Reaction of CpW(CO)₂(µ-PPh₂)Mo(CO)₅ and $Fe_2(\mu - S_2)(CO)_6$: Unusual Fragmentation and Coordination of $Fe_2(\mu - S_2)(CO)_6$

Md. Munkir Hossain, Hsiu-Mei Lin, and Shin-Guang Shyu*

Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China

Received March 11, 2004

Reaction of $Fe_2(\mu-S_2)(CO)_6$ with $CpW(CO)_2(\mu-PPh_2)Mo(CO)_5$ at dichloromethane reflux afforded heterotrimetallic clusters CpW(u-PPh₂)Mo(CO)₃(u-CO)(u₃-S)₂Fe₂(CO)₅ (1), Cp(CO)W- $(\mu$ -PPh₂)Mo(CO)₃ $(\mu_3$ -S)₂Fe(CO)₃ (**2**), CpW(μ -PPh₂)Mo(CO)₃ $(\mu_3$ -S)₂Fe₂ $(\mu$ -CO)(CO)₄ (**3**), and CpW- $(CO)(\mu_3-S)_2Fe(\mu-PPh_2)Fe(CO)_4Mo(\mu_3-S)_2Fe_2(CO)_6$ (4). Thermolysis of 1 in dichloromethane produced **3**, which was also obtained by the reaction of **2** with $Fe_2(CO)_9$ at dichloromethane reflux. Reflux of a benzene solution of **3** with norbornadiene (nbd) produced $CpW(\mu-PPh_2)$ - $Mo(CO)(nbd)(\mu_3-S)_2Fe_2(\mu-CO)(CO)_4$ (5), but the typical reaction without nbd afforded a benzene substitution product, $CpW(\mu-PPh_2)Mo(\eta^6-C_6H_6)(\mu_3-S)_2Fe_2(\mu-CO)(CO)_4$ (6). Molecular structures of 1-6 were determined by single-crystal X-ray diffraction analyses. Cluster 1 has bitetrahedral geometry, where the Fe_2MoW core is intercepted by an Fe-W bond to FeMoW and Fe₂W units, and each unit is capped by a μ_3 -S atom. Cluster **2** is a rare example of square pyramidal geometry with the FeS₂W plane capped by a Mo atom, whereas cluster **3** consists of an Fe₂MoW tetrahedron core with each FeMoW face capped by a μ_3 -S atom. Clusters 4-6 possess an Fe₂MoW core geometry similar to that of **3**, where carbonyl ligands on the Mo site were replaced by $Fe_2(\mu-S_2)(CO)_6$, nbd, and benzene, respectively.

Introduction

The simplest homo- and hetero-dichalcogens of iron carbonyl, Fe₂(μ -EE')(CO)₆ (E = E' and E \neq E'; E, E' = S, Se, Te), are now well established.¹ Among them Fe₂- $(\mu$ -S₂)(CO)₆, which was first reported by Hieber in 1958,1a has been extensively investigated over the years.²⁻⁵ It has been used as a building block in cluster growth reactions, and the sulfur bridges in the resulting clusters provide extra stability. Its chemistry has been generally initiated by the sulfur atom, through cleavage of its potentially reactive S-S bond or utilization of lone pairs on sulfur atoms. Reactions have also been reported

that proceed through Fe-Fe bond scission.^{1b} Even its Fe-S linkage has been exploited for the synthesis of biologically related compounds that could mimic metalloenzymes involved in biological redox processes and in nitrogenase.⁶ Recently it has also been used to prepare macrocycles that contain butterfly transition metal cluster cores.⁷ The inorganic disulfide $Fe_2(\mu - S_2)$ -(CO)₆ is very similar in reactivity to organic disulfides RSSR toward reduction of S-S bonds by sodium metal and by metal hydrides, nucleophilic cleavage by organolithium and Grignard reagents, and insertion of coordinatively unsaturated mononuclear low-valent transition metals.^{1b,5a,8} Insertion of single- and triple-bonded homodinuclear species into the S-S bond of $Fe_2(\mu-S_2)$ -(CO)₆ has been also reported.⁹ In contrast, insertion reaction of such heterodinuclear species has not been

(7) Song, L.-C.; Fan, H.-T.; Hu, Q.-M. J. Am. Chem. Soc. 2002, 124, 4566.

^{(1) (}a) Hieber, W.; Gruber, J. Z. Anorg. Allg. Chem. **1958**, 296, 91. (b) Seyferth, D.; Henderson, R. S.; Song, L.-C. Organometallics **1982**, *1*, 125. (c) Lesch, D. A.; Rauchfuss, T. B. Inorg. Chem. **1981**, 20, 3583. (d) Mathur, P. Chakrabarty, D.; Hossain, Md. M.; Rashid, R. S.; Rugmini, V.; Rheingold, A. L. Inorg. Chem. **1992**, 31, 1106. (e) Mathur, P. Chakrabarty, D.; Hossain, Md. M. J. Orgnomet. Chem. **1991**, 401, 167. (f) Mathur, P.; Chakrabarty, D.; Hossain, Md. M.; Rashid, R. S. J. Orgnomet. Chem. 1991, 420, 79.

<sup>J. Orgnomet. Chem. 1991, 420, 79.
(2) Whitmire, K. H. In Comprehensive Organometallic Chemistry II; Willkinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon Press: New York, 1995; Vol. 7, Chapter 1, Section 1.11.2.2, p 62.
(3) (a) Adams, R. D. Polyhedron 1985, 4, 2003. (b) Adams, R. D.; Babin, J. E.; Mathur, P.; Natarajan, K.; Wang, J.-G. Inorg. Chem. 1989, 28, 1440. (c) Adams, R. D.; Wang, J.-G. Polyhedron 1989, 8, 1437. (d) Adams R. D.; Babin, J. E.; Estrada, J.; Wang, J.-G.; Hall, M. B.; Low, A. A. Polyhedron 1989, 8, 1885. (e) Mathur, P.; Mukhopadhyay, S.; Ahmed, M. O.; Lahiri, G. K.; Chakraborty, S.; Walawalker, M. G. Organometallics 2000, 19, 5787. (f) Mathur, P.; Mukhopadhyay, S.; Lahiri, G. K.; Chakraborty, S. B.; Chatterjee, S.; Trivedi, R.; Mathur, P. Angew. Chem., Int. Ed. 2001, 40, 376.
(4) (a) Westmeyer, M. D.; Rauchfuss, T. B. Inorg. Chem. 1996, 35,</sup>

 ^{(4) (}a) Westmeyer, M. D.; Rauchfuss, T. B. *Inorg. Chem.* 1996, *35*, 7140. (b) Westmeyer, M. D.; Galloway, C. P.; Rauchfuss, T. B. *Inorg. Chem.* 1994, *33*, 4615. (c) Day, V. W.; Lesch, D. A.; Rauchfuss, T. B. *J. Am. Chem. Soc.* 1982, *104*, 1290.

^{(5) (}a) Cowie, M.; DeKock, R. L.; Wagenmaker, T. R.; Seyferth, D.; Henderson, R. S.; Gallagher, M. K. Organometallics **1989**, *8*, 119. (b) Song, L.-C.; Lu, G. L.; Hu, Q.-M.; Fan, H.-T.; Chen, Y.; Sun, J. Organometallics 1999, 12, 3258. (c) Song, L. C.; Kidiata, M.; Wang, (d) Bose, K. S.; Sinn, E.; Averill, B. A. Organometallics **1984**, *3*, 1126. (e) Don, M. J.; Yang, K. Y.; Bott, S. G.; Richmond, M. G. J. Coord. Chem. 1996, 40, 273

⁽⁶⁾ King, R. B.; Bitterwolf, T. E. Coord. Chem. Rev. 2000, 206-207, 563.

^{(8) (}a) Seyferth, D.; Henderson, R. S. J. Am. Chem. Soc. 1979, 101, (a) Seyferth, D.; Henderson, R. S.; Song, L.-C. J. Orgnomet. Chem.
 1980, 192, C1.

^{(9) (}a) Vahrenkamp, H.; Wucherer, E. J. *Angew. Chem., Int. Ed. Engl.* **1981**, *20*, 680. (b) Braunstein, P.; Jud, J.-M.; Tiripicchio, A.; Engl. 1961, 20, 660. (b) Braunstein, P.; Jud, J.-M.; Hirpitchio, A.;
 Camellini, M. T.; Sappa, E. Angew. Chem., Int. Ed. Engl. 1982, 21,
 307. (c) Braunstein, P.; Tiripicchio, A.; Camellini, M. T.; Sappa, E.
 Inorg. Chem. 1981, 20, 358. (d) Williams, P. D.; Curtis, M. D.; Duffy,
 D. N.; Butler, W. M. Organometallics 1983, 2, 165.

Scheme 1

reported. Here we report an insertion reaction between $Fe_2(\mu-S_2)(CO)_6$ and the phosphido-bridged heterodinuclear $CpW(CO)_2(\mu-PPh_2)Mo(CO)_5$, which has a weak Mo-W bond and labile CO ligands on Mo for further reaction.¹⁰ This reaction leads to an unusual fragmentation and coordination of $Fe_2(\mu-S_2)(CO)_6$, both of which, to our knowledge, are the first examples of such reactivity of the diiron complex. The substitution reactions on **3** by norbornadiene and benzene are also described.

Results and Discussion

Reaction of Fe₂(\mu-S₂)(CO)₆ with CpW(CO)₂(\mu-PPh₂)Mo(CO)₅. When a dichloromethane solution of Fe₂(μ -S₂)(CO)₆ and CpW(CO)₂(μ -PPh₂)Mo(CO)₅ was refluxed for about 20 h, clusters 1–4 and a known

compound $Fe_3(\mu-S)_2(CO)_9$ were obtained (Scheme 1). Control experiments established that $Fe_2(\mu-S_2)(CO)_6$ alone did not convert to $Fe_3(\mu-S)_2(CO)_9$ and that $Fe_3(\mu-S)_2(CO)_9$

S)₂(CO)₉ did not react with CpW(CO)₂(μ -PPh₂)Mo(CO)₅ under identical conditions; therefore, they formed di-

rectly from $Fe_2(\mu-S_2)(CO)_6$ and $Cp\dot{W}(CO)_2(\mu-PPh_2)\dot{M}o-(CO)_5$.

Cluster **1** has a bitetrahedral geometry (Figure 1) with FeMoWS and Fe₂WS tetrahedra, where each S atom is coordinated to metals in a μ_3 -S mode. The molecular structure of **2** (Figure 2) reveals a square pyramidal geometry, with the FeS₂W plane capped by a Mo atom. Each sulfur atom is coordinated to FeWMo atoms in a μ_3 -S mode. There are a few examples of heterobimetallic square pyramidal clusters with an Fe₂M(μ_3 -S)₂ core (M = Co, W, Ru),¹¹ which were

obtained by insertion of coordinatively unsaturated metal species into the S–S bond of $Fe_2(\mu$ -S₂)(CO)₆. Cluster **2** is a rare example of a heterotrimetallic cluster

Figure 1. ORTEP drawing of 1. Hydrogen atoms are omitted.

Figure 2. ORTEP drawing of 2. Hydrogen atoms are omitted.

⁽¹⁰⁾ Shyu, S.-G.; Hsu, J.-Y.; Lin, P.-J.; Wu, W.-J.; Peng, S.-M.; Lee, G.-H.; Wen, Y.-S. *Organometallics* **1994**, *13*, 1699.

 ^{(11) (}a) Adams, R. D.; Babin, J. E.; Wang, J.-G.; Wu, W. Inorg. Chem.
 1989, 28, 703. (b) Wakatsuki, Y.; Yamazaki, H.; Chen, G. J. Organomet. Chem. **1988**, 347, 151. (c) Mathur, P.; Chakrabarty, D.; Mavunkal, I. J. J. Cluster Sci. **1993**, 4, 351.

Figure 3. ORTEP drawing of 3. Hydrogen atoms are omitted.

Figure 4. ORTEP drawing of 4. Hydrogen atoms are omitted.

with square pyramidal geometry. There were no reports of square pyramidal heterotrimetallic clusters with bridging sulfur owing to a lack of availability of heterodinuclear building blocks such as $MM'(\mu$ -S₂)(CO)₆ except the recent reports of the CpMnCo(μ -S₂)(CO)₅.¹² The tetrametallic cluster **3** consists of an Fe₂MoW tetrahedron core with each FeMoW face capped by a μ_3 -S atom. Its core structure (Figure 3) resembles more that of Cp₂Mo₂Fe₂Se₂(CO)₇¹³ and Cp₂Mo₂Fe₂Te₂(CO)₇¹⁴ than that of Cp₂Mo₂Fe₂S₂(CO)₈.^{9b,d}

The novel hexametallic cluster **4** has a core structure (Figure 4) similar to that of **3**, but with the bridging ligands PPh₂ on MoW and CO on iron atoms having interchanged their positions. Ligand PPh₂ bridges the iron atoms, but CO is coordinated to tungsten as a terminal ligand. Moreover, the carbonyl ligands on Mo were replaced by another molecule of $Fe_2(\mu-S_2)(CO)_6$. The coordination of this molecule to Mo is unique and unusual; it occupies four coordination sites on Mo by using all the Fe_2S_2 atoms. The resulting geometry of Fe_2S_2Mo is that of a trigonal bipyramid, with the Fe_2 -

Mo triangle attached to two apical μ_3 -S. This arrangement provides striking contrast with the generally observed square planar geometry in WFe₂(CO)₉(PMe₂-Ph)(μ_3 -S)₂,^{11a} (C₅H₄COOMe)CoFe₂(CO)₂(μ_3 -S)₂,^{11b} Cp*Co-(μ_3 -S)₂ Fe₂(CO)₆,^{5a} and Fe₂Ru(μ_3 -S)₂(CO)₉.^{11c}

Formation of Clusters 1 and 2: Role of the Phosphido Bridge. It has been reported that during the reaction between $Fe_3(\mu$ -Te)₂(CO)₉ and dinuclear Cp₂- $Mo_2(CO)_6$, $Fe_3(\mu-Te)_2(CO)_9$ converted to more reactive $Fe_2(\mu-Te_2)(CO)_6$, which further reacted with Cp₂Mo₂-(CO)₆ to form a five-vertex, arachno cluster, Cp₂Mo₂-FeTe₂(CO)₇.¹⁴ Rauchfuss proposed that the formation of Cp₂Mo₂FeTe₂(CO)₇ was possibly by the loss of an even-electron $Fe(CO)_n$ fragment from either octahedral or bitetrahedral Mo₂Fe₂Te₂ clusters.¹⁴ However, during the reaction of $Fe_2(\mu-S_2)(CO)_6$ or $Fe_3(\mu-S)_2(CO)_9$ with $Cp_2Mo_2(CO)_6$ in identical conditions, the cis isomer (Braunstein isomer), Cp₂Mo₂Fe₂S₂(CO)₈, was observed instead of Cp₂Mo₂FeS₂(CO)7, the analogue of Cp₂Mo₂-FeTe₂(CO)₇.¹⁴ Rauchfuss also reported that under the conditions of his experiment, the expected trans isomer (Curtis isomer) is converted into the cis form. The cis and trans isomers of $Cp_2Mo_2Fe_2S_2(CO)_8$ were obtained from $Cp_2Mo_2(CO)_4$ and $Fe_2(\mu-S_2)(CO)_6$.^{9b,d}

The Braunstein isomer of $Cp_2Mo_2Fe_2S_2(CO)_8$ resembles in structure that of $Cp_2Mo_2Fe_2Te_2(CO)_7$, which is a thermolytic product of $Cp_2Mo_2FeTe_2$ (CO)₇. He then proposed that formation of the Braunstein–Curtis isomers may also occur via a $Mo_2FeS_2^{14}$ intermediate similar to Mo_2FeTe_2 ,¹⁴ but it is unstable compared to Mo_2FeTe_2 .¹⁴ Here we observed the MoWFeS₂ core cluster **2**, when $Fe_2(\mu$ -S₂)(CO)_6 reacted with the heterodinuclear phosphido-bridged $CpW(CO)_2(\mu$ -PPh₂)Mo-

(CO)₅. It has a five-vertex *nido* structure rather than a five-vertex *arachno* geometry like $Cp_2Mo_2FeTe_2(CO)_7$.

The bridged phosphido ligand in $Cp\dot{W}(CO)_2(\mu$ -PPh₂)Mo-(CO)₅ may prevent the cleavage of the Mo–W bond during the reaction and lead to a stable **2** with a *nido* structure. We also isolated bitetrahedral **1**, which is an analogue of the proposed bitetrahedral Mo₂Fe₂Te₂¹⁴ intermediate in the reaction between Fe₃(μ -Te)₂(CO)₉ and Cp₂Mo₂(CO)₆. Stability in **1** may also be caused by the bridged phosphido ligand.

Mechanism of the Formation of 3. When a dichloromethane solution of **1** was refluxed for 20 h, **3** was the sole product. It is realized that **1** is rearranged to **3** after loss of one carbonyl ligand compensated for by formation of an Fe–Mo bond, and the bridging carbonyl shifted from the Fe–Mo to Fe–Fe position with breaking an Fe–S bond and making a Mo–S bond. On the other hand **2** differs from **1** and **3** by an Fe(CO)_n fragment (Scheme 2). Thus, this rearrangement of **1** to **3** may occur via **2** by dissociation–reassociation of Fe(CO)_n. It is further supported by the conversion of **2** to **3** with Fe₂(CO)₉. We did not observe **2**, as an

^{(12) (}a) Adams, R. D., Miao, S. *Organometallics* **2003**, *22*, 2492. (b) Adams, R. D.; Captain, B.; Kwon, O.-S.; Miao, S. *Inorg. Chem.* **2003**, *22*, 3356.

⁽¹³⁾ Mathur, P.; Hossain, Md. M.; Rheingold, A. L. Organometallics **1994**, *13*, 3909.

⁽¹⁴⁾ Bogan, L. E., Jr.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 1985, 107, 3843.

intermediate during thermolsis of **1** to **3** may be due to two reasons. First, the dissociation–reassociation of $Fe(CO)_n$ is spontaneous and stoichimetric. Second there was no acceptor of $Fe(CO)_n$ other than the dissociated product **2** in the reaction medium. However, we isolated

2 during reaction between $Fe_2(\mu-S_2)(CO)_6$ and CpW-

 $(CO)_2(\mu$ -PPh₂)Mo(CO)₅. This is because some of the dissociated Fe(CO)_n from **1** also reacted with Fe₂(μ -S₂)-(CO)₆ and formed Fe₃(μ -S)₂(CO),₉ leaving some of **2** intact. This is further supported by the formation of Fe₃-(μ -S)₂(CO)₉ and **2** together with **3**, when **1** was thermolyzed in identical conditions in the presence of Fe₂(μ -S₂)(CO)₆. In support of this fragmentation mechanism, we could mention the reversible dissociation of an Fe(CO)₃ vertex of Fe₄(PPh)₂(CO)₁₂ to produce Fe₃(PPh)₂-(CO)₉.¹⁵ Formation of intermediates **1** and **2** for **3** also supports Rauchfuss' proposal about the intermediates bitetrahedral Mo₂Fe₂Te₂¹⁴ and Mo₂FeS₂¹⁴ for the reactions of Fe₃(μ -S₂)(CO)_{*x*} (*x* = 6, 9) with Cp₂Mo₂(CO)_{*x*} (*x* = 4, 6),^{9b,d,14} respectively.

Reaction of 3 with Norbornadiene (nbd), Ben**zene**, and $Fe_2(\mu - S_2)(CO)_6$. When a benzene solution of **3** is refluxed with nbd, cluster **5** is an isolated product, but the same reaction without nbd afforded cluster 6 (Scheme 3). The core Fe₂MoW of 5 and 6 has a geometry (Figures 5 and 6) similar to that of 3. Basically both of them are substitution products of 3 where carbonyl ligands on Mo are replaced by nbd and C_6H_6 , respectively. This indicates that carbonyl ligands on the Mo site are more labile than those on Fe sites. Carbonyl ligands are π acceptors. Due to the high oxidation state of the Mo atom in **3**, the availability of electron density on it for back-donation to carbonyl ligands is reduced; therefore the Mo-C bond is weakened and becomes more labile for substitution. Formation of 4 was expected from the reaction between **3** and $Fe_2(\mu-S_2)(CO)_6$. However, a control reaction of **3** with $Fe_2(\mu - S_2)(CO)_6$ did not produce 4.

X-ray Structures of Clusters 1–6. Molecular structures of **1–6** were determined by single-crystal X-ray diffraction analyses, and they are shown in Figures 1–6, respectively. The experimental data are summarized in Table 1. Selected bond distances and bond angles are listed in Table 2. Cluster **1** contains 62 valence electrons assuming each sulfur atom serves as a four-electron donor. To obey the 18e rule, tetrametallic **1** possesses five metal–metal bonds. Thus, the square Fe1Fe2Mo1W1

in **1** is intercepted by a fifth diagonal Fe1–W1 bond, resulting in bitetrahedral Fe1Fe2W1S2 and Fe1Mo1W1S1. Overall, the structure of **1** is similar to WFe₃(CO)₁₁(PMe₂Ph)(μ_3 -S)₂.^{11a} The peripheral Fe–W bonds in these two clusters are comparable; however, the diagonal Fe1–W1 (2.7516(19) Å) in **1** is longer than the diagonal Fe2–W (2.667(1) Å) in WFe₃(CO)₁₁(PMe₂-Ph)(μ_3 -S)₂. Cluster **2** consisits of 50 valence electrons,

Figure 5. ORTEP drawing of 5. Hydrogen atoms are omitted.

^{(15) (}a) Vahrenkamp, H.; Wolters, D. *J. Organomet. Chem.* **1982**, *224*, C17. (b) Vahrenkamp, H.; Wucherer, E. J.; Wolters, D. *Chem. Ber.* **1983**, *116*, 1219.

Table 1.	Summary	of Cr	ystal Data	for 1-	-3 and 4–6

	1	2	3
formula	C ₂₆ H ₁₅ O ₉ Fe ₂ PS ₂ MoW	C24H15O7S2PFeMoW	C25H15O8S2PFe2M0W
fw	957.96	846.1	929.95
space group	P21/n	P 1 21 1	$P1 \ 21/c \ 1$
a[Å]	9.6344(17)	8.943(3)	9.9693 (15)
b [Å]	24.805(4)	9.702(2)	14.942(2)
dÅl	12.414(2)	15.436(3)	19.291(3)
α [deg]			
β [deg]	92.318(15)	96.58(2)	91.221 (13)
γ [deg]			
$V[Å^3]$	2964.3(9)	1330.5(6)	2872.9 (8)
ρ (calcd) [Mg m ⁻³]	2.147	2.112	2.150
Z	4	1	4
cryst dimens [mm]	$0.25 \times 0.20 \times 0.14$	$0.24 \times 0.20 \times 0.14$	$0.24 \times 0.12 \times 0.09$
temp	room temperature	room temperature	room temperature
λ(Mo Kα) [Å]	0.71073	0.71073	0.71073
2θ range [deg]	50	50.0	50.0
scan type	() ()	())	() ()
no. of reflns	5525	2687	5338
no. of obsd reflns	5200 (>2.0 $\sigma(\hbar)$)	$2517 (> 2.5\sigma(\hbar))$	$5034 (> 2.0\sigma(\hbar))$
no of params refined	380	339	421
R	00395	0.0526	0.0257
R	0.1040	0.1263	0.0558
GoF	1.065	1.019	1.043
$D_{\rm max}$ min., max. [e/Å ³]	-1.762, 1.598	-2.379. 2.828	-0.463, 0.482
	1.100, 1.000	2.010, 2.020	0.100, 0.102
	4	5	6
formula	C ₂₉ H ₁₇ O ₁₁ PS ₄ Cl ₂ Fe ₄ MoW	$C_{30}H_{23}O_6S_2PFe_2MoW$	C42H37O5S2PFe2MoW
fw	1274.76	966.08	1108.32
space group	P 21/n	P 1 21/c 1	P 1 21/n 1
a [Å]	10.2336(14)	10.5679(13)	10.400(2)
<i>b</i> [Å]	16.749(3)	19.380(3)	19.407(4)
c[A]	23.139(4)	15.794(3)	20.383(4)
α [deg]			
β [deg]	102.486(14)	93.652(13)	91.41(3)
γ [deg]			
$V[A^3]$	3872.3(11)	3228.1(10)	4112.5(14)
ρ (calcd) [Mg m ⁻³]	2.183	1.979	1.790
Z	4	4	6
cryst dimens [mm]	0.25 imes 0.10 imes 0.06	0.19 imes 0.17 imes 0.07	0.44 imes 0.38 imes 0.28
temp	room teperature	room temperature	room temperature
λ (Mo K α) [A]	0.71073	0.71073	0.71073
2θ range [deg]	50.0	50.0	50.0
scan type	ω	ω	ω
no. of refins	7203	5666	7665
no. of obsd refins	$6784 (> 2.0\sigma(I))$	5448 (>2.0 $\sigma(I)$)	7235 (>2.0 $\sigma(I)$)
no.of params refined	519	371	487
R	0.038	0.0667	0.0317
$R_{\rm w}$	0.096	0.1850	0.0783
GoF	1.059	0.966	1.056
$D_{\rm map}$ min., max. [e/A ³]	-1.669, 1.786	-1.216, 5.197	-0.838, 0.850
000 C22 C	21	number of electrons expe	cted for a normal trinuclear
	DEP C26	triangle cluster is 18. th	a avcass two electrons in 9
C24 C25			\sim
	/	cleaved one metal-meta	I bond and formed square
02 02 \	,	pyramidal 2 . It is structu	rally similar to WFe ₂ (CO) ₉ -
	C32 C42 C33	$(PMe_2Ph)(\mu_3-S)_2$, ^{11a} (C ₅ H ₄ C	$COOMe)CoFe_2(CO)_2(\mu_3-S)_2$, ^{11b}
	$C32 C42 \square C43$	and $\text{Fe}_{0}\text{Ru}(\mu_{0}-S)_{0}(CO)_{0}^{-11c}$	Cluster 3 is electron precise
		with 60 valance electrone	Thus the tetrenuclear 9 has
	P1 C41 C31	with ouvalence electrons.	Thus, the tetrahuciear 5 has
		six metal-metal bonds to	satisfy 18e for each metal. It
	/ Y X C44 L	has two electrons less than	n 1 (62e) after loss of one CO
		compensated for by an ex	tra metal-metal bond Both
	/1 GT C36 C35	5 and 6 are also also	n procise with 60 volence
	C46 C45		in precise, with ou valence
$\sim \mathcal{V} $	Ν	electrons, similar to that o	of 3 , where two CO for 5 and
		three CO for 6 on the Mo si	te were substituted by a four-
	C12	electron donor nhd and a	six-electron donor henzene

Figure 6. ORTEP drawing of 6. Hydrogen atoms are omitted.

C14

C13

C15

which satisfies the 18e rule, providing a trinuclear two metal-metal bonded square pyramidal geometry. The

electron donor nbd and a six-electron donor benzene, respectively. Therefore, they are also structurally very similar to 3. In comparison with the Braunstein isomer of $Cp_2Mo_2Fe_2S_2(CO)_8$, clusters 3, 5, and 6 have an Fe-Fe bond bridged by CO instead of any semitriply bridged CO, both of those being seen on Mo atoms in \bar{Cp}_{2^-} $Mo_2Fe_2S_2(CO)_8.^{9b,d}$ The Fe–Fe bond lengths in ${\bf 3}$

Table 2.	Selected Bond	Lengths (Å) an	nd Bond Angles	(deg) for $1-6$

	Table 2. Sel	ecteu Donu Le	inguis (A) and D	ond Angles (deg) IOF 1-0	
	1	2	3	4	5	6
	0.0455(40)	0.005(0)	Bonds	0.0170(0)	0.000(0)	0.0700(0)
Mo1-W1	2.9155(13)	2.865(3)	2.7196(6)	2.8172(9)	2.698(3)	2.6732(6)
Mo1-Fe1	2.814(2)	2.753(4)	2.8445(9)	2.7622(16)	2.830(4)	2.8304(12)
Mol-Fe2			2.8374(9)	2.7555(15)	2.879(4)	2.8181(12)
Mol-Fe3				2.8919(16)		
Mol-Fe4	0.7710(10)		0.7505(0)	2.8967(17)	0.750(4)	0.7005(0)
WI-Fel WI Ese	2.7516(19)		2.7595(8)	2.7724(14) 2.7910(14)	2.758(4)	2.7335(9)
WI-Fez	2.834(2)		2.7059(8)	2.7819(14) 2.5672(10)	2.768(4)	2.7027(9)
Fel-Fez	2.392(3)		2.4192(10)	2.3073(19)	2.317(0)	2.4220(12)
гез-ге4 Mo1_S1	9 1 1 8 (1)	9 175(7)	9 4997(19)	2.321(2)	9 112(7)	2 4146(16)
Mo1-S1 Mo1-S2	2.440(4)	2.473(7)	2.4007(13) 2.4669(13)	2.321(2)	2.443(7)	2.4140(10) 2.4088(15)
Mo1-52 Mo1-52		2.303(7)	2.4000(13)	2.320(2)	2.301(7)	2.4000(13)
Mo1-SI				2.308(3)		
W1-S1	2 298(3)	2 484(5)	2 3315(13)	2.200(0) 2.321(2)	2 450(7)	2 3416(14)
W1-S2	2 295(3)	2 420(9)	2 3268(12)	2.321(2)	2 376(6)	2.3410(14)
Fe1-S1	2.280(0)	2 258(8)	2 1738(15)	2 238(3)	2.219(7)	2.0110(11) 2.1760(17)
Fe1-S2	2.201(1) 2.290(4)	2.200(0) 2.251(7)	2.1700(10)	2.200(0)	2.210(1)	2.1700(11)
Fe2-S2	2.154(4)	2.201(1)	2 1751(14)	2 244(3)	2 204(7)	2 1749(16)
Fe3-S3	2.101(1)		2.1701(11)	2 298(3)	2.201(1)	2.17 10(10)
F3-S4				2.289(3)		
Fe4-S3				2.281(3)		
Fe4-S4				2 298(3)		
Mo1-P1	2,461(3)	2.496(7)	2.5186(13)		2.549(7)	2,4359(14)
W1-P1	2.438(4)	2 403(5)	2 4580(13)		2 452(6)	2 4117(16)
Fe1-P1	2.100(1)	2.100(0)	2.1000(10)	2 191(3)	2.102(0)	ω.1117(10)
Fe2-P1				2 202(3)		
Fe1-C1	1.733(16)	1,79(3)	1.750(6)	~~~~(J)	1.64(3)	1.734(8)
Fe1-C2	1.763(15)	1.83(3)	1.782(6)		1.87(3)	1.775(7)
Fe1-C3	2.121(16)	1.80(2)	1.956(6)		2.00(3)	1.923(60
Fe2-C3	2.121(10)	1.00(2)	1.947(6)		1.94(3)	1.924(6)
Fe2-C4	1.746(17)		1.757(6)		1.72(3)	1.773(6)
Fe2-C5	1.759(17)		1.793(6)		1.78(3)	1.748(7)
	,		A		(-)	
71 W1 C0	100.00/10)	74.0(0)	Angles	104 10(5)	115 0(0)	110.00(7)
S1 - W1 - S2	102.90(12)	74.3(2)	110.12(4)	104.12(5)	115.0(2)	113.92(5)
SI = WI = PI	107.85(12)	74.12(17)	75.04(4)	59 69(9)	/ 3.Z(Z)	74.52(6)
S1 = W1 = W01	54.47(9)	34.37(18)	38.43(3) 40.60(4)	52.03(3) 51.10(0)	50.42(17)	57.11(4)
SI = WI = FeI	52.79(9)		49.09(4)	51.19(0)	50.01(17)	50.05(4)
$SI = WI = Fe_{\lambda}$	74.49(10)	111.0(9)	93.32(4) 75.00(4)	95.89(0)	97.19(18)	93.27(4)
52 - WI - PI	$\delta 3.27(12)$ 101.02(0)	111.0(3) 55 79(10)	75.90(4)	59 61(6)	/0.0(<i>L</i>)	74.44(0)
$S_2 = W_1 = W_{01}$	52 02(0)	33.76(19)	05.40(3)	32.01(0) 06 17(7)	07 28(8)	0550(4)
$S_{2} = W_{1} = F_{2}$	18 28(0)		10 65(3)	50.17(7) 51.20(7)	57.20(0) 50.05(17)	40 G1(4)
$D1 = W1 = M_01$	40.20(3) 53.85(8)	55 75(18)	57 05(3)	51.20(7)	50.03(17)	56 07(3)
D1 = W1 = Fo1	91 71(0)	55.75(16)	113 06(4)		114.00(10)	113 8(4)
P1-W1-Fo2	128 81(9)		113.30(4) 114.13(3)		114.03(10) 116.14(10)	113.0(4) 113.11(I)
Mo1-W1-Fe1	59 46(9)		62 55(2)	59 22(3)	62 49(9)	63 12(3)
Mo1 - W1 - Fe2	112 85(5)		62.33(2)	58 96(3)	63 57(9)	62 43(3)
Fe1-W1-Fe2	55 27(6)		51 93(2)	55 06(5)	54.19(12)	52 30(3)
S1-M01-S2	00.21(0)	73 0(2)	105 82(4)	104 69(9)	110 8(2)	108 93(5)
S1 - Mo1 - P1	102 50(12)	72.7(2)	71 86(14)	101.00(0)	71.6(2)	72 79(5)
S1-Mo1-W1	49.81(8)	54.85(14)	52.96(3)	52 63(6)	56.66(16)	5451(4)
S1-Mo1-Fe1	50.80(9)	50.82(17)	47.53(3)	51.35(7)	49.09(17)	48.22(4)
S1-Mo1-Fe2	00.00(0)	00.00(11)	90.33(4)	96.60(7)	94.48(9)	92.23(5)
S2-Mo1-P1		105.3(2)	72.45(4)	00100(1)	72.9(2)	72.81(5)
S2-Mo1-W1		53.08(19)	53.04(3)	52.65(6)	54.23(16)	54.56(4)
S2-Mo1-Fe1		50.44	90.33(4)	96.48(7)	92.62(18)	91.54(4)
S2-Mo1-Fe2		00111	47,79(3)	51.61(7)	47.74(17)	48.40(4)
P1-Mo1-W1	53,12(9)	52.71(14)	55.81(3)	01101(1)	55.64(15)	56.10(4)
P1-Mo1-Fe1	82.99(9)	121.78(18)	109.28(4)		108.72(18)	109.78(4)
P1-Mo1-Fe2	02100(0)	121110(10)	109.86(7)		109.36(18)	110.48(4)
W1-Mo1-Fe1	57.37(4)	80.86(9)	59.41(2)	59.58(3)	59.80(9)	59.48(2)
W1-Mo1-Fe2		(-)	59.66(2)	59.88(3)	59.40(10)	60.34(2)
Fe1-Mo1-Fe2			50.40(2)	55.46(4)	52.30(12)	50.79(3)
S1-Fe1-Fe2	79.81(11)		110.88(4)	104.36(8)	111.5(2)	110.53(6)
S1-Fe1-W1	53.35(9)		54.86(4)	53.91(7)	57.8(2)	55.57(4)
S1-Fe1-Mo1	56.27(10)	58.20(17)	57.62(4)	54.08(7)	56.31(19)	55.85(4)
Fe2-Fe1-W1	63.98(6)		64.17(3)	62.66(4)	63.10(12)	64.47(3)
Fe2-Fe1-Mo1	124.73(8)		64.65(3)	62.14(5)	64.85(13)	64.34(4)
W1-Fe1-Mo1	63.17(5)		58.0541(15)	61.19(3)	57.71(9)	57.40(2)
S2-Fe1-Mo1	104.22(10)	59.0(2)				
S2-Fe2-Fe1	56.79(10)	(2)	110.43(5)	104.23(8)	109.6(2)	109.85(5)
	52 67(9)		54.61(4)	53.73(7)	55.70(19)	55.06(4)
S2-Fe2-W1	06.0700		/			(+)
S2-Fe2-W1 S2-Fe2-Mo1	02.07(0)		57.14(4)	54.14(7)	57.03(9)	55.92(4)

Table 2 (Continued)

	1	2	3	4	5	6
Fe1-Fe2-Mo1			64.95(3)	62.40(4)	63.86(13)	64.87(4)
W1-Fe2-Mo1			58.056(19)	61.16(3)	57.03(9)	57.23(2)
Fe1-S1-W1	73.87(10)	100.3(3)	75.45(5)	74.90(8)	72.2(2)	74.38(5)
Fe1-S1-Mo1	72.93(11)	71.0(2)	74.85(4)	74.57(8)	74.6(2)	75.93(5)
Fe1-S2-W1	73.76(10)	70.6(2)				
Fe1-S2-Mo1		102.5(3)				
Fe2-S2-W1	79.05(11)	.,	75.73(4)	75.06(8)	74.2(2)	75.33(5)
Fe2-S2-Mo1			75.08(5)	74.25(8)	75.2(2)	75.68(5)
W1-S1-Mo1	75.73(10)	70.58(17)	68.61(3)	74.75(7)	66.92(19)	68.38(4)
W1-S2-Mo1		71.1(2)	69.06(4)	74.73(7)	67.12(17)	68.48(4)
W1-P1-Mo1	73.03(10)	71.54(18)	66.24(3)		65.26(17)	66.93(4)
Fe2-C3-Fe1			76.6(2)		79.2(10)	78.1(2)

Table 3. Bond Distances for a Few Bridged Binuclear Molybdenum and Tungsten Complexes

compound	bridge no.	M-M (Å)	M-X-M (deg)	ref
$Cp(CO)_2W(\mu$ -PPh ₂)W(CO) ₅	1	3.1942(12)	81.02(18)	20
$Cp(CO)_2W(\mu-PPh_2)Mo(CO)_5$	1	3.2054(16)	81.31(14)	10
$Cp(CO)_2Mo(\mu-SMe)W(CO)_5$	1	3.131(1)	79.49(1)	21
$(\dot{CO})_4W(\mu$ -SPh $)_2W(CO)_4$	2	2.972(1)		22
$Cp(CO)_2W(\mu$ -SMe)(μ -I)W(CO)_3I	2	2.936(1)	73.2(1)	23
$CpW(CO)(\mu$ -SPh) ₂ (μ -PPh ₂)Mo(CO)(SPh) ₂	3	2.8589(6)	70.12(av)	24
$CpW(CO)(\mu$ -SPh) ₂ (μ -PPh ₂)Mo(CO) ₃	3	2.8427(14)	69.35(av)	24
$CpW(CO)(\mu$ -SPh) ₂ (μ -PPh ₂)Mo(CO) ₂ (PPh ₃)	3	2.8382(13)	69.44(av)	24
$CpW(CO)(\mu$ -SPh) ₂ (μ -PPh ₂)Mo(CO) ₂ (PPh ₂ H)	3	2.8063(20)	68.68(av)	24
$Cp(CO)Mo(\mu$ -SPh) ₃ Mo(CO)Cp	3	2.8040(9)	68.8(av)	25
Cp(CO)Mo(u-SCH ₂ Ph) ₃ Mo(CO)(SCH ₂ Ph) ₂	3	2.779(4)	68.0(av)	25
$Cp(CO)Mo(\mu-SMe)_2(\mu-SH)Mo(CO)Cp(BF_4)$	3	2.772(2)	68.60(av)	26
$(MePh)Mo(\mu-SMe)_4Mo(MePh)(PF_6)_2$	4	2.614(1)	64.33(av)	27
CpMo(u-SMe) ₄ MoCp	4	2.603(2)	63.7(av)	28

(2.4192(10) Å) and 6 (2.4226(12) Å) are shorter than those in **1** (2.592(3) Å), **4** (2.542 (av) Å), **5** (2.517(6) Å), and $Fe_3E_2(CO)_9$ (E = S (2.600 (av) Å),¹⁶ Se (2.650 Å (av)),¹⁶ but close to the very strong Fe-Fe bond (2.402 Å) in (NH₂)₂Fe₂(CO)₆.¹⁷ Those bonds are even shorter than the carbonyl-bridged iron-iron bonds in Fe₄(PPh)-(CO)₁₁ (2.440(3) Å),¹⁵ Cp₂Mo₂Fe₂Se₂(CO)₇ (2.442(2) Å),¹³ and $Cp_2Mo_2Fe_2Te_2(CO)_7$ (2.433(2) (Å).¹⁴ Overall, they are only 0.0932 Å for **3** and 0.0966 Å for **6** longer than the formal double bond in $Cp_2Fe_2(NO)_2$ (2.326(4) Å).¹⁸ The hexanuclear 4 with eight metal-metal bonds contains 90 valence electrons, which is two electron less to satisfy 18e for each metal atom. Thus, it is an electronically poor cluster. This shortening may force the $Fe_2(\mu-S_2)(CO)_6$ to use all four of its atoms for coordination to the Mo atom to form two Mo-Fe bonds. Moreover, the average bond distance of Mo-S in 4 (2.312 Å) is shorter than that in **1** (2.448(4) Å), **2** (2.489 Å), **3** (2.478 Å), **5** (2.472 Å), and **6** (2.4112 Å) and that in Cp*(CO)₂W(μ -CCPh)MoFe₄(μ_3 -S)₃((μ_4 -S)(CO)₁₂ (2.415 Å),^{3f} [Cp*Mo₃(μ -O)₂(μ -S)(μ ₃-CCPh){(Fe₂(μ ₃-S)₂(CO)₆}] (2.401 Å), ^{3f} [Cp*WMo₂(μ -O)₂(μ -S)(μ ₃-CCPh){(Fe₂(μ ₃-S)₂- $(CO)_{6}_{2}$] (2.3794 Å),^{3f} and Cp*WMo(O)₂(μ -O)(μ -CCPh)- $Fe_2(\mu_3-S)_2(CO)_6$ (2.434 Å),^{3f} where coordination modes of $Fe_2(\mu-S_2)(CO)_6$ molecules to the Mo atom are almost the same as that in **4**. Such short Mo–S bonds in **4** indicate the existence of sulfur to molybdenum π -bonding,¹⁹ which may compensate for the decrease of electrons in 4.

The Mo-W bond lengths with average values of the acute angles (M-X-M, X = S, P) are 2.9155(13) Å

(74.36°), 2.865(3) Å (71.07°), 2.7197(7) Å (67.98°), 2.8172(9) Å (74.74°), 2.698(3) Å (66.65°), and 2.6732(6) Å (67.93°) for 1–6, respectively. The Mo–W bond lengths are shorter by 0.424 Å (av) compared to the W-Mo (3.2054(16) Å) bond length in the parent com-

pound $Cp(CO)_2W(\mu$ -PPh₂)Mo(CO)₅.¹⁰ Table 3 compares known molybdenum and tungsten dimers involving single, double, triple, or quadruple bridges.²⁰⁻²⁸ It indicates that the metal-metal bond distances in dinuclear compounds vary depending on the number of bridging ligands between the metal atoms, becoming shorter when the number of bridging ligands increases. Therefore, the shortening of the Mo-W bond distance in clusters **1–6** is expected since the number of bridges in them are increased compared to that of the parent

compound $Cp(CO)_2W(\mu-PPh_2)Mo(CO)_5$. Furthermore, the Mo–W lengths in doubly bridged 1 are longer than triply bridged 2, 3, 5, and 6. Moreover, the variation of the Mo-W lengths among them is in accord with their average values of the angles (M-X-M, X = S, P) in **1–6**, and those average values of the acute angles compare well with the reported values for the structures where

- Lj.; Muir, K. W.; Sharp, D. W. A. J. Organomet. Chem. 1983, 249, 127.
 (24) Hossain, Md. M.; Lin, H.-M., Shyu, S.-G. Organometallics 2003, 22, 3262.
- (25) Dickson, R. S.; Fallon, G. D.; Jackson, W. R.; Polas, A. J. (25) Dickson, R. S., Fanon, G. Z., et al., and the second secon

Muir, K. W.; Monojlovic-Muir, Lj. Organometallics 1995, 14, 2277. (27) Silverthorn, W. E.; Couldwell, C.; Prout, K. J. Chem. Soc.,

Chem. Commun. 1978, 1009.

(28) Connelly, N. G.; Dahl, L. F. J. Am. Chem. Soc. 1970, 92, 7470.

⁽¹⁶⁾ Wei, C. H.; Dahl, L. F. Inorg. Chem. 1965, 4, 493.

⁽¹⁷⁾ Dahl, L. F.; Costello, W. R.; King, R. B. J. Am. Chem. Soc. 1968, 90, 5422.

⁽¹⁸⁾ Claderon, J. L.; Fontana, S.; Frauendorfer, E.; Day, V. W.; Iske, S. D. A. J. Organomet. Chem. 1974, 64, C16.

⁽¹⁹⁾ Chisholm, M. H.; Cornig, J. F.; Huffman, J. C. Inorg. Chem. 1984. 23. 754.

⁽²⁰⁾ Shyu, S.-G.; Wu, W.-J.; Wen, Y.-S.; Peng, S.-M.; Lee, G.-H. J. Organomet. Chem. 1995, 489, 113.

⁽²¹⁾ Guerchais, J. E.; LeQuèré, J. L.; Pètillon, F. Y. Monojlovic-Muir, Lj.; Muir, K. W.; Sharp, D. W. A. J. Chem. Soc., Dalton Trans. 1982, 283

⁽²²⁾ Lucas, C. R.; Newlands, M. J.; Gabe, E. J.; Lee, F. L. Can. J. Chem. 1987, 65, 898.

⁽²³⁾ LeQuèré, J. L.; Pètillon, F. Y. Guerchais, J. E.; Monojlovic-Muir,

Table 4. Bond Distances for a Few Sulfur Clusters

cluster	Mo-Fe/W-Fe	Mo-S/W-S	Fe-S	Fe-Fe	ref	
cis-Cp ₂ Fe ₂ Mo ₂ S ₂ (CO)8	2.816(av)	2.331(av)	2.165(8)		9b	
trans-Cp*2Fe2Mo2S2(CO)8	2.789(av)	2.362(av)	2.213(2)		9d	
$(MeCp)_2Fe_2Mo_2(CO)_6S_4$	2.853(3)	2.425(av)	2.234(av)		30	
$(MeCp)_2Fe_2Mo_2(CO)_6S_3$	2.803(av)	2.352(av)	2.389(av)		30	
(MeCp) ₂ Mo ₂ S ₄ FeCp	2.779(av)	2.406(av)	2.130(av)		30	
Cp*2FeMo2S4(CO)2	2.777(av)	2.438(av)	2.153(1)		31	
$\hat{Cp}^*{}_2FeMo_2S_4(CO)_3$	2.824(av)	2.463(av)	2.130(1)		31	
$Cp*_2Fe_2Mo_2S_4(CO)_4$	2.813(av)	2.323(av)	2.271(av)		31	
$Fe_2W(CO)_9(PMe_2Ph)S_2$	2.776(av)	2.424(av)	2.252(av)		11a	
Fe ₃ W(CO) ₁₁ (PMe ₂ Ph)S ₂	2.772(av)	2.379(av)	2.192(av)	2.562(av)	11a	
$Fe_2W(CO)_{11}S$	2.853(av)	2.429(2)	2.179(av)	2.569(2)	3b	
Fe ₂ W(CO) ₁₀ (PMe ₂ Ph)S	2.815(av)	2.406(2)	2.187(av)	2.572(1)	3b	
Cp ₂ W ₂ Fe(CO) ₇ S	2.800(av)	2.358(av)	2.204(7)		32	

metal-metal interaction exists (Table 3).^{26,29} The average bond distances of Mo–Fe (2.8206 Å), W–Fe (2.7832 Å), Mo–S (2.4302 Å), W–S (2.3214 Å), Fe–S (2.2398 Å), and Fe–Fe (2.5414 Å) are also comparable with the reported values (Table 4).^{3b,9b,d,11a,30–32} In general, in these clusters the Mo–S_{br} (2.4302 Å, av) and Mo–P_{br} (2.4806 Å, av) distances are longer than the W–S_{br} (2.3214 Å, av) and W–P_{br} (2.4346 Å, av) distances, respectively, and in accord with the literature values.^{10,20–22} The Fe–C_{br} (2.0345 Å, av) is longer than the Fe–C_{tr} (1.7553 Å, av) in **1**, **3**, **5**, and **6**.

Conclusions

This paper describes the reactivity of $Fe_2(\mu-S_2)(CO)_6$ toward heterodinuclear phosphido-bridged $Cp(CO)_2$ - $W(\mu-PPh_2)Mo(CO)_5$ and $Fe_2(\mu-S_2)(CO)_6$ under mild conditions. A new reactivity pattern is shown by $Fe_2(\mu-S_2)$ - $(CO)_6$, where it is unusually fragmented to $FeS_2(CO)_3$ and $Fe(CO)_3$ to form **2**, and also coordinated to **3** in a unique mode. Clusters **1** and **2** are important additions to the reaction chemistry of $Fe_2(\mu-S_2)(CO)_6$ with metal– metal dinuclear complexes. The bridging phosphido ligand may confer extra stability in **1** and **2** and facilitate their isolation.

Experimental Section

General Procedures. Reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. All commercially available chemicals were purchased and used as received. Solvents were dried and distilled under nitrogen

using standard methods. Compounds $Cp(CO)_2\dot{W}(\mu$ -PPh₂)Mo-(CO)₅, Fe₃(μ -S)₂(CO)₉, and Fe₂(μ -S₂)(CO)₆ were prepared following reported procedures.^{1b,10} Infrared spectra were obtained on a Perkin-Elmer 882 infrared spectrophotometer. The ¹H and ³¹P NMR spectra were recorded on a Bruker Ac-300 spectrometer. ³¹P NMR shifts are referenced to 85% H₃PO₄. Microanalyses were obtained on a Perkin-Elmer 2400 CHN analyzer.

Reaction of Cp(CO)₂W(µ-PPh₂)Mo(CO)₅ with Fe₂(µ-S₂)-

(CO)₆. To a solid mixture of $Cp(CO)_2\dot{W}(\mu$ -PPh₂)Mo(CO)₅ (400 mg, 0.55 mmol) and $Fe_2(\mu$ -S₂)(CO)₆ (300 mg, 0.87 mmol) was added dichloromethane (50 mL) and the mixture kept at reflux

for about 20 h. The reaction mixture was filtered through Celite to remove the insoluble material and the filtrate evaporated to dryness. The residue was then dissolved in dichloromethane (10 mL), and the solution was subjected to chromatography using a silica gel column (45 cm \times 3.5 cm). Elution with a dichloromethane and hexane (1:4) mixture collected three fractions. The first, violet fraction was a mixture of the known compound Fe₃(μ -S)₂(CO)₉ and starting material Fe₂(μ -S₂)(CO)₆. They were further separated by chromatography with a long silica gel column (100 cm \times 2.5 cm) using hexane as an eluent. The first, orange band gave Fe₂(μ -S₂)(CO)₆, and the second, violet band was Fe₃(μ -S)₂(CO)₉. The second fraction was a mixture of starting material Cp(CO)₂-

 $\dot{W}(\mu$ -PPh₂) $\dot{M}o(CO)_5$ and **1**. They were further separated by silica gel column (45 cm \times 2.5 cm) chromatography using a mixture of hexane, dichlromethane, and ethyl acetate (8:1:1)

as eluent. The first, violet band was Cp(CO)₂W(u-PPh₂)Mo-(CO)₅ followed by a second, dirty green band, which was 1. The third fraction was brown in color. The brown solid obtained was further separated by silica gel column (60 cm imes2.5 cm) chromatography with a mixture of hexane, dichloromethane, and ethyl acetate (8:1:1) as the eluent. Three bands were obtained. Clusters 4, 3, and 2, were obtained from the first, dirty green, the second, reddish brown, and the third, brown bands, respectively. 1: Yield: 67 mg, 15%. Anal. Calcd for C₂₆H₁₅O₉PS₂Fe₂MoW: C, 32.57; H, 1.57. Found: C, 32.73; H, 1.86. IR (CH₂Cl₂): v(CO) 2047 (s), 2013 (vs), 1994 (m), 1964 (w, sh), 1943 (w, sh), 1855 (w, br) cm⁻¹. ¹H NMR (CDCl₃): δ 7.84–7.38 (m, 10H, C₆ H_5), 5.19 (s, 5H, C₅ H_5). ³¹P{¹H} NMR (CH₂Cl₂): δ 177.3 (s). 2: Yield: 27 mg, 7%. Anal. Calcd for C24H15O7PS2FeMoW: C, 34.04; H, 1.77. Found: C, 33.79; H, 1.74. IR (CH₂Cl₂): v(CO) 2060 (s), 2001 (vs), 1984 (w, sh), 1938 (w, sh) 1915 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 7.81–7.23 (m, 10H, C_6H_5), 5.67 (s, 5H, C_5H_5). ³¹P{¹H} NMR (CH₂Cl₂): δ 115.1 (s). 3: Yield: 114 mg, 27%. Anal. Calcd for C₂₅H₁₅O₈PS₂Fe₂MoW: C, 32.22; H, 1.61. Found: C, 32.41; H, 1.63. IR (CH₂Cl₂): v-(CO) 2053 (s), 2007 (vs), 1954 (s), 1810 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 7.44–7.34 (m, 10H, C₆H₅), 5.65 (s, 5H, C₅H₅). ³¹P-{¹H} NMR (CH₂Cl₂): δ 25.0 (s). 4: Yield: 17 mg, 3%. Anal. Calcd for C₂₈H₁₅O₁₁PS₄Fe₄MoW: C 28.24, H 1.26. Found: C 28.35, H 1.43. IR (CH₂Cl₂): v(CO) 2080 (s), 2049 (vs), 2018 (m), 1995 (w), 1979 (m), 1950 (m), 1758 (vw) cm⁻¹. ¹H NMR (CDCl₃): δ 7.54–7.35 (m, 10H, C₆H₅), 5.64 (s, 5H, C₅H₅). ³¹P- ${^{1}H}$ NMR (CH₂Cl₂): δ 267.6 (s). The yield is calculated on

the basis of reacted Cp(CO)₂ $\dot{W}(\mu$ -PPh₂) $\dot{M}o(CO)_5$ (334 mg, 0.46 mmol).

Thermolysis of 1 in Dichloromethane. A dichloromethane solution (25 mL) of **1** (60 mg, 0.063 mmol) was kept at reflux for 20 h, and then the reaction mixture concentrated to 5 mL. Silica gel column (45 cm \times 2.5 cm) chromatography using a mixture of hexane and dichloromethane (3:2) as the eluent gave **3**. Yield: 45 mg, 77%.

Thermolysis of 1 in the Presence of Fe₂(µ-S₂)(CO)₆. A dichloromethane solution (10 mL) of **1** (30 mg, 0.031 mmol)

⁽²⁹⁾ Miriam, B.; Lima, G. D.; Guerchais, J. E.; Mercier, R.; Pètillon, F. Y. *Organometallics* **1986**, *5*, 1952.

⁽³⁰⁾ Čowans, B. A.; Haltiwanger, R. C.; DuBois, M. R. Organometallics **1987**, *6*, 995.

⁽³¹⁾ Brunner, H.; Jnietz, N.; Wachter, J.; Zahn, T.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. **1985**, 24, 133.

⁽³²⁾ Williams, P. D.; Curtis, M. D. J. Organomet. Chem. **1988**, 352, 169.

and Fe₂(μ -S₂)(CO)₆ (20 mg, 0.059 mmol) was refluxed for 8 h. The reaction mixture was concentrated to 5 mL, and three fractions were collected by silica column (60 cm \times 2.5 cm) chromatography using hexane and dichloromethane (8:2) as an eluent. Unreacted Fe₂(μ -S₂)(CO)₆ (17 mg, 85% yield) was isolated from the first, orange fraction with a trace of Fe₃(μ -S)₂(CO)₉ by TLC in hexane. The second, dirty green fraction was unreacted **1** (5 mg, 17% yield). The third, reddish brown fraction gave **3** (17 mg, 71% yield) with a trace of **2** by TLC workup in a mixture of hexane, dichloromethane, and ethyl acetate (8:1:1). The yield was calculated on the basis of consumed **1**.

Reaction of 2 with Fe₂(CO)₉. To a dichloromethane solution (25 mL) of **1** (50 mg, 0.06 mmol) was added Fe₂(CO)₉ (110 mg, 0.3 mmol) and refluxed for 20 h. The reaction mixture was concentrated to 5 mL, and then silica gel column (45 cm \times 2.5 cm) chromatography using a mixture of hexane, dichloromethane, and ethyl acetate (8:1:1) as an eluent gave three bands. The first unidentified band was trace in amount and yellow in color. The second, reddish brown band was **3** (11 mg, 29% yield), and the third, brown band was unreacted **2**. The yield of **3** was calculated on the basis of reacted **2** (30 mg, 0.04 mmol).

Reaction of Cp(CO)₂W(µ-PPh₂)Mo(CO)₅ with Fe₃(µ-S)₂-

(CO)₉. A solid mixture of Cp(CO)₂W(μ -PPh₂)Mo(CO)₅ (100 mg, 0.14 mmol) and Fe₃(μ -S)₂(CO)₉ (100 mg, 0.21 mmol) was dissolved in 50 mL of dichloromethane. The mixture was refluxed for 20 h. The reaction mixture was concentrated to 5 mL, which was then subjected to chromatograpy using a silica gel column (45 cm \times 2.5 cm) with a mixture of hexane and dichloromethane (4:1) as the eluent. Compounds Fe₃(μ -S)₂(CO)₉ (93 mg, 93% yield) and Cp(CO)₂W(μ -PPh₂)Mo(CO)₅ (97 mg, 97% yield) were obtained from the first, violet and the second, violet bands, respectively. Both complexes were identified by comparing their IR and ³¹P{¹H} NMR spectra with the literature data.^{1b,10}

Reflux of Fe₂(\mu-S₂)(CO)₆ in Dichloromethane. A dichloromethane solution (25 mL) of Fe₂(μ -S₂)(CO)₆ (100 mg, 0.29 mmol) was kept at reflux for 20 h. Silica gel column (45 cm \times 2.5 cm) chromatography of the concentrated reaction mixture (5 mL) using hexane as an eluent recovered 95 mg (95% yield) of Fe₂(μ -S₂)(CO)₆.

Reaction of 3 with Fe₂(\mu-S₂)(CO)₆. To a mixture of **3** (80 mg, 0.09 mmol) and Fe₂(μ -S₂)(CO)₆ (45 mg, 0.13 mmol) was added 50 mL of dichloromethane and refluxed for 20 h. The reaction mixture was concentrated to 5 mL, and then chromatographic workup (silica gel column) using hexane and dichloromethane (3:1) as an eluent afforded the first, orange band, Fe₂(μ -S₂)(CO)₆ (42 mg, 93% yield), and the second, reddish brown band, **3** (78 mg, 97% yield), respectively.

Reaction of 3 with Norbornadiene. To a benzene solution (50 mL) of **3** (50 mg, 0.053 mmol) was added nbd (25 mg, 0.27 mmol) and then refluxed for 30 h. The reaction mixture was evaporated to dryness. The residue was then dissolved in

dichloromethane and concentrated to 5 mL. The cluster **5** was collected as a brown band on silica gel column (45 cm \times 2.5 cm) chromatography using dichloromethane and hexane (1:1) as an eluent. Yield: 16 mg, 31%. Anal. Calcd for C₃₀H₂₃O₆-PS₂Fe₂MoW: C, 37.26; H, 2.38. Found: C, 37.34; H, 2.42. IR (CH₂Cl₂): ν (CO) 2006 (vs), 1978 (s) 1940 (s), 1828 (m), 1797 (w, sh) cm⁻¹. ¹H NMR (CDCl₃): δ 7.68–7.23 (m, 10H, C₆H₅), 5.50 (s, 5H, C₅H₅), 5.65 (br, 2H, nbd), 4.40 (br, 2H, nbd), 3.88 (br, 2H, nbd), 1.4 (br 2H, nbd). ³¹P{¹H} NMR (CH₂Cl₂): δ 27.1 (s).

Thermolysis of 3 in Benzene. A benzene solution (50 mL) of **3** (60 mg, 0.064 mmol) was refluxed for 34 h. The solution was evaporated to dryness. The residue was then dissolved in dichloromethane and concentrated to 5 mL. The cluster **6** was collected as a reddish band on silica gel column (45 cm \times 2.5 cm) chromatography using dichloromethane and hexane (1:1) as an eluent. Yield: 22 mg, 37%. Anal. Calcd for C₂₈H₂₁O₅-PS₂Fe₂MoW: C, 36.36; H, 2.27. Found: C, 36. 25; H, 2.31. IR (CH₂Cl₂): ν (CO) 1986 (vs), 1958 (s), 1922 (s), 1751 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 7.37–7.29 (m, 10H, *C*₆*H*₅), 5.40 (s, 5H, *C*₅*H*₅), 5.20 (s, 6H, C₆*H*₆). ³¹P{¹H} NMR (CH₂Cl₂): δ –6.2 (s).

Crystal Structure Determination of Clusters 1-6. Individual solutions of compounds 1-5 in dichloromethane were layered by hexane first. The single crystals of 1-5 for X-ray diffraction analyses were grown by slow evaporation of these mixtures at 0 °C, respectively. A single crystal of 6 was obtained similarly by slow evaporation of its dichloromethane solution layered by toluene at 0 °C. For each of the clusters 1-6, a selected single crystal was mounted on a glass fiber for data collection by using Mo Ka radiation on an Enraf Nonius CAD4 diffractometer at room temperature. Table 1 gives further details. Unit cell parameters were refined from 25 reflections with the 2θ range $14.52-35.92^{\circ}$. Three standard reflections were monitored every hour throughout the data collection. The variation was within 6%. Lorentz and polarization corrections were applied. A semiempirical absorption correction was applied based on azimuthal scans of three reflections. All structures were solved by direct methods. For all hydrogen atoms, the atomic and isotropic thermal parameters were fixed. Structure refinement was performed using the Wingx³³ program on a PC.

Acknowledgment. We acknowledge the National Science Council of the Republic of China and Academia Sinica for financial support of this work.

Supporting Information Available: Tables of atomic coordinates, isotropic and anisotropic displacement parameters, and all bond distances and angles, and experimental details of the X-ray studies for **1–6**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM049821T

⁽³³⁾ Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.