Contents lists available at SciVerse ScienceDirect

ELSEVIER

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Microwave-assisted microemulsion synthesis of carbon supported Pt-WO₃ nanoparticles as an electrocatalyst for methanol oxidation

Chunzhen Yang^a, Nicole K. van der Laak^{a,b,*}, Kwong-Yu Chan^{a,**}, Xin Zhang^c

^a Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

^b Department of Chemistry, Centre for Advanced Energy Storage and Recovery (CAESAR), Herriot-Watt University, Edinburgh EH14 4AS, United Kingdom

^c Department of Chemistry, Shantou University, China

ARTICLE INFO

Article history: Received 9 November 2011 Received in revised form 25 April 2012 Accepted 28 April 2012 Available online 6 May 2012

Keywords: Pt-WO₃ nanoparticles Microwave Microemulsion Methanol oxidation Cu-UPD

ABSTRACT

A microwave-assisted microemulsion synthesis of carbon supported Pt-WO₃ nanoparticles is presented. Amorphous WO₃ nanoparticles of 1.0 nm in size were first deposited onto carbon from an alkaline tungstate containing microemulsion *via* mixing with an acid containing microemulsion under controlled microwave exposure. Platinum was subsequently deposited onto the carbon supported WO₃ nanoparticles by reducing H₂PtCl₆ in a microemulsion under controlled microwave exposure forming nanoparticles by reducing H₂PtCl₆ in a microemulsion under controlled microwave exposure forming nanoparticles with an average size of 2.5 nm. This method produced a homogeneous distribution of nanoparticles on the carbon support with a uniform Pt:W ratio. The Pt:W can be well controlled by varying the metal precursors' Pt:W ratio. Hydrogen adsorption, CO-stripping and Cu-UPD stripping method were used to estimate the electrochemical surface area of Pt in the Pt-WO₃ mixed catalyst system. Cyclic voltammetry and chronopotentiometry experiments demonstrate that a 1:1 ratio of Pt:W has the highest electrocatalytic activity based on Pt mass for methanol oxidation in sulfuric acid. The enhanced electrocatalytic activity is attributed to both physical and chemical influence of the WO₃ component.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The interest in developing fuel cells for high energy density applications, in particular in long-range transportation continues to grow. Platinum has been the most effective electrocatalyst for anodic oxidation of fuels at low temperature, but the commonly generated CO intermediate seriously undermines the catalytic activity of platinum. The development of CO-tolerant electrocatalysts and the lowering of Pt loading for cost-effectiveness are some of the critical issues facing commercialization of fuel cells [1–3]. The addition of a second or third metal has demonstrated to be effective in increasing performance as a function of Pt loading, as well as improving the resistance to CO poisoning. According to the bi-functional mechanism, the CO intermediate formed on the Pt sites can be oxidized by an oxygen-containing species on the neighbouring co-catalyst metal [4,5]. Binary and ternary platinum-based alloys such as Pt-Ru [6,7], Pt-Mo [8,9], Pt-Bi [10], Pt-Co [11,12], Pt-Mn [12], and Pt-Ru-M [13-15], and metal oxides, including RuO₂ [16], TiO₂ [17,18], CeO₂ [19,20], MoO_x [21,22], SnO₂ [23] and WO₃ [24-28] have been studied to improve stability and CO tolerance

E-mail address: n.vanderlaak@gatesscholar.org (N.K. van der Laak).

for methanol electro-oxidation. Among these, Pt-Ru bimetallic catalysts dispersed on carbon supports show the best performance. As a precious metal, however, ruthenium is as expensive as Pt and does not help to reduce production costs in scaled commercial applications. A promising cost-effective alternative to Ru is WO₃, which has been extensively studied for promoting the electrocatalytic activity of Pt. The costs saving effectiveness, however, should be compared in terms of both current and voltage output. Tseung's group demonstrated the hydrogen spill-over effect [29–32] for typical fuel cell anode reactions on Pt/WO₃ electrocatalyst when WO₃ forms a conducting, blue hydrogen tungsten bronze, H_xWO_3 , when receiving protons in acidic media at the potential region of 0–0.55 V vs. RHE, as shown in the reaction.

$$H_x WO_3 \leftrightarrow WO_3 + xH^+ + xe^-$$
(1)

The formation of H_xWO_3 effectively enhances the dehydrogenation step of in a fuel cell anode reaction such as methanol oxidation [29–32]. In addition, OH groups adsorbed on the WO₃ surface may help to oxidize the CO intermediate formed on the Pt site [29], giving the bi-functional catalyst characteristics [30,33–38].

Understanding the structural and compositional effects of Pt- WO_3 on electrocatalysis has been hindered by our ability to synthesize nanoparticles with good control over particle size and the Pt:W ratio. Typically Pt nanoparticles are supported on a WO_3 support by, for example, reducing a platinum precursor

^{*} Corresponding author.

^{**} Corresponding author at: Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.

^{0013-4686/\$ -} see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.electacta.2012.04.107

Fig. 1. The preparation process of making Pt-WO₃/C electrocatalysts through microwave-assisted microemulsion.

onto commercial monoclinic tungsten oxide powder [33,39,40] or by precipitating Pt nanoparticles onto mesoporous WO₃ [25,41]. Other morphologies of tungsten oxide such as nanotubes [42] and nanorods [43,44], have also been prepared and used as supports for platinum. While these Pt/WO₃ composites show high CO tolerance and electrochemical activity comparable to commercial PtRu/C as an anode catalyst, the Pt:W ratio is not controlled and tungsten oxide is normally in excess. The effects of Pt:W ratio, size and structure of WO₃ on the electroactivity cannot be clarified in studies that contain excess WO₃.

While syntheses of Pt nanoparticles have been well reported, the synthesis of Pt-WO₃ with control of the Pt:W ratio at the nanoparticle level has been difficult. Platinum is usually deposited by chemical reduction while WO₃ is typically deposited from tungstate, the deposition of which is induced by a pH change according to the reaction $WO_4^{2-} + 2H^+ \rightarrow WO_3 \cdot H_2O$. Controlling the size of the deposited WO₃ nanoparticles in this reaction is problematic. Different methods have been used to prepare WO₃ powders, including electrochemical deposition [45], chemical vapor deposition [46], wet chemical deposition [26], a microemulsion-mediated method [47], a sol-gel method [48], hydrothermal reactions [49], and impregnation [50]. The size of WO₃ particle highly depends on the preparation technique and few of these techniques have reported nanosized WO₃ particles less than 2 nm in diameter. Moreover, the crystallinity and particle morphology changes with increasing particle size. As tungsten oxide has limited electrical conductivity the electroactivity can be adversely affected when WO₃ is present as larger particles. This in turn may affect the promotion of Pt and the ability to remove CO. Some control of WO₃ nanoparticle sizes has been achieved by hydrolyzing tungsten alkoxide in a reverse microemulsion, forming nanoparticles whose size was controlled between 1.5 nm and 50 nm [47]. WO₃ nanoparticles approximately 1.4 nm in diameter have also been successfully formed in the mesopores of a silica matrix [50].

Recently Pt-WO₃ nanoparticles were synthesized with good control of Pt:W ratio at the nanoparticle level using ethylene glycol as a medium for depositing colloidal Pt and WO₄^{2–} precursors [26]. The H₂PtCl₆ precursor was first reduced in alkaline glycol to a colloidal form and following a decrease in the pH, subsequent deposition of Pt and WO₃ (from WO₄^{2–}) was induced. Due to the different and somewhat slow deposition rates of Pt and WO₄^{2–}, good particle size control was difficult to achieve.To control both the composition and particle size we

present a new approach to synthesizing nanosized Pt-WO₃ using a microwave-assisted microemulsion methodology. Microwave heating is a good alternative to traditional approaches offering faster, more uniform control of heating and has already been used to successfully synthesize nanosized metal and metal oxide particles including gold [51,52], palladium [53,54], copper oxide [55], tungsten oxide [49], and zinc oxide [56]. In our case, the Pt-WO₃ nanoparticles synthesized in this approach show a narrow size distribution and are well dispersed on a carbon support. We discuss here the details of the synthesis, characterization of the Pt-WO₃ nanoparticles, and the electrocatalytic activities of the nanoparticle system towards methanol oxidation.

2. Experimental

2.1. Synthesis

All chemicals were of analytical grade and used as received. They include Triton X-100 (t-octylphenoxypolyethoxyethanol) from Sigma Chemical Company, dihydrogen hexachloroplatinate (IV) hydrate (H₂PtCl₆·H₂O) from Chempure Ltd., sodium tungstate (Na₂WO₄) from Aldrich Chemical Company, Inc, butan-1-ol and cyclohexane from BDH Chemical Ltd., methanol and sulfuric acid from Aldrich Chemicals. A 10 wt% Pt/Vulcan carbon was supplied by E-TEK Co., and a 5 wt% Nafion solution was used as received from DuPont. All the solutions were prepared using deionized water (18.2 M Ω cm) produced from a Milli-Q ultrapure system of Millipore Ltd., USA.

A typical Pt-WO₃/carbon catalyst was prepared in two steps as depicted in Fig. 1. Firstly, WO₃ was deposited onto the Vulcan XC-72 carbon by a two-emulsion technique. The two microemulsions had identical fractions of aqueous, surfactant, co-surfactant, and oil phases, but contained different compositions in their aqueous phases, as shown in Table 1. Two 10 ml portions were taken, each from the two microemulsions and mixed together with Vulcan XC-72 carbon by sonicating the solutions for 30 min. The mixed microemulsions were sealed in a HP-500 PTFE reactor and heated in a microwave oven (CEM MARS) at 300 W for 6 min. We observe at 300 W irradiation power, small WO₃ nanoparticles formed only after a minimum of 6 min heating time according to the reaction $WO_4^{2-} + 2H^+ \rightarrow WO_3 \cdot H_2O$. After cooling to room temperature, the suspension was centrifuged and the solid fraction was washed

264 **Table 1**

Compositions of the microemulsion systems used for the synthesis of WO₃ nanoparticles.

	Microemulsion I	Microemulsion II	Volume (ml)
Aqueous phase	$20 \mathrm{mM}\mathrm{Na}_2\mathrm{WO}_4$	0.1 M HCl aq. solution	6
Surfactant	Triton X-100	Triton X-100	12
Co-surfactant	Butan-1-ol	Butan-1-ol	12
Oil phase	Cyclohexane	Cyclohexane	60

Table 2

Compositions of the microemulsion system used for the synthesis of Pt nanoparticles deposited onto WO₃/C.

	Microemulsion	Volume (ml)
Aqueous phase	10 mM H ₂ PtCl ₆ aq. solution	6
Surfactant	Triton X-100	12
Co-surfactant	Butan-1-ol	12
Oil phase	Cyclohexane	60

with ethanol and acetone to remove surfactant and any unreacted WO_4^{2-} , and then dried at 60 °C in a vacuum oven.

Pt nanoparticles were then deposited on to the carbon supported WO₃ by reducing H_2PtCl_6 in butan-1-ol. An aqueous solution of H_2PtCl_6 was used to prepare the microemulsion (Table 2). This Pt containing microemulsion was thoroughly mixed with WO₃/carbon by sonicating for 30 min. The mixture was sealed in a HP-500 PTFE reactor and heated in the microwave oven at 900 W for 2 min.

We observed that Pt nanoparticles began to form after 1.5 min and that a wider distribution of particle sizes was obtained for lower power and longer exposure times. After heating, the HP-500 PTFE reactor was quickly cooled to room temperature by flowing compressed air over the tube to suppress further nucleation and/or growth of the Pt nanoparticles. The product catalyst was then washed by ethanol and acetone, then dried at 60 °C in a vacuum oven.

As with the recent report on the synthesis of PtWO₃ nanoparticles [26], we used carbon as a support to provide sites for the deposition of the metal from the microemulsions. We propose that the carbon support acts to as a medium for controlling the size of the nanoparticles; for a deposition reaction occurring outside the pores of carbon material, the metal nanoparticles nucleate directly on the carbon and further growth is prevented, while for metal deposition within the pores of carbon, the reaction zones are isolated and small pores limit the growth of the nanoparticles even when surfactant protection is absent. In the earlier reported work [26], a Pt glycol colloidal solution was mixed with a pre-acidified carbon pre-deposited with WO₃ nanoparticles. Since the acidic sites on the carbon are different from the WO₃ sites, pure Pt nanoparticles may be formed away from WO₃. In the present synthesis, we suggest that the platinum precursor is uniformly impregnated into carbon pores when microwave irradiation is triggered and the Pt nanoparticles preferentially nucleate at the WO₃ sites. As the dielectric constant of carbon is lower than water, the reactions zones can also be confined to individual regions of water within the carbon pores.

Attempts to simultaneously react Pt and W together in a single step microwave exposure did not result in a uniform composition, probably due to the two deposition reactions having different reaction rates. Moreover, reversing the order of preparation by deposition Pt onto carbon first, did not yield a uniform Pt:W ratio. By precipitating WO₃ first, a uniform distribution on the carbon support can be achieved, which can then act as nucleation sites for subsequent uniform deposition of Pt.

2.2. Characterization

2.2.1. Transmission electron microscopy (TEM)

Transmission electron microscopy analysis of the Pt-WO₃/C catalyst was performed on a Philips Tecnai G2 20 Scanning TEM operating at 200 kV. High-resolution TEM (HRTEM) images were obtained on a JEOL 2010F TEM. Composition of the nanoparticles was analyzed by an energy-dispersive X-ray (EDX) spectroscope (EDX Microanalysis System, Oxford Instrument) attached to the transmission electron microscope (Philips Tecnai G2 20 Scanning TEM). The samples for analysis were prepared by dispersing nanoparticles in ethanol and drop-casting onto a carbon coated copper grid followed by drying in air at room temperature (22 °C).

2.2.2. Thermal gravity analysis (TGA)

The Pt and WO₃ loading on the Vulcan XC-72 carbon support was determined by TGA. Thermal analyses were performed on a PERKIN ELMER TGA-7 Thermogravimetric Analyzer. The samples were hold at 50 °C for 10 min then heated to 800 °C at a rate of 10 °C/min under flowing air.

2.3. Electrochemical measurements

The working electrodes were prepared by dispersing 5 mg of catalyst in a mixed solution of 0.9 mL ethanol/water (1:1, volume scale) and 0.1 mL Nafion (5 wt%) and sonicating the suspension for 20 min. 20 μ L of the suspension was dropped onto on to a glassy carbon electrode (5 mm in diameter) previously polished to mirror-like finish using an alumina suspension. The electrode was then dried at room temperature before use. Table 3 shows the catalyst loading on each of the working electrodes.

All electrochemical tests were performed on a Solatron SI1287 in a three-electrode cell at room temperature ($22 \circ C$). A Pt plate and an Hg/Hg₂SO₄ electrode were used as the counter and the reference electrodes, respectively. A solution of 1 M methanol in 0.5 M H₂SO₄ was used to study the methanol oxidation activity. The electrolytes were degassed with nitrogen before each electrochemical measurement. Cyclic voltammetry (CV) and chronopotentiometry

Table 3

The composition of the Pt-WO₃/C catalysts analyzed by EDX.

Pt-WO ₃ /C samples	Elements (wt%) ^a		Pt loading on GC electrode (mg cm ⁻²)	
	Pt	WO ₃		
WO ₃ /C	_	12.1%	_	
0.5:1	4.73%	11.47%	0.024	
1:1	9.36%	10.91%	0.047	
2:1	16.57%	10.05%	0.083	

^a Pt and WO₃ loading on Vulcan carbon support were determined by thermal gravimetric analysis (TGA).

(CP) were performed at room temperature $(22 \circ C)$ to investigate the electrochemical properties of the catalysts.

The electrochemical active surface area (ECSA) of Pt in Pt-WO₃ mixed catalyst system was determined by hydrogen adsorption, CO-stripping method and Cu underpotential deposition/stripping method. In the CO-stripping experiment, the pre-adsorption of CO was achieved by bubbling CO gas into 0.5 M H₂SO₄ solution, while the potential of working electrode was kept at -0.54 V vs. Hg/Hg₂SO₄ reference electrode for 20 min. The solution was later purged with N₂ gas for another 30 min to remove the dissolved CO in the solution. The Cu-UPD experiment was conducted according to previous reports [27,57]. In a solution containing 0.002 M CuSO₄/0.1 M H₂SO₄, the working electrode was held at -0.34 V vs. Hg/Hg₂SO₄ reference electrode for 60 s before the stripping of Cu with a linear scan from -0.34 to 0.46 V vs. Hg/Hg₂SO₄.

3. Results and discussion

3.1. Characterization

Fig. 2(a) shows a HRTEM micrograph of WO₃ nanoparticles supported on Vulcan XC-72 carbon. The sizes of around 100 WO₃ particles were measured to construct a histogram of the particle size distribution (Fig. 2(b)). These nanoparticles show an average diameter of 1.0 nm. For all batches of the WO₃/carbon hybrid catalysts prepared by this procedure, a narrow particle size distribution is observed, indicating that the microwave-assisted microemulsion method offers a reproducible route to synthesize WO₃ nanoparticles with a small average size and a narrow particle size distribution. The size of WO₃ nanoparticles can be tuned by varying the composition of microemulsion, the concentration of W and HCl in the precursor solutions, and the microwave irradiation power and heating length. No lattice-fringe images were obtained in the HRTEM analysis and the diffract pattern in the inset of Fig. 2(a) suggests that the WO₃ nanoparticles are amorphous. Longer microwave exposure or higher precursor concentrations leads to the formation of larger WO₃ nanoparticles. Fig. 2(c) shows a TEM micrograph of WO₃ nanoparticles supported on Vulcan XC-72 carbon with an average particle size of 6-10 nm in diameter. This sample was prepared by mixing a 200 mM Na₂WO₄ microemulsion with a 2 M HCl-containing microemulsion while keeping the other reaction conditions the same as in the sample shown in Fig. 2(a). We observe that high precursor concentration can accelerate the growth of WO₃ nanoparticles. Fig. 2(d) shows size distribution of the nanoparticles.

Batches of Pt-WO₃ nanoparticles with different Pt:W ratios were prepared using the same WO₃/C starting materials which contain amorphous WO₃ nanoparticles of 1 nm in diameter as shown in Fig. 2(a). The HRTEM images of typical Pt-WO₃ nanoparticles on carbon with 1:1 Pt:W ratio are shown in Fig. 3(a-c). Fig. 3(d) shows that the $Pt-WO_3$ nanoparticles have an average diameter of 2.5 nm and a narrow size distribution. In HRTEM images of Fig. 3(a-c), crystalline lattice regions are observed. The high intensity lattice spacings of a standard face centered cubic (fcc) Pt crystal are 0.227 nm corresponding to $\{111\}$ planes and 0.196 nm corresponding to $\{200\}$ planes. From the HRTEM images and the FFT analyses shown in the insets, only fcc lattices were observed correspond to that of platinum crystals while the rhombic or monoclinic lattices of WO₃ with large spacings were not observed. This, however, cannot rule out the presence of WO₃ domains adjacent to Pt nanoparticles. The small WO₃ nanoparticles, if present, as in Fig. 2(a) would be amorphous. In the HRTEM images of PtWO₃ samples, we cannot not observe individual small amorphous nanoparticles as in Fig. 2(a) while the corresponding EDX analysis (as shown in Fig. 5) of the same TEM sample indicates the presence of tungsten. The WO₃

Fig. 2. (a) HRTEM image of the as-synthesized WO₃ nanoparticles supported on VC X-72 carbon. (b) Histogram of particle size distribution for 100 WO₃ particles. (c) TEM images of the WO₃ nanoparticles supported on VC X-72 carbon synthesized with high precursor concentration. (d) Histogram of particle size distribution for 100 WO₃ particles.

domains are therefore most likely to be covered or overlapped with Pt fcc nanoparticles. The lattice spacings in Fig. 3(a), (b), and (c) are 0.224, 0.223, 0.224, 0.197, 0.195, 0.198 nm, which are slightly different from the standard values of fcc Pt. It is possible that the lattice spacing is affected by the presence of W and O atoms. Many nanoparticles show clear flat surfaces and edges with definite angles, which is uncommon for Pt nanoparticles as small as 2.5 nm. This suggests some influence of WO₃ domains on the lattice structure of adjacent Pt nanocrystals. It is unclear whether and how the interfaces of adjacent domains of Pt and WO₃ enhance the electrocatalytic activity for methanol oxidation.

From electrochemical surface area measurements, as discussed in later section and shown in Table 4, the Pt surface area increase with the presence of WO₃, as compared to the case of pure Pt

Fig. 3. (a)–(c) HRTEM images of Pt-WO₃ nanoparticles supported on VC X-72 carbon with 1:1 Pt:W ratio with inserted FFT analysis of the region marked by the white rectangular. (d)–(f) TEM images with inserted histograms of particle size distribution for Pt-WO₃ nanoparticles (d) Pt:W = 1:1, (e) Pt:W = 0.5:1 and (f) Pt:W = 2:1.

Table 4

The electrochemical active surface area (ECSA) of Pt sites in Pt-WO₃/C catalysts determined by H-adsorption, CO-stripping, and Cu-UPD method. (*Note: Pt surface area is calculated based on the average Pt particle sizes estimated by TEM, assuming that all Pt particles are spherical and with the same diameter. The estimated average particle sizes for Pt-WO₃/C catalysts with Pt:W ratio = 0.5:1, 1:1, and 2:1 are 1.8, 2.5, and 2.7 nm, respectively.).

Pt:W ratio in samples	ECSA of Pt (m^2g^{-1})	ECSA of Pt ($m^2 g^{-1}$)		
	By H adsorption	By CO-stripping	By Cu-UPD	
0.5:1	163	149	129	155
1:1	174	133	108	112
2:1	116	96	97	104
1:0 (E-TEK Pt/C)	89	94	86	93

Fig. 4. Thermal gravimetric analysis (TGA) of as-synthesized WO₃/C and Pt-WO₃/C electrocatalysts with different compositions.

nanoparticles. This also suggests deposition of platinum onto the small amorphous WO₃ nanoparticles.

3.2. Control of Pt:W ratio

The WO₃ and Pt weight percentage of the WO₃/C and Pt-WO₃/C catalysts were summarized in Table 3. They were determined by TGA results in Fig. 4 and Pt:W ratio from EDX analyses. It is known that ionic surfactants are difficult to remove from the surface of nanoparticles. In our synthesis, non-ionic surfactant Trition X-100 was used. TGA analysis showed that Triton X-100 was removed successfully after washing by ethanol and acetone for 4-6 times. The chemical compositions of the as-synthesized catalysts were confirmed by EDX measurements. Different regions with analytical areas of approximately 100 nm² were randomly selected and analyzed. Fig. 5 shows a typical EDX spectrum of the Pt-WO₃/C catalysts with a 1:1 Pt:W ratio. In different analytical regions the Pt:W ratio was found to be consistently 1:1. The EDX spectrum shows, in addition to Pt and W, C and O. The loading of Pt and W cannot be determined by EDX analysis as a carbon TEM grid was used. The absence of a chlorine and sodium peaks indicates that the chlorine and sodium ions were completely removed in the washing steps. Since the same starting WO₃/C materials was used to prepare various electrocatalyst of different Pt:W ratios, the Pt:W ratios in the synthesized products can also be calculated from the TGA results of different samples. The results of TGA are consistent with those analyzed by EDX.

Fig. 6 compares the Pt:W ratio in the each of the synthesized catalyst with the initial Pt:W ratio used in the precursors. The Pt:W

Fig. 5. EDX spectrum of the Pt-WO₃/C catalyst (Pt:W=1:1).

Fig. 6. Correlation of Pt:W atomic ratio in the synthesized Pt-WO₃/C catalysts to Pt:W atomic ratio in precursors. (Note: Pt:W atomic ratios in the synthesized Pt-WO₃/C catalysts are obtained from EDX analysis, as described in Section 2.)

ratio across the different areas analyzed are in close agreement. A higher W content in the initial precursor indicates that the precipitation of tungsten oxide or the adsorption onto carbon support may not be completed in the first WO₃ synthesis step. However, this incomplete reaction, does not affect the control of the Pt:W ratio in the final product and we are able to control the Pt:W ratio simply by changing the amount of Pt containing microemulsion added in the second step while using the same reaction conditions in the first WO₃ precipitation step.

3.3. Measurement of Pt active surface area

The measurement of electrochemical active surface area of the catalysts is important to evaluate electrocatalytic activity based on accessible surface. We have separately evaluated ECSA based on three methods, *viz.* electrosorption of hydrogen, CO stripping and Cu-UPD stripping.

3.3.1. ECSA by hydrogen adsorption

The active surface area of a Pt catalyst is usually determined by hydrogen adsorption/desorption assuming that a monolayer of adsorbed H formed on the surface Pt sites [58,59]. The charge associated with the H⁺ adsorption–desorption reaction on Pt sites is $210 \,\mu\text{C}\,\text{cm}^{-2}$, related to the number of platinum atoms exposed [59].

$$H^+ + Pt_{surf} + e^- \rightarrow Pt-H \ 210\,\mu C \ cm^{-2}$$
 (2)

For Pt-WO₃/C catalyst, the hydrogen desorption method (in the potential region 0-0.3 V vs. RHE) faces uncertainty because of the interaction between WO₃ and protons forming tungsten bronzes in the potential region of 0-0.55 V vs. RHE [29,36,37,60-62]. Fig. 7(a) shows the cyclic voltammograms in sulfuric acid medium of 12.8 wt% WO3 on Vulcan carbon in contrast to blank Vulcan XC-72 carbon. It can be observed that the interaction of protons and WO₃ is taking place forming tungsten bronze in the potential region of -0.64 V to -0.2 V vs. Hg/Hg₂SO₄. This overlaps with H₂ adsorption-desorption region on Pt. A possible method to evaluate the electrochemical surface area due to Pt alone is to subtract the H adsorption peaks due to pure WO_3 in Fig. 7(a). The ECSA thus determined are tabulated in Table 4. This decoupling of H sorption due to WO₃, however, is problematic since H⁺ sorption on WO₃ can be catalyzed by the presence of Pt, as pointed out by Kulesza et al. [64] and Tseung et al. [29,32,36,37]. The H-sorption determined ECSA values in Table 4 are therefore systematically higher than corresponding values determined by CO-stripping and Cu-UPD methods which are described below.

Fig. 7. Cyclic voltammograms of (a) WO_3/C and (b) Pt- WO_3/C electrocatalysts in 0.5 M H_2SO_4 at a scan rate of 20 mV s^{-1} . The current scale is normalized by the geometrical electrode area (0.196 cm⁻²).

3.3.2. ECSA by CO stripping

CO-stripping voltammetry is an alternative method for measuring the electrochemical surface area of Pt [61,62,24,63]. It is generally agreed that CO adsorbs on Pt in a 1:1 linearly bonded fashion, assuming the charge associated in the CO monolayer adsorption on Pt site is $420 \,\mu\text{C cm}^{-2}$.

$$Pt-(CO)_{ads} + H_2O \rightarrow Pt + CO_2 + 2H^+ + 2e^- 420 \ \mu C \ cm^{-2}$$
 (3)

Fig. 8 shows the CV curves for CO stripping on WO_3/C , Pt/C and $Pt-WO_3/C$ composite electrodes with various Pt:W ratio. The oxidation peak for CO on $Pt-WO_3/C$ (1:1) electrode is 46 mV compared to 96 mV (vs. Hg/Hg_2SO_4) for Pt/C from E-TEK. For the $Pt-WO_3/C$ (0.5:1) and (2:1) electrodes, the CO oxidation peaks were also negatively shifted, but to a smaller extent of about 30 mV. These results suggest that the WO_3 nanoparticles promote CO oxidation on Pt [33,39,40]. The mechanism can be described in the following reaction:

$$Pt-(CO)_{ads} + Pt-(OH)_{ads} + WO_3 \rightarrow 2Pt + CO_2 + H_xWO_3$$
(4)

Jayaraman et al. [27] speculated that CO can also oxidize on the surface of WO₃. They found that tungsten changes oxidation states between +6 and +5, providing the oxygen species required for the removal of CO [27]. From Fig. 8(a), no CO stripping peak is observed in pure WO₃ sample. This may be due to little CO adsorption on WO₃ during the CO pretreatment step, rather than inability of CO oxidation on WO₃ surface. The absence of CO stripping current in WO₃ enables a distinct evaluation of Pt surface area available to CO sorption. The complication of WO₃ on amount of CO stripping from Pt still exists, however, since CO adsorption at E = 0.1 V vs. RHE on Pt-WO₃ nanoparticles yields production of CO₂ at E = 0.1 V vs. RHE, as nicely demonstrated by Micoud et al. with FTIR [39]. The method of stripping under-potential deposited copper is therefore applied as described below.

3.3.3. ECSA by Cu-UPD stripping

Using CO-stripping voltammetry to determine the electrochemical surface area of Pt has the ambiguity in the adsorption mode of CO on Pt site in the presence of alloyed metal/metal oxide, whether CO is linearly bonded or bridge-bonded [57]. Green and Kucernak reported the determination Pt and Ru surface areas in Pt-Ru alloys by the Cu-UPD method [57]. In this method, a monolayer of Cu is underpotential deposited, and from the stripping voltammograms, the surface area of Pt and Ru can be estimated separately. Jayaraman and McFarland later applied this method on Pt-WO₃ mixed catalyst system to estimate the Pt surface area [27]. The copper stripping reaction is a two-electron-transfer reaction in the potential region of 0.3–0.8 V vs. RHE, and the charge associated with this reaction is 420 μ C cm⁻² [27,54].

$$Cu_{upd} \rightarrow Cu^{2+} + 2e^{-}$$
 420 µC cm⁻² (5)

The Cu-UPD stripping method proves to be a viable method for Pt surface area determination in Pt-WO₃ catalysts [27]. Fig. 9 shows the Cu underpotential deposition/stripping experiments on WO₃/C, Pt/C (E-TEK) and Pt-WO₃/C composite electrodes. In Fig. 9(a), the curve 1 is the cyclic voltammogram of the WO₃/C electrode in 0.1 M H_2SO_4 . Curves 2 and 3 are the cyclic voltammograms of the WO_3/C electrode in 0.002 M CuSO₄/0.1 M H₂SO₄ with different potential scan windows. It can be observed that curve 3 overlapped with curve 1, indicating no underpotential deposition or stripping of Cu occurs on WO_3/C electrode in the potential region of -0.34V to 0.46 V vs. Hg/Hg₂SO₄. Notably, Fig. 9(b) shows the Cu-UPD on Pt/C electrode. The anodic peaks indicate that underpotential deposition of Cu has occurred on Pt during the initial holding potential at -0.34 V vs. Hg/Hg₂SO₄. These results show that Cu-UPD method can be used to determine the Pt surface area in Pt-WO₃ mixed catalyst system.

The electrochemical surface areas of Pt in Pt-WO₃/C catalysts determined by hydrogen adsorption, CO-stripping, and Cu-UPD stripping methods are summarized in Table 4. ECSA was calculated by $Q/[Pt]Q^0$, where Q is the charge involved in the adsorption and desorption reaction occurred on the surface of Pt while [Pt] represented the Pt mass loading on the electrode. Q^0 is the monolayer adsorption charge. It is notable that the surface areas of Pt estimated by hydrogen adsorption method were larger than by using CO-stripping and Cu-UPD method, possibly due to the involvement of H_xWO₃ in the sensitivity to potential limits of adsorption.

3.3.4. Estimation of ECSA from TEM images

Pt surface area can also be estimated from TEM images shown in Fig. 3. The nanoparticles within each sample are assumed to be pure Pt, perfect spheres, and uniform in size as determined by the peak of the particle size distributions of Fig. 3(d), (e) and (f). The surface areas thus determined are listed in the last column of Table 4. For a 3 nm diameter pure Pt nanoparticle, the estimated Pt surface area is $93 \text{ m}^2 \text{ g}^{-1}$ Pt. The ECSA of the E-TEK Pt/C sample measured electrochemically has values between 89 and 94 m² g⁻¹ Pt which is close to this TEM estimation. In addition to the fully exposed perfect spheres of uniform size, other uncertainties exist in this approach. It is not clear whether only Pt regions are visible in TEM images of Fig. 3, and whether Pt forms its own particle on top of WO₃ domain; or WO₃ are integrated into PtWO₃ nanoparticles. There is absence of any characteristic feature of WO₃ lattice in the TEM images and the corresponding FFT patterns in Fig. 3. The WO₃ however, may be present in amorphous form as in Fig. 2(a). The TEM particle size can be larger than the size of Pt regions and the corresponding calculated surface area will be an underestimation since Pt can be more dispersed. On the other hand, the assumption of a fully exposed sphere is an over-estimation since a good part of the particle can be embedded in the support. The Pt surface area estimated by TEM which is a non-electrochemical measurement, will not be the same

Fig. 8. CO_{ads} stripping voltammograms recorded at 20 mV s⁻¹ in 0.5 M H₂SO₄ for (a) WO₃/C and (b) 10 wt% Pt/C from E-TEK, and (c)-Pt-WO₃/C electrocatalysts with different Pt:W ratios. Solid black lines show the first scan (*i.e.*, the CO stripping peak) while the dotted lines show the second scan (*i.e.*, the background CV curves of the electrode in 0.5 M H₂SO₄). The current scale is normalized by the geometrical electrode area (0.196 cm⁻²).

as ECSA area, but serving as a reference. The Cu-UPD values are taken as more reliable representations of ECSA. The deviations in ECSA values determined by different methods are small in the case of pure Pt nanoparticles and increase with W content.

3.4. Methanol oxidation measurements

Performance of the electrocatalysts was evaluated for oxidation of methanol by performing cyclic voltammetry and chronopotentiometry experiments. The electrochemical behavior of Pt-WO₃/C composite catalysts with three different Pt:W ratios (0.5:1, 1:1, and 2:1) were compared to a commercial E-TEK 10 wt% Pt/C catalyst. Fig. 10 shows the cyclic voltammograms of Pt-WO₃/C and E-TEK Pt/C composite catalysts for methanol oxidation in 1.0 M CH₃OH + 0.5 M H₂SO₄ electrolyte and the current reported was normalized by Pt mass and ECSA of Pt estimated by Cu-UPD method. Each voltammogram was recorded after 10 initial cycles. Some characteristic parameters of the CVs are summarized in Table 5, in which $E_{1/2}$ is the anodic half-peak potential, j_{mass} and j_{ECSA} represent activities based on Pt-mass and Pt-surface-area, respectively. No current peak was observed in the CV curve for WO₃/C indicating the absence of catalytic activity for methanol oxidation. For the Pt-WO₃ catalysts, oxidation of methanol starts from -0.1 V vs. Hg/Hg₂SO₄ and reaches a peak at about 0.2 V vs. Hg/Hg₂SO₄. The highest activity is observed in the Pt-WO₃ electrocatalyst with 1:1 Pt:W atomic ratio, whether based on Pt-mass or Pt ECSA. The anodic peak current density of 1:1 Pt-WO₃/C was 271 mA mg⁻¹ Pt which is 1.4 times that of E-TEK Pt/C catalyst.

A constant current experiment was conducted to evaluate steady-state methanol oxidation by the best performing 1:1 Pt:W ratio catalyst. The chronopotentiogram in Fig. 11 was performed at a 110 mA mg^{-1} Pt and a very steady oxidizing potential can be achieved for over 6 min.

3.5. Pt:W ratio and role of WO₃ in Pt activity

For the composite Pt-WO₃ catalyst synthesized by the microwave-assisted microemulsion method, the presence of WO₃ can physically and chemically affects the catalytic performance of Pt nanoparticles. As shown in Table 4, the ECSA of various Pt-WO₃, determined by different methods, all show higher areas with higher W content. As discussed earlier, the ECSA determined by Cu-UPD stripping is more reliable and least chemically affected. The Cu-UPD value is $129 \text{ m}^2 \text{ g}^{-1}$ Pt for the Pt:W=0.5:1 sample,

Fig. 9. (a) Cu deposition experiments on WO₃/C electrode: (1) Cyclic voltammograms of WO₃/C in 0.1 M H₂SO₄ at a scan rate of 20 mV s⁻¹ and (2) (3) Cyclic voltammograms of WO₃/C in 0.02 M CuSO₄/0.1 M H₂SO₄ at a scan rate of 20 mV s⁻¹ with different potential scan windows. (b)–(e) Cu-UPD experiments on Pt-WO₃/C composite electrodes with different Pt:W ratios. Cu-stripping voltammogram (Solid line) was recorded in 0.002 M CuSO₄/0.1 M H₂SO₄ at a scan rate of 20 mV s⁻¹ with potential held at -0.34 V vs. Hg/Hg₂SO₄ for 60 s before the start of stripping to 0.46 V vs. Hg/Hg₂SO₄. The dotted lines show the control experiments of CV in 0.1 M H₂SO₄ with a larger potential window showing no stripping current. The current scale is normalized by the geometrical electrode area (0.196 cm⁻²).

decreased to 97 m² g⁻¹ Pt for the Pt:W = 2:1 sample and a value of 86 m² g⁻¹ Pt in for pure Pt on carbon. This enhancement of the Pt-WO₃/C catalysts is due to better dispersion of Pt with smaller particle size (3.1 nm of pure Pt particles *vs.* 1.8 of 0.5:1 Pt:W catalyst as estimated by TEM). The chemical enhancement effect is evident since there is enhanced H sorption on WO₃, negative shifts in CO oxidation, and the ECSA values determined by other methods are higher than the Cu-UPD value of 129 m² g⁻¹ Pt in the case of Pt:W = 0.5:1 while more or less in agreement for pure Pt nanoparticles.

After normalization to ECSA of Pt, the specific activities of the Pt-WO₃ samples are similar, as shown in the anodic forward scans of Fig. 10(b). The peak current densities per Pt area j_{ECSA} are compared in Table 5. The case of Pt:W = 1:1 still gives the best specific activity compared to 0.5:1 and 2:1, indicating an optimum ratio of Pt to WO₃. The onset potentials were similar among the Pt-WO₃ samples, but lowest for Pt:W = 0.5:1 with value of -0.17 V (vs. Hg/Hg₂SO₄). This compares well to the onset potential of Pt/C (E-TEK) at -0.1 V (vs. Hg/Hg₂SO₄). The order of 0.5:1 < 1:1 < 2:1 < Pt/C. These

Table 5

Electrocatalytical performance data from cyclic voltammograms (Fig. 10) of electrodes with different Pt:W ratios. *Note that $E_{1/2}$ is the anodic half-peak potential, j_{mass} is the specific current density normalized by Pt mass, j_{ECSA} is the specific current density normalized by the electrochemical active surface area (ECSA) of Pt obtained by Cu-UPD method.

Pt:W ratio in samples	Forward anodic peak		
	<i>E</i> _{1/2} <i>vs.</i> (Hg/Hg ₂ SO ₄) (V)	j_{mass} (mAmg ⁻¹)	j_{ECSA} (mA cm ⁻² -Pt)
0.5:1	0.017	256	0.198
1:1	0.013	271	0.251
2:1	0.047	206	0.213
ETEK 10% Pt	0.028	187	0.217

Fig. 10. Cyclic voltammograms of the Pt-WO₃/C electrocatalysts with different Pt:W ratios in 1.0 M CH₃OH+0.5 M H₂SO₄ at room temperature. Scan rate is 20 mV s^{-1} . Current scale is normalized by the Pt-mass (a) and by the Pt surface area estimated from Cu-UPD stripping experiments (b).

negative shifts suggest some chemical effects of WO_3 in promoting methanol oxidation on Pt.

Methanol oxidation reaction is a six-electron-transfer reaction. It is generally thought that methanol oxidation over Pt occurs when methanol molecules (CH₃OH) adsorbed on Pt and subsequently dissociate to form a Pt-(CHO)_{ads} intermediate. This intermediate further reacts with Pt-(OH)_{ads} to give CO₂ and H⁺. The reaction mechanism is proposed by several researchers in literatures [36,37,64], as shown in the following chemical reactions:

Normal Pt catalysis mechanisms:

$$Pt + H_2O \rightarrow Pt-(OH)_{ads} + H^+ + e^-$$
(6)

Fig. 11. Chronopotentiogram of methanol oxidation on $Pt-WO_3/C$ (1:1 Pt:W ratio) at 110 mA mg⁻¹ Pt. Electrolyte is 0.5 M H₂SO₄ containing 1.0 M CH₃OH.

Chemically, the abundant interfaces between Pt and WO₃ nanoparticles enhance the hydrogen spillover effects. Hydrogen spill over onto the surface of WO₃ and form hydrogen tungsten bronze (H_xWO_3), free the active Pt sites for further chemisorption of methanol molecules and make the dehydrogenation of methanol molecules adsorbed on Pt sites more effective [29,30,41]. In addition, WO₃ also takes part in removal of CO. The oxophilic nature of the oxide helps in removing the adsorbed intermediates during the methanol oxidation [30]. Since CO removal is the rate-limiting step of the methanol oxidation [27], this intrinsic improvement in CO oxidation will lead to an overall improved performance of Pt-WO₃ catalysts for methanol oxidation.

4. Conclusions

Nanoparticle size and composition control of a Pt-WO₃/C catalyst was achieved through the reaction of a water-oil microemulsion using microwave irradiation in a two-step process: WO₃ nanoparticles were first deposited on Vulcan XC-72 carbon by mixing of two microemulsion systems containing HCl and WO₄²⁻, to yield WO₃/C, followed by the subsequent addition of Pt by microwave irradiation of a Pt-containing microemulsion. TEM images showed homogenous distribution of WO₃ nanoparticles on the carbon support with an average size of 1 nm. Under microwave irradiation, butan-1-ol, the co-surfactant of the microemulsion system, played a role of reducing agent and successfully reduced hexachloroplatinic acid to Pt nanoparticles. The PtWO₃ nanoparticles produced in this step had an average size of 2.5 nm. EDX analysis at different locations confirmed the Pt:W ratio of the as-synthesized Pt-WO₃/C catalyst was homogeneous. The electrochemical experiments showed that these Pt-WO₃/C nanoparticles have high catalytic activity toward methanol oxidation at room temperature (22 °C). Hydrogen adsorption, CO-stripping and Cu-UPD stripping methods were used to estimate electrochemical active surface area of Pt in the Pt-WO₃/C catalysts, in which Cu-UPD method is relative more reliable due to the involvement of WO₃ component. Pt-WO₃/C electrocatalysts with large WO₃ component present higher Pt surface area, suggesting that WO₃ nanoparticles supported on carbon greatly improve the distribution of Pt nanoparticles. CO-stripping experiments show an intrinsic enhancement of CO oxidation for Pt-WO₃/C catalysts by comparing the onset potential of CO stripping [27,39,40]. The methanol oxidation measurement shows that a 1:1 Pt:W ratio catalyst exhibits the highest Pt-mass current density of 271 mA mg $^{-1}$, 1.4 times higher than that of commercial E-TEK catalyst. However, the specific catalytic activities based on Pt-surface-area appear less difference. Therefore, the enhancement in catalytic activity mainly comes from two parts: the physical modification of Pt from WO₃ nanoparticles, such as surface area, and the chemical effects, such as improved performance on hydrogen spillover and CO oxidation.

Acknowledgments

This work was supported by the Hong Kong Research Grants Council (GRF HKU 700209P), and the HKU Development Fund for the Initiative of Clean Energy and Environment. We thank the University of Hong Kong Electron Microscope Unit for the use of TEM and EDX facilities. The HRTEM work was performed in MCPF of HKUST.

References

- [1] L. Carrette, K.A. Friedrich, U. Stimming, ChemPhysChem 1 (2000) 162.
- [2] M. Winter, R.J. Brodd, Chemical Reviews 104 (2004) 4245.
- [3] N. Kizhakevariam, E.M. Stuve, Surface Science 286 (1993) 246.

- [4] S. Mukerjee, R.C. Urian, Electrochimica Acta 47 (2002) 3219.
- [5] L.G.S. Pereira, V.A. Paganin, E.A. Ticianelli, Electrochimica Acta 54 (2009) 1992.
- [6] C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, Journal of American Chemical Society 126 (2004) 8028.
- [7] W.M. Chen, G.Q. Sun, Z.X. Liang, Q. Mao, H.Q. Li, G.X. Wang, Q. Xin, H. Chang, C.H. Pak, D.Y. Seung, Journal of Power Sources 160 (2006) 933.
- [8] N.P. Lebedeva, G.J.M. Janssen, Electrochimica Acta 21 (2005) 29.
- [9] L. Li, B.Q. Xu, Acta Physico-Chimica Sinica 21 (2005) 1132.
- [10] X. Li, G. Chen, J. Xie, L.J. Zhang, D.G. Xia, Z.Y. Wu, Journal of Electrochemical Society 157 (2010) B580–B584.
- [11] X.Z. Cui, J.L. Shi, L.X. Zhang, M.L. Ruan, J.H. Gao, Carbon 47 (2009) 186.
- [12] C.W. Xu, Y.Z. Su, L.L. Tan, Z.L. Liu, J.H. Zhang, S.A. Chen, S.P. Jiang, Electrochimica Acta 54 (2009) 6322.
- K.R. Lee, M.K. Jeon, S.I. Woo, Applied Catalysis B-Environmental 91 (2009) 428.
 L.X. Yang, R.G. Allen, K. Scott, P. Christenson, S. Roy, Journal of Power Sources 137 (2004) 257.
- [15] T. Kawaguchi, Y. Rachi, W. Sugimoto, Y. Murakami, Y. Takasu, Journal of Applied Electrochemistry 36 (2006) 1117.
- [16] F. Peng, C.M. Zhou, H.J. Wang, H. Yu, J.H. Liang, J.A. Yang, Catalysis Communications 10 (2009) 533.
- [17] K. Drew, G. Girishkumar, K. Vinodgopal, P.V. Kamat, Journal of Physical Chemistry B 109 (2005) 11851.
- [18] K.W. Park, S.B. Han, J.M. Lee, Electrochemistry Communications 9 (2007) 1578.
- [19] C.L. Campos, C. Roldan, M. Aponte, Y. Ishikawa, C.R. Cabrera, Journal of Electroanalytical Chemistry 581 (2005) 206.
- [20] J.W. Guo, T.S. Zhao, J. Prabhuram, R. Chen, C.W. Wong, Journal of Power Sources 156 (2006) 345.
- [21] N. Tsiouvaras, M.V. Martinez-Huerta, R. Moliner, M.J. Lazaro, J.L. Rodriguez, E. Pastor, M.A. Pena, J.L.G. Fierro, Journal of Power Sources 186 (2009) 299.
- [22] Z. Jusys, T.J. Schmidt, L. Dubau, K. Lasch, L. Jorissen, J. Garche, R.J. Behm, Journal of Power Sources 105 (2002) 297.
- [23] X.Z. Cui, F.M. Cui, Q.J. He, L.M. Guo, M.L. Ruan, J.L. Shi, Fuel 89 (2010) 372.
- [24] J.L. Ye, J.G. Liu, Z.G. Zou, J. Gu, T. Yu, Journal of Power Sources 195 (2010) 2633.
- [25] X.Z. Cui, L.M. Guo, F.M. Cui, Q.J. He, J.L. Shi, The Journal of Physical Chemistry C 113 (2009) 4134.
- [26] K.Y. Tsang, T.C. Lee, J.W. Ren, K.Y. Chan, H.Z. Wang, H.T. Wang, Journal of Experimental Nanoscience 1 (2006) 113.
- [27] S. Jayaraman, T.F. Jaramillo, S.H. Baeck, E.W. McFarland, The Journal of Physical Chemistry B 109 (2005) 22958.
- [28] B. Rajesh, V. Karthik, S. Karthikeyan, K.R. Thampi, J.M. Bonard, B. Viswanathan, Fuel 81 (2002) 2177.
- [29] B.S.T. Hobbs, A.C.C. Tseung, Nature 222 (1969) 556.
- [30] A.C.C. Tseung, K.Y. Chen, Catalysis Today 38 (1997) 439.
- [31] A.C.C. Tseung, B.S. Hobbs, Journal of Electrochemical Society 117 (1970) C241.
 [32] B.S. Hobbs, A.C.C. Tseung, Journal of Electrochemical Society 122 (1975) 1174.
- [32] B.S. Hobbs, A.C.C. Iseung, Journal of Electrochemical Society 122 (1973) 1174. [33] F. Micoud, F. Maillard, A. Gourgaud, M. Chatenet, Electrochemistry Communi-
- cations 11 (2009) 651. [34] K.W. Park, J.H. Choi, K.S. Ahn, Y.E. Sung, The Journal of Physical Chemistry B 108
- [34] K.W. Park, J.H. Choi, K.S. Anni, Y.E. Sung, The Journal of Physical Chemistry B 108 (2004), 108, 5989.

- [35] P.J. Barczuk, H. Tsuchiya, J.M. Macak, P. Schmuki, D. Szymanska, O. Makowski, K. Miecznikowski, P.J. Kulesza, Electrochemical and Solid-State Letters 9 (2006) E13.
- [36] B.S. Hobbs, A.C.C. Tseung, Journal of Electrochemical Society 119 (1972) 580.
- [37] B.S. Hobbs, A.C.C. Tseung, Journal of Electrochemical Society. 120 (1973) 766.
- [38] A.C.C. Tseung, P.K. Shen, K.Y. Chen, Journal of Power Sources 61 (1996) 223.
- [39] F. Micoud, F. Maillard, A. Bonnefont, N. Job, M. Chatenet, Physical Chemistry Chemical Physics 12 (2010) 1182.
 - [40] F. Maillard, E. Peyrelade, Y. Soldo-Olivier, M. Chatenet, E. Chainet, R. Faure, Electrochimica Acta 52 (2007) 1958.
- [41] X.Z. Cui, J.L. Shi, H.R. Chen, L.X. Zhang, L.M. Guo, J.H. Gao, J.B. Li, The Journal of Physical Chemistry B 112 (2008) 12024.
- [42] Z.G. Zhao, M. Miyauchi, Angewandte Chemie International Edition 47 (2008) 7051.
- [43] J. Rajeswari, B. Viswanathan, T.K. Varadarajan, Material Chemistry and Physics 106 (2007) 168.
- [44] X. Zhang, K.Y. Chan, J.K. You, Z.G. Lin, A.C.C. Tseung, Journal of Electroanalytical Chemistry 430 (1997) 147.
- [45] S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, A.C. Dillon, Advanced Materials 18 (2006) 763.
- [46] C.M. White, J.S. Jang, S.H. Lee, J. Pankow, A.C. Dillon, Electrochemical and Solid-State Letters 13 (2010) B120.
- [47] L.F. Xiong, T. He, Chemistry of Materials 18 (2006) 2211.
- [48] S. Fardindoost, A.I. Zad, F. Rahimi, R. Ghasempour, International Journal of Hydrogen Energy 35 (2010) 854.
- [49] A. Phuruangrat, D.J. Ham, S.J. Hong, S. Thongtem, J.S. Lee, Journal of Materials Chemistry 20 (2010) 1683.
- [50] D. Tanaka, Y. Oaki, H. Imai, Chemical Communications 46 (2010) 5286.
- [51] M.B. Mohamed, K.M. AbouZeid, V. Abdelsayed, A.A. Aljarash, M.S. El-Shall, ACS Nano 4 (2010) 2766.
- [52] M. Tsuji, N. Miyamae, K. Matsumoto, S. Hikino, T. Tsuji, Chemistry Letters 34 (2005) 1518.
- [53] P.S.S. Prasad, N. Lingaiah, S. Chandrasekhar, K.S.R. Rao, P.K. Rao, K.V. Raghavan, F.J. Berry, L.E. Smart, Catalysis Letters 66 (2000) 201.
- [54] D.L. Boxall, C.M. Lukehart, Chemistry of Materials 13 (2001) 806.
- [55] Z.H. Liang, Y.J. Zhu, Chemistry Letters 33 (2004) 1314.
- [56] S.C. Padmanabhan, D. Ledwith, S.C. Pillai, D.E. McCormack, J.M. Kelly, Journal of Materials Chemistry 19 (2009) 9250.
- [57] C.L. Green, A. Kucernak, The Journal of Physical Chemistry B 106 (2002) 11446.
- [58] M. DeBlois, J. Lessard, G. Jerkiewicz, Electrochimica Acta 50 (2005) 3517.
- [59] A. Essalik, K. Amouzegar, O. Savadogo, Journal of Applied Electrochemistry 25 (1995) 404.
- [60] R. Ganesan, J.S. Lee, Journal of Power Sources 157 (2006) 217.
 [61] K.Y. Chen, Z. Sun, A.C.C. Tseung, Electrochemical and Solid-State Letters 3 (2000)
- Internet and solution of the second se
- E9.
- [63] L.X. Yang, C. Bock, B. MacDougall, J. Park, Journal of Applied Electrochemistry 34 (2004) 427.
- [64] P.J. Kulesza, L.R. Faulkner, Journal of Electroanalytical Chemistry 259 (1989) 81.