RADIATION-INDUCED REDUCTIVE CONVERSION OF 5-BROMO-6-HYDROXYTHYMINE TO THYMINE PROMOTED BY TRANSITION METAL SALTS IN DEAERATED AQUEOUS SOLUTION

Sei-ichi NISHIMOTO, Hiroshi IDE, Kikumi NAKAMICHI, Nobuaki OTSUKI, and Tsutomu KAGIYA Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606

The radiation-induced reduction of 5-bromo-6-hydroxythymine to produce thymine (2) in deaerated aqueous solution was remarkably promoted by the addition of lower-valent transition metal salts ($K_4Fe(CN)_6$ (3a), CuCl (3b), K_2PtCl_6 (3c), and FeSO₄ (3d)). It is suggested that the possible intermediate hydroxythymine-5-yl radical undergoes one-electron reduction by 3a-d to the corresponding anion which eliminates OH⁻ to produce 2.

5,6-Dihydrouracil and 5,6-dihydrothymine (PyrH₂) react with \cdot OH to give uracil and thymine, respectively, in almost quantitative yields in the presence of appropriate oxidants such as Cu²⁺.¹) The reaction mechanism has been suggested to involve one-electron oxidation of dihydropyrimidine-5yl and 6-yl radicals (PyrH·) produced by H-atom abstraction of the \cdot OH from the dihydropyrimidines. The so-formed dihydropyrimidine cations (PyrH⁺) may generate the parent pyrimidines via proton elimination (PyrH⁺ \longrightarrow Pyr + H⁺). The oxidation of the dihydropyrimidinyl radicals has been characterized in detail by means of pulse radiolysis.²) In contrast, quite few work concerning generation of the parent pyrimidines via reductive process has been performed despite being of radiation chemical and biological interests. Although reductive conversion of thymine glycol (5,6-dihydroxy-5,6-dihydrothymine) to thymine has been the only example,³) the mechanism has not yet been clarified. We report here the finding that radiolytic reduction of 5-bromo-6-hydroxythymine (<u>1</u>) as a C₅-C₆ saturated halopyrimidine to produce thymine (<u>2</u>) in deaerated aqueous solution is remarkably promoted by the addition of lower-valent transition metal salts (K₂Fe(CN)₆ (<u>3</u>a), CuCl (<u>3</u>b), K₂PtCl₄(<u>3</u>c), and FeSO₄ (<u>3</u>d)).

Radiation-induced reduction of $\underline{1}$ (1 mM) was carried out with a 60 Co $_{\gamma}$ -ray source (380 Gy h⁻¹) in deaerated aqueous solution containing sodium formate (100 mM). The pH of the solution was adjusted to 3.0 ± 0.1 with phosphoric acid since $\underline{1}$ was fairly unstable in neutral solution to give thymine glycol almost quantitatively.

On irradiation up to 1.52 kGy, <u>1</u> decomposed with the G-value⁴⁾ for conversion, $G(-\underline{1}) = 5.3$. Among the major radiolysis products, thymine <u>2</u> ($G(\underline{2}) = 0.4$), 6-hydroxy-5,6-dihydrothymine (<u>4</u>) ($G(\underline{4}) = 1.0$), and 5-methylbarbituric acid (<u>5</u>) ($G(\underline{5}) = 0.8$) were confirmed by high performance liquid chromatography (HPLC, monitored with UV absorption at 210 nm) using authentic samples⁵),⁶) (Table 1). Irradiation of <u>1</u> in the presence of <u>3</u>a-d (1 mM) with oxidation potentials of $E^{0}(M^{n+}/M^{(n+1)+}) >$ -0.77 V (vs. NHE)⁷) led to enormous increase in the yield of <u>2</u> up to 50 - 90 % (based on <u>1</u> decomposed) accompanied by the decreases of the <u>4</u> and <u>5</u> yields (Table 1).⁸ In contrast, the metal salts with more negative $E^{0}(M^{n+}/M^{(n+1)+})$ values⁷) (VOSO₄ (<u>3</u>e), Tl₂SO₄ (<u>3</u>f), MnSO₄ (<u>3</u>g), and CoSO₄ (<u>3</u>h)) little affected the formation of <u>2</u>, <u>4</u> and <u>5</u>, although the decomposition of <u>1</u> was depressed to some

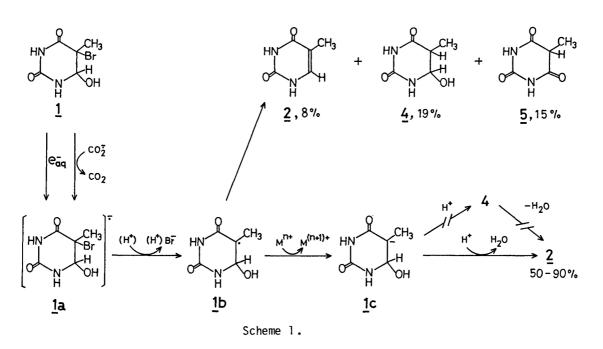
			G(Product)			
Additive		E ^O (M ⁽ⁿ⁺¹⁾⁺ /M ⁿ⁺) ^{a)} /V	G(- <u>1</u>)	2	<u>4</u>	<u>5</u>
<u>3</u> a	K ₂ Fe(CN) ₆	0.36	4.0	2.0	trace	trace
<u>3</u> b	CuC1	0.54	3.4	2.7	trace	trace
<u>3</u> c	K ₂ PtCl ₄	(0.68) ^{b)}	6.0	4.2	trace	trace
<u>3</u> d	FeS0 ₄	0.77	4.8	4.3	trace	trace
<u>3</u> e	voso ₄	1.00	4.5	0.5	0.6	0.9
<u>3</u> f	T1 ₂ S0 ₄	(1.25) ^{b)}	4.9	0.5	0.9	1.0
<u>3</u> g	MnS0 ₄	1.51	5.2	0.4	0.6	0.8
<u>3</u> h	CoSO ₄	1.81	5.0	0.5	1.0	0.7
	none		5.3	0.4	1.0	0.8

Table 1. G-value for the decomposition of 5-bromo-6-hydroxythymine $(\underline{1})$ (G(-<u>1</u>)) and those for the formation of radiolysis products: $(\underline{2})$, thymine; $(\underline{4})$, 6-hydroxy-5,6-dihydrothymine; $(\underline{5})$, 5-methylbarbituric acid. Dose 0 - 1.52 kGy; pH 3.0.

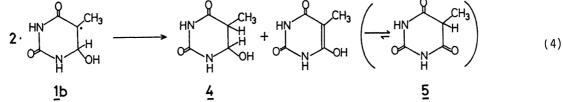
a) Standard electrode potential vs. NHE for $M^{(n+1)+} + e^- \rightleftharpoons M^{n+}$ in aqueous solution, in which M^{n+} represents (<u>3a</u>) Fe(CN)⁴⁻, (<u>3b</u>) CuCl, (<u>3d</u>) Fe²⁺, (<u>3e</u>) VO²⁺, (<u>3g</u>) Mn²⁺, or (<u>3h</u>) Co²⁺ b) The values of $E^0(M^{(n+2)+}/M^{n+})$ are given for M^{n+} : (<u>3c</u>) PtCl²⁻₄ and (<u>3f</u>) Tl⁺

extent with <u>3e-f</u> (Table 1).⁸⁾ The dark conversion of <u>1</u> to <u>2</u> in each reaction system was negligible (only trace amount of <u>2</u> was yielded for 2 days). It is also noted that intensities of the HPLC elution bands of unidentified products were remarkably reduced in the presence of <u>3a-d</u>.

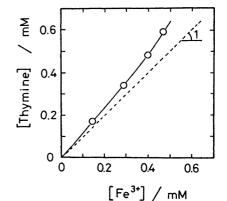
It is well known that $\cdot 0H$ and $H \cdot produced$ by radiolysis of water are converted to $\cdot C0_2H$ by the reactions with $HC0_2H$ (pK_a = 3.75)⁹ [reaction (2)]. The so-formed $\cdot C0_2H$ dissociates into $C0_2^{\frac{1}{2}}$ and $H^{\frac{1}{2}}$ at pH 3 [reaction (3)], since the reported pK_a value of $\cdot C0_2H$ is 1.6.¹⁰

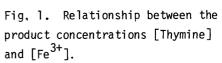

$$H_2^0 \longrightarrow 0H (G-value = 2.7), H (0.55), e_{ag}^-(2.7)$$
 (1)

$$\cdot OH(H \cdot) + HCO_2 H \longrightarrow \cdot CO_2 H + H_2 O(H_2)$$
 (2)


$$\cdot \operatorname{CO}_{2} \operatorname{H} \longrightarrow \operatorname{CO}_{2}^{-} + \operatorname{H}^{+}$$
(3)

The reaction between e_{aq}^- and H^+ possibly occurs to give $H \cdot$ which should be converted to $C0\frac{\pi}{2}$ as in reactions (2) and (3). Accordingly, the active species responsible for the reaction of <u>1</u> are virtually limited to such reducing species as e_{aq}^- and $C0\frac{\pi}{2}$ ($G(e_{aq}^-) + G(C0\frac{\pi}{2}) \sim 6$) under the present experimental conditions without <u>3</u>a-h.


The radiation-induced conversion of <u>1</u> to <u>2</u> promoted by <u>3</u>a-d may be rationalized as in Scheme 1. The one-electron reduction of <u>1</u> by e_{aq}^- occurs to produce the radical anion intermediate (<u>1</u>a). From the one-electron reduction potentials of <u>1</u> (-0.47 V vs. SCE evaluated in acetonitrile by cyclic voltammetry)¹¹⁾ and CO_2^{τ} (-1.3 V¹²⁾, < -0.64 V¹³⁾ vs. SCE in water), it is also probable that CO_2^{τ} can reduce <u>1</u> to <u>1</u>a. These are in accord with the fact that the G(-<u>1</u>)-value (5.3) is very close to that of total reducing species (G(e_{aq}^-) + G(CO_2^{τ}) \sim 6) in the reaction without <u>3</u>a-h. The efficient conversion of <u>1</u> by reducing species suggests that the radical anion <u>1</u>a is liable to give 6-hydroxythymine-5-yl radical (<u>1</u>b) via elimination of Br⁻ (or HBr after protonation). In connection with the reductive debromination, it is known that 5-bromouracil reacts with e_{aq}^- by dissociative electron capture



to give uracilyl radical and bromide ion.¹⁴⁾ The major products $\underline{4}$ and $\underline{5}$ with approximately the same yields in the absence of $\underline{3}a$ -h can be derived from disproportionation between the radicals $\underline{1}b$ as follows.

The UV spectral change revealed that Fe^{3+} (the absorption at 304 nm in 0.4 M H₂SO₄ with ϵ 2201 M⁻¹ cm⁻¹)¹⁵) is produced on irradiation of an aqueous solution of <u>1</u> with <u>3</u>d. Figure 1 shows a linear relationship between the product concentrations [<u>2</u>] and [Fe³⁺], indicating that enhanced conversion of <u>1</u> to <u>2</u> (90 %) accompanies one-electron oxidation of Fe²⁺ to Fe³⁺. It is reasonable to presume that the radical intermediate <u>1b</u> undergoes one-electron reduction by <u>3</u>a-d to give hydroxythymine anion (<u>1</u>c) (Scheme 1). Recently, Fujita et al. have suggested from the pulse radiolysis study that <u>1b</u>, which is produced by ·OH addition to the pyrimidine ring-C₆ of thymine, oxidizes N,N,N',N'-tetramethyl-p-phenylenediamine.¹⁶ Although 5-hydroxythymine-6-yl radical is produced simultaneously with <u>1b</u> in the reported radiolysis system, their conclusion is in accord with the present result. The so-formed anion <u>1c</u> may

lead to $\underline{2}$ via the subsequent elimination of OH⁻. The almost complete inhibition of the formation of $\underline{4}$ and $\underline{5}$ [reaction (4)] shows that the reduction of $\underline{1}b$ to $\underline{1}c$ by $\underline{3}a$ -d is a highly efficient pathway. With $\underline{3}e$ -f, however, such a reduction pathway should be minor because of their less reducing abilities as predicted by the oxidation potentials.

The possibility of the formation of $\underline{2}$ via dehydration of $\underline{4}$ was substantially ruled out by the evidence that $\underline{4}$ was very stable even at pH 3 and had half-life time of ca. 26 h (24 °C). It follows that the protonation of $\underline{1}c$ to give $\underline{4}$ is not involved because yields of the $\underline{4}$ are negligible with $\underline{3}a$ -d. Furthermore, in view of the selective formation of $\underline{2}$ via $\underline{1}c$, it seems likely that the disproportionation of $\underline{1}b$ in the absence of $\underline{3}a$ -d leads, besides the reaction (4), to $\underline{1}c$ along with hydroxythymine cation by electron transfer.

References

- 1) H. R. Haysom, J. M. Phillips, and G. Scholes, J. Chem. Soc., Chem. Commun., 1972, 1082.
- A. J. Swallow, "Reactions of Free Radicals Produced from Organic Compounds in Aqueous Solution by Means of Radiation," in "Progress in Reaction Kinetics," Oxford, Pergamon (1978), Vol. 9, pp. 314-315.
- 3) T. Hayashi and M. Namiki, Int. J. Radiat. Biol., <u>25</u>, 235 (1974).
- 4) The number of molecules produced or changed per 100 eV of energy absorbed by the solution.
- 5) C. Nofre, A. Cier, R. Chapurlat, and J. M. Mareschi, Bull. Soc. Chim. Fr., 1965, 332.
- 6) B, Doumas and H. G. Biggs, J. Biol. Chem., 237, 2306 (1962).
- "Kagakubinran Kisohen II," 2nd ed, ed by the Japan Chemical Society, Maruzen, Tokyo (1975), pp. 1204-1206.
- 8) The characteristic $E^{0}(M^{(n+1)+}/M^{n+})$ dependence of the enhanced formation of <u>2</u> may be accounted for by the Marcus theory (R. A. Marcus, J. Chem. Phys. <u>24</u>, 966 (1956)). Thus, the reaction rate of electron transfer from metal salts to <u>1b</u> (see Scheme 1) is expected to increase with decreasing $E^{0}(M^{(n+1)+}/M^{n+})$ and thereby increasing exthothermicity until it reaches a maximum. However, further increase in exthothermicity would diminish the rate.
- "Dissociation Constants of Organic Acids in Aqueous Solution," ed by G. Kortur, W. Vogel, and K. Andrusson, Butterworths, London (1961).
- 10) G. V. Buxton and R. M. Sellers, J. Chem. Soc., Faraday Trans. 1, <u>66</u>, 555 (1973).
- 11) The crrent-potential curve was measured at a scan rate of 0.5 V s⁻¹ for an Ar-purged solution of $\underline{1}$ (10 mM) in acetonitrile containing 0.78 M NaClO₄ as a supporting electrolyte. The reduction potential was evaluated from the half-peak potential in an irreversible voltammogram obtained. In view of usual solvent effect on the reduction potential, the corresponding value in water would be more positive than -0.47 in acetonitrile.
- 12) D. J. Schiffrin, Faraday Discuss. Chem. Soc., <u>56</u>, 75 (1974).
- 13) E. Papaconstantinou, Anal. Chem., <u>47</u>, 1592 (1975).
- 14) G. E. Adams, "Current Topics in Radiation Research," ed by M. Ebert and A. Howard, Amsterdam, North-Holland (1967), Vol. III, pp. 35-93; J. Zimbrick, J. F. Ward, and L. S. Myers, Jr., Int. J. Radiat. Biol., <u>16</u>, 505 (1965).
- 15) A. Henglein, W. Schnabel, and J. Wendenburg, "Einfuhrung in die Strahlenchemie," Verlag Chemie GmbH, Weinheim/Bergstr. (1969), Chap. 2.
- 16) S. Fujita and S. Steenken, J. Am. Chem. Soc., <u>103</u>, 2540 (1981).

(Received July 2, 1983)