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ABSTRACT: Anionic hydridosilicates are highly reactive and 

strong hydride donors. In contrast, calix[4]pyrrole hydridosilicate 

is an entirely water-stable, anionic silicon hydride, which does not 

show hydridic reactivity. However, it still acts as an electron donor 

and enables the detection of a single electron transfer process in the 

reduction chemistry with hydridosilicates. Most important, these 

unusual properties are imparted by the unique planar structure of 

its elusive parent neutral silane – substantiating the effect of planar 

tetracoordinate silicon for the first time.  

Anionic hypercoordinate silicon hydrides (hydridosilicates) are 

highly reactive species and powerful reducing agents.1 The arche-

typal SiH5
- or SiH6

2- anions have only been observed under gas 

phase or high-pressure conditions, respectively.2-4 Recently, hy-

dridosilicates were demonstrated to even react with Csp2-F bonds in 

hydrodefluorination reactions.5 Already neutral silanes turn into ef-

fective reductants upon transient coordination of neutral or anionic 

donors.2-3, 6-14 Besides being potent hydride donors, hydridosili-

cates are also involved in fundamentally different reactivity modes, 

like acting as strong bases,3, 15-17 electron or hydrogen atom do-

nors,16-20 making valuable dehydrogenative coupling processes fea-

sible.21-24 A reason for their high reactivity is the low hydride ion 

affinity of neutral silanes, which is indeed among the lowest known 

for neutral molecules, comparable with H2O or benzene.2-3, 25-26 By 

consequence, the isolation of hydridosilicates needs special precau-

tions, like the stabilization of the Si-H bonds by agostic interactions 

with transition metals.27-32 However, also a small number of non-

transition metal salts of [HSiR4]- or [H2SiR3]- (R = Ar, OR, F) have 

been observed spectroscopically.1, 16-17, 20, 33-39 The first structural 

characterization of a hydridosilicate, H2SiPh3
-, was achieved only 

in 2001,40 followed by some related derivatives.41-43 A general re-

quirement were strict anhydrous conditions to prevent immediate 

hydrolysis of the activated and unstable Si-H bonds. 

We herewith present the synthesis and characterization of an en-

tirely water stable, anionic hydridosilicate [1-H-] (Figure 1). The 

hydridic reactivity of [1-H-] is suppressed, but it still undergoes sin-

gle electron transfer, supporting such process as feasible reactivity 

mode of hydridosilicates. Most important, these features are caused 

by the unique planar conformation of its (so far elusive) parent neu-

tral silane 1. 

 
Figure 1: Highly reactive anionic hydridosilicates compared with the water stable sil-

icon hydride of this work. 

 
Scheme 1: Synthesis of different salts of [1-H-][M+]. 

The methyl-calix[4]pyrrole macrocyclic ligand, easily prepared in 

a one-step procedure,44 was fully deprotonated with benzyl potas-

sium in toluene at 120 °C (Scheme 1). Changing the solvent to ac-

etonitrile and addition of HSiCl3 at room temperature gave the po-

tassium salt of methyl-calix[4]pyrrole hydridosilicate [1-][K+] in 

50% isolated yield at mmol scale.45 The respective lithium and 

tetraphenyl phosphonium salts [1-H-][Li+] and [1-H-][PPh4
+] were 

obtained by subsequent salt metathesis with LiCl or PPh4Cl.  

Multinuclear NMR spectroscopy revealed noticeable spectro-

scopic features of [1-H-], being similar for the various cations. 1H-

NMR in thf-d8 showed two doublets for the pyrrole hydrogen atoms 

and four different signals for the methyl groups, consistent with a 

C2v symmetry of [1-H-] in solution. The Si bound hydrogen reso-

nated at δ = 6.60 ppm with a coupling constant 1JSi-H = 270 Hz. The 
29Si chemical shift of -140 ppm rather lies in the range of hexacoor-

dinate silicon.46 In comparison to other hydridosilicates, the Si-H 
1H-NMR signal is shifted downfield and the 29Si-NMR signal high-

field, indicating an unusually deshielded hydrogen and a shielded 

silicon atom.16, 37, 47 The experimental values agree ideally with the 

computed NMR data of [1-H-] (ZORA-SO-PBE0(COSMO, 

CH2Cl2)/TZ2P), refuting any solvent coordination responsible for 

the observed strong shift.  

IR spectroscopy for salts [1-H-][M+] showed distinct stretching 

modes of the Si-H bonds at 2176 cm-1 [K+] or 2243 cm-1 [PPh4
+]. 

Such values are much higher compared to other hydridosilicates 

(1550 – 1970 cm-1),4, 40, 43 but rather match with those of Si-H bonds 

in neutral silanes or aminosilanes (2100 – 2200 cm-1).41, 48-49 The 

IR-spectra thus indicate a remarkably strong Si-H bond in [1-H-]. 

Single crystals of [1-H-][K+] were obtained from dichloromethane 

and of [1-H-][Li+] from acetonitrile. [1-H-][K+] exists as a coordi-

nation polymeric structure in the solid state, wherein the cation 

bridges the anionic units via K…π-pyrrole interactions. In  

[1-H-][Li+], the lithium cation is coordinated by four acetonitrile 

molecules, whereas the anion [1-H-] resides freely (Figure 2). In all 

previously reported hydridosilicates, the silicon was coordinated in 

a trigonal-bipyramidal fashion, with the hydrides being in the api-

cal position.40-41, 43 In [1-H-], the coordination sphere around silicon 

is almost square-pyramidal, wherein the basal plane is generated by 

four nitrogen atoms (Si-Navg = 1.86 Å, N-Si-N = 157°). The Si-H 

bond is rather short (1.36 Å) in comparison to the previously re-

ported structures (1.50 – 1.60 Å).40-41, 43  
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Figure 2: Molecular structure of [1-H-][Li+(CH3CN)4] obtained by X-ray diffraction. 

Only one of the two independent fragments in the unit cell is shown. Selected hydrogen 

atoms are omitted for clarity. Ellipsoids 50 % probability, selected bond lengths [Å] 

and angles [°]: Si-Navg = 1.860(3) Å, Si-H1 = 1.36(3) Å, N1-Si-N3 = 158.5(2), N2-Si-

N4 = 157.4(2).  

The calix[4]pyrrole ligand adopts a ruffled conformation, with 

two opposite methyl groups being identical, in agreement with the 

C2v symmetry in solution as observed by 1H-NMR spectroscopy. 

The methyl groups block the coordination side trans to the Si-H 

bond. 

The water and air stability of the [1-H-] salts were tested by ex-

posing solutions to air at room temperature. In contrast to the im-

mediate hydrolysis of all previously reported hydridosilicates, the 

lithium and potassium salts are hydrolyzed only over the range of 

hours. The tetraphenylphosphonium salt of [1-H-] remained en-

tirely intact under such conditions and even in a 1:1 mixture of 

CD3CN/D2O, no hydrolysis was detected after several weeks (see 

SI). Moreover, [1-H-] does neither react with p-methyl benzalde-

hyde, benzyl chloride, benzyl bromide nor with the TEMPO radi-

cal. These findings are in strong contrast to the pronounced water 

sensibility, the strong hydride donor capabilities and the weak Si-

H bond energy of all previously described hydridosilicates. 

But how can the stability and lack of reactivity be rationalized? 

To answer this question, the neutral silane 1 that results from hy-

dride abstraction of [1-H-] was analyzed by quantum-theoretical 

tools, and compared with the related but structurally unrestricted 

Si(pyrrole)4 (2) (Figure 3). For the neutral silane 1, irrespective of 

the used method (wavefunction or various density functionals) and 

starting geometry, a planar conformation at silicon is obtained (e.g. 

N-Si-N = 178.3° with B3LYP-D3(BJ)/def2-TZVPP). The neutral 

silane 2 has a common tetrahedral geometry. The LUMO energy in 

1 (-2.3 eV) is reduced dramatically in comparison to 2 (-0.1 eV), 

and reveals almost pure pz-type character at silicon (Figure 3). The 

computed (DLPNO-CCSD(T)/cc-pVQZ, isodesmic) hydride ion 

affinity (HIA) of 1 is exceptionally high (517 kJ mol-1, cf. for 2 

HIA = 343 kJ mol-1), as a consequence of the geometrical strain.  

 
Figure 3: LUMO energies and HIA of planar 1 and Si(pyrrole)4 2 with computed struc-

ture of 1, including the isodensity plot of the Kohn-Sham LUMO.  

Planar 1 has even a higher HIA than B(C6F5)3 (512 kJ mol-1), with-

out bearing any electron withdrawing groups. NBO analysis of the 

Si-H bond in [1-H-] reveals a sp1.26 hybrid orbital at silicon. The 

high s-orbital character is in line with the strong bonding as well as 

with the large Si-H NMR coupling constant. Energy decomposition 

analysis (BP86-D3/TZ2P) further rationalized the much stronger 

hydride binding energy in [1-H-], in comparison to [2-H-]. The pre-

organization in 1 causes a strongly diminished deformation energy 

(96 kJ mol-1) upon distortion to the structure in [1-H-], in compari-

son to 2 (281 kJ mol-1). Moreover, the contribution of orbital inter-

action in the Si-H bond of [1-H-] (48 %) are more pronounced as in 

[2-H-] (45 %), in agreement with the very low LUMO energy in 1. 

The spectroscopic and theoretical results consistently identify 

the unusually strong silicon-hydride bond as responsible for the sta-

bility of [1-H-]. The weak steric demand of the methyl groups in 

the ligand refutes a strong kinetic effect, although the blocked po-

sition trans to the Si-H bond hinders associative processes, and 

could cause high reaction barriers. It is known for almost 40 years, 

that the planarization of silicon should significantly lower the 

LUMO energy of neutral silanes.50-51 However, this effect has 

never been verified experimentally until now.  

In contrast to the resistance of [1-H-] towards heterolytic Si-H 

bond cleavage (hydride donation), single electron transfer (SET) 

does readily occur. Upon mixing of [1-H-] with the electron accep-

tor p-chloranil, two independent short-lived radical species were 

detected by EPR spectroscopy, tentatively assigned as a neutral 

radical [1-H●] and the p-chloranil radical anion. Upon prolonged 

reaction time, the exhaustive reduction to p-perchlorohydroqui-

none was verified. Accordingly, reaction of [1-H-] with AgSbF6 led 

to the formation of only one short-lived radical and elemental sil-

ver. The observation of radical intermediates during the reduction 

with a hydridosilicate is an important finding. Even though penta-

coordinate hydridosilicates have been considered as electron trans-

fer agents, respective intermediates were never detected.16-19 The 

metastability of the radical species again relies on the effect im-

parted by the underlying planar silane 1. Evidently, not only the 

HIA but also the electron affinity of 1 is larger as that of common 

neutral silanes – rendering the intermediate as metastable and ena-

bling its observation.     

The present contribution provides the first experimental proof 

for the effect of a planar tetracoordinate silicon, expressed by the 

taming of the reactive class of hydridosilicates. It furthermore sup-

ports SET steps in the reduction chemistry with hydridosilicates. 

Finally, it introduces the calix[4]pyrrole ligand as new, four fold 

anionic platform for the emerging field of geometrically con-

strained main-group element species.52-54  
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