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ABSTRACT

UVA irradiation (ca. 350 nm) of a mixture of cyclic enones and nitrogen heterocycles leads to efficient formation of the 1,4-adducts in a variety
of solvents, at room temperature. These reactions likely proceed through strained E-cycloalkenone intermediates, as suggested by low-
temperature generation/trapping experiments monitored by 1H NMR. These results demonstrate that E-cycloalkenones are good electrophiles
despite their known tendency to favor a conformation in which the carbonyl is not fully conjugated with the double bond.

Strained organic molecules often display high reactivity,
consistent with high ground-state energy and low-activation
energy for a variety of transformations.1 Six- to eight-
memberedE-cycloalkenes2 and E-cycloalkenones,3 highly
reactive yet readily accessible intermediates via photoisomer-
ization, are representative examples. In seminal work on
E-cycloalkenones, Corey and Eaton showed their unique
dienophile reactivity in Diels-Alder additions.3 Other ex-
amples have been documented over the years,4 yet this
reactivity remains largely unexploited by synthetic chemists.
Notably, the ability ofE-cycloalkenones to act as activated
electrophiles has not been demonstrated, and in solution these
enones favor a conformation in which the carbonyl is not
fully conjugated with the double bond (i.e., their UV and
IR spectroscopic data is consistent with saturated ketones).3

Only MeOH (eq 1), EtOH,i-PrOH, and Et2NH give the 1,4-

adducts in moderate yield upon photoisomerization of the
cycloalkenone in the presence of these reagents assolVents.5

As part of a program directed toward developing new
reactivity of these strained intermediates, we suggest this ap-
proach could enable the 1,4-addition of a variety of nucleo-
philes under very mild conditions. Herein we report results
demonstrating that efficient strain-release activation via
E-cycloalkenones is possible, and leads to near stoichiometric
1,4-addition of various nitrogen heterocycles to cyclohept-
2-enones and cyclooct-2-enone upon photoisomerization at
room temperature in a variety of solvents (eq 2).

Initial experiments showed that benzimidazole (2) reacts
efficiently with cyclohept-2-enone (1) upon irradiation with
UVA lamps (ca. 350 nm) in a CH2Cl2/MeCN (8:1) mixture,
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affording the 1,4-adduct in 94% isolated yield. To our delight,
the reactivity proved general in a variety of solvents (Table
1), with little or no thermal reaction observed in samples

not exposed to UV light. The use of a 8:1 mixture of
CH2Cl2/MeCN was selected for substrate scope determination
as these conditions allow solubilization of most heterocycles
while minimizing the likelihood of a thermal reaction
involving the cis form of the cycloalkenone.

The substrate scope with respect to various nitrogen
heterocycles is shown in Table 2.6,7 Various imidazoles
reacted to afford the 1,4-adducts in good yield (entries 1-4).8

Substitution at the 2 and 4 positions was tolerated (entries
2-4), and a 7:1 selectivity is observed for 4-methylimidazole,
favoring attack from the least hindered nitrogen atom (entry
4). This reaction is also efficient with pyrazoles, with
pyrazole and benzopyrazole affording the desired product
in 99 and 92% yield, respectively (entries 5-6). Triazoles
also add efficiently under the reaction conditions (entries
7-8). The observed selectivity for the reaction of benzot-
riazole (entry 8) is in agreement with that typically observed
for related reactions.9

As shown in Table 3, the enone substrate scope is
consistent with that of other reactions involvingE-cycloalk-
enones.3,4 For entries 1-6, benzimidazole was selected as
nucleophile as only a very slow thermal reaction, if any, is
observed at room temperature in a CH2Cl2/MeCN mixture
with these substrates. However, upon irradiation, a very clean
conversion to the 1,4-adducts is observed. Cyclohept-2-enone
and cyclooct-2-enone afford these products in 94 and 90%
yield, respectively (entries 1-2). Substituted cyclohept-2-
enones also react efficently (entries 3-4), and cyclohepta-
dienone affords the monoadduct in 51% yield (entry 5),
despite the possibility of double addition or Nazarov cy-
clization.10 In addition, substitution at the 4 position is also
tolerated, and affords the 1,4-adducts as mixtures of dia-
stereoisomers (entries 6-7). Notably, irradiation of a cyclo-
hex-2-enone and benzimidazole mixture under identical
reaction conditions does not lead to any photoinduced
reactivity, in agreement with the expected propensity of the
highly strainedE-cyclohex-2-enone to isomerize back to
Z-cyclohex-2-enone (if formed).11 Similarly, no photoinduced
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Table 1. Solvent Effect

entry solvent conversion (%)a

1 PhCF3 37
2 Et2O 58
3 THF 86
4 EtOAc 91
5 CH2Cl2/MeCN (8:1) 94
6 MeCN 94
7 i-PrOH 71
8 DMSO 55

a Samples not subjected to UVA irradiation showed no conversion, except
in i-PrOH (11%) and THF (<5%)

Table 2. Nucleophile Scope

a Isolated yield after column chromatography.b 7 (R1 ) H, R2 ) Me):1
(R1 ) Me, R2 ) H) inseperable mixture of isomers.c 11% of the parent
N2 isomer was also isolated.
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reactivity is observed upon irradiation of a mixture of methyl
vinyl ketone and benzimidazole.

Interestingly, the addition of deuterated benzimidazole22
to cyclohept-2-enone is stereospecific (eq 3). This result is
in good agreement with the stereochemical outcome of solvo-
lysis reactions outlined in eq 1. A plausible mechanism for
the formation of3i involves the 1,4-addition toE-cyclohep-
tenone, forming a zwitterionic intermediate analogous to that
shown in eq 1. After conformational relaxation, intermolec-
ular deuteration (likely involving22) and subsequent proton-
transfer would provide adduct3i selectively. A similar ration-
ale has been proposed by Hart and Dunkelblum (eq 1).5a

Despite a substrate scope consistent with the reactivity of
a E-cycloalkenone intermediate, more conclusive evidence
was needed.12 Therefore, we performed low-temperature
generation/trapping experiments,13 which involved generation

of the strained ground-state intermediate upon UV irradiation
of a cyclooct-2-enone solution in CH2Cl2 at -78 °C. After
1 h, the irradiation was stopped, the flask was covered with
aluminum foil, benzimidazole was added, and the mixture
was allowed to warm to room temperature. A modest 18%
conversion to the 1,4-adduct12 was observed, suggesting
that a long-lived strainedE-cycloalkenone ground-state
intermediate is involved in this transformation (eq 4). In the
absence of irradiation, no conversion to the 1,4-adduct was
observed under similar conditions.

Seeking a more definitive proof for the likely ground-state
intermediate, we repeated the reaction shown in eq 4 in
CD2Cl2/CD3CN and monitored the reaction by low-temper-
ature NMR. Following enone irradiation at-75 °C in an
NMR tube, benzimidazole was added, and the sample was
inserted in the NMR probe (precooled to-20 °C). An initial
spectra (ii, Figure 1) confirmed that photoisomerization had

occurred, leading to the appearance ofE-cyclooctenone (B,
diagnosticJCHdCH ) 18.0 Hz),3a and only traces of 1,4-adduct

(11)E-Cyclohex-2-enones have been invoked as intermediates in a
number of reactions. However, they have not been observed directly by
low temperature laser flash photolysis and are expected to be very short
lived, if formed. For a discussion, see: Schuster, D. I. InCRC Handbook
of Organic Photochemistry and Photobiology; Horspool, W. M., Song, P.-
S., Eds.; CRC Press: Boca Raton, FL, 1995; Chapter 48.

Table 3. Electrophile Scope

a Isolated yield after column chromatography.b Diastereomeric ratio)
12:1 (cis/trans).c Diastereomeric ratio) 1.3:1 (cis/trans).d Diastereomeric
ratio ) 1.1:1 (cis/trans).

Figure 1. 1H NMR monitoring of low-temperature generation/
trapping experiments (eq 4): (i) spectrum before photoisomerization
(350 nm) at-78 °C; (ii) spectrum after photoisomerization, but
before addition of benzimidazole (2); (iii) spectrum after addition
of excess2 and warming to 10°C.
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12 were observed at that temperature. Upon warming to 10
°C (over ca. 10 min),E-cycloalkenone (E)-11 reacted
efficiently to afford12, as judged by the similar ratios relative
to Z-cyclooctenone [B/A ) 0.29 in spectra ii vsC/A ) 0.28
in spectra iii]. This finding suggests that only little unproduc-
tive E to Z thermal isomerization occurred under the reaction
conditions. Overall, these results support the involvement
of highly strainedE-cycloalkenone ground-state intermediates
under the reaction conditions.14

In summary, we have demonstrated that significant elec-
trophilic activation can be achieved viaE-cycloalkenones,
leading to near stoichiometric 1,4-addition of imidazoles,

pyrazoles, and triazoles upon UV irradiation of seven- and
eight-membered cycloalkenones. Studies toward new reactiv-
ity of these strained intermediates in other reactions are
underway and will be reported in due course.14
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(13) For other low temperature generation/trapping experiments, see
references 3b, 4b, and 5c. Such experiments are based on the longer lifetimes
of ground-state intermediates compared to excited states, which are known
to rapidly decay to the ground state (typically, 1 s).

(14) Over the course of these studies, we discovered that indoles react
with enones, likely via a photoinduced electron transfer mechanism: Moran,
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