*, 1998, 17, 3070.
- 15 X. Yang, C. L. Stern and T. J. Marks, J. Am. Chem. Soc., 1994, 116, 10015.
- 16 M. P. Coles and R. F. Jordan, J. Am. Chem. Soc., 1997, 119, 8125.