The Total Synthesis of (\pm) -Guaiol

By G. L. Buchanan* and G. A. R. Young

(Department of Chemistry, The University of Glasgow, Glasgow W.2.)

Summary (±)-Guaiol has been synthesised from 2-methylcyclopentanone and 4-oxovaleric acid via a bicyclo[3,2,1]octanone intermediate.

Bridge scission of bridged bicyclic compounds provides a useful route to particularly substituted medium-sized rings,1 although the reaction has been little used as a synthetic method. We report here its application to the total synthesis of (±)-guaiol.†

The Mannich base of 4-oxovaleric ester² condensed with 2-methylcyclopentanone under thermal Michael conditions³ to give (I) (68%), free from the 2,2-disubstituted isomer. Under a variety of conditions (NaOMe; BF3; toluene-psulphonic acid), cyclisation of this diketone afforded the $\alpha\beta$ -enone (II) [λ_{\max} 243 nm (ϵ 12,100), ν_{\max} (CCl₄) 1732 and 1664 (C=O) cm⁻¹]. However, stirring at room temperature with 10N-HCl brought about ester hydrolysis and aldol cyclisation, the product being trapped by lactonisation to (III) (80%) as a mixture of two isomers [vmax (CCl₄) 1780 and 1750 (C=O) cm^{-1} and 1772 and 1758 (C=O) cm^{-1}].

The principal factor governing the cyclisation of 1,5diketones of this type to bridged rather than fused bicycles appears to be the presence of substituents at the developing ring-junction.4 However, the foregoing results indicate that the bridged product is the first formed in a rapid reversible step and justifies our tentative suggestion⁵ that the bridged bicycles are kinetically favoured whereas the fused $\alpha\beta$ -enones are the products of thermodymamic control.

The spiro-lactones (III), separately or as a mixture, were converted into (IV) [λ_{\max} 247 nm (ϵ 9000), ν_{\max} (CCl₄) 1760 and 1705 (C=O) cm⁻¹] and then (V) [λ_{max} 237 nm (ϵ 11,900), v_{max} (CCl₄) 1735 and 1704 (C=O) cm⁻¹] by successive treatment with polyphosphoric acid and NaOMe. The final product was a 1:1 mixture of stereoisomers, inseparable by t.l.c. or g.l.c., but discernible by n.m.r. This mixture was treated with methyl-lithium and on mild dehydration followed by reduction (H₂/5% Pd-C) of the crude product yielded a mixture of isomers, separable by g.l.c. One of these was identical (g.l.c. and mass spectrum) with natural guaiol (VI).

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

We thank the Carnegie Trust for The Universities of Scotland for a Scholarship (to G.A.R.Y.).

(Received, April 23rd, 1971; Com. 624.)

- † Since this manuscript was submitted, a more stereoselective but more arduous synthesis has been published (J. A. Marshall, A. E. Greene, and R. Ruden, Tetrahedron Letters, 1971, 855; J. A. Marshall and A. E. Greene, ibid., p. 859).
 - ¹ For a review see G. L. Buchanan, "Topics in Carbocyclic Chemistry", ed. D. Lloyd, Logos Press, London, 1969, p. 227.

 ² G. L. Buchanan, A. C. W. Curran, and R. T. Wall, *Tetrahedron*, 1969, 25, 5503.
- ⁸ H. L. Brown, G. L. Buchanan, A. C. W. Curran, and G. W. McLay, Tetrahedron, 1968, 24, 4565: E. M. Austin, H. L. Brown, and G. L. Buchanan, Tetrahedron, 1969, 25, 5509: E. M. Austin, H. L. Brown, G. L. Buchanan, and R. A. Raphael, jun., Tetrahedron, 1969,

25, 5517.

⁴ W. G. Dauben and J. W. McFarland, J. Amer. Chem. Soc., 1960, 82, 4245: S. A. Julia, Bull. Soc. chim. France, 1954, 780; J. A. Marshall and D. J. Schaeffer, J. Org. Chem., 1965, 30, 3642; R. D. Sands, J. Org. Chem., 1963, 28, 1710.

⁵ Ref. 1, p. 207.