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Stereoselective Synthesis of Tetrahydropyrans through Tandem and
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Cores of ent-(+)-Sorangicin A
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Tandem and organocatalytic oxa-Michael reactions of α,β-
unsaturated aldehydes were explored for the stereoselective
synthesis of structurally complex tetrahydropyrans. The
stereoselective synthesis of 2,6-trans-tetrahydropyrans,
which are thermodynamically unfavorable, was ac-
complished through a reagent-controlled, organocatalytic

Introduction

Substituted tetrahydropyrans are important structural
motifs found in a wide range of biologically interesting nat-
ural products.[1,2] Among substituted tetrahydropyrans, 3-
methyl-2,6-disubstituted tetrahydropyrans are one of the
most abundant classes in natural products and have at-
tracted considerable interest (Figure 1).[1a,1c,1e,1f] Although
an increasing amount of interest has focused on the genera-
tion of these structures, it is surprising that the oxa-Michael
reaction of α,β-unsaturated aldehydes has rarely been used
for the stereoselective synthesis of 3-methyl-2,6-disubsti-
tuted tetrahydropyrans.[3,4] In addition, the stereoselective
synthesis of 2,6-trans-tetrahydropyrans has been a challenge
in organic synthesis because of their poor thermodynamic
stability.

Recently, we reported the stereoselective synthesis of 2,6-
cis-tetrahydropyrans through the tandem oxidation/oxa-
Michael reaction of α,β-unsaturated aldehydes promoted by
the gem-disubstituent effect.[5] The reaction required no ac-
tivation of either the oxygen nucleophiles or the aldehydes.
The reaction was applicable to a broad range of substrates
and proceeded with excellent stereoselectivity (�20:1dr).
We used the oxa-Michael reaction in conjunction with a
dithiane coupling reaction to perform the highly stereo-
selective synthesis of 2,3,6-trisubstituted tetrahydropy-
rans.[6] We also demonstrated the utility and efficiency of
the combination of the oxa-Michael reaction and the di-
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oxa-Michael reaction. A temperature-dependent configura-
tional switch allowed the preparation of both 2,3-trans-2,6-
trans- and 2,3-cis-2,6-cis-tetrahydropyrans from a common
substrate. This switch was then used to synthesize the pre-
cursors of the C21–C29 and C30–C37 fragments of ent-(+)-
sorangicin A.

thiane coupling reaction in the stereoselective synthesis of
neopeltolide,[5] cyanolide A,[6a] leucascandrolide A,[6b]

psymberin,[6c] and SCH 351448.[7]

Intrigued by the excellent efficiency and stereoselectivity
of the tandem oxa-Michael reaction of α,β-unsaturated al-
dehydes in the synthesis of 2,6-cis-tetrahydropyrans, we de-
cided to extend this method to the synthesis of 3-methyl-
2,6-disubstituted tetrahydropyrans. Herein, we describe our
investigation of tandem and organocatalytic oxa-Michael
reactions of α,β-unsaturated aldehydes for the stereoselec-
tive synthesis of structurally complex tetrahydropyrans and
their application to the efficient synthesis of the precursors
to the C21–C29 and C30–C37 fragments of ent-(+)-sorang-
icin A.

Results and Discussion

The tandem oxidation/oxa-Michael reaction required no
activation of the substrates and proceeded in a substrate-
controlled manner under neutral and mild conditions.
Therefore, we proposed that it would be possible to predict
the stereochemical outcome of the oxa-Michael reaction
through conformational analysis of the transition states
(Figure 2).

On the basis that the bulky C2, C3, and C6 substituents
of 2,3-trans-2,6-cis-tetrahydropyran 12 occupy equatorial
positions, we expected that 12 could be stereoselectively
prepared through the most favorable transition state 11B in
the tandem oxidation/oxa-Michael reaction. We also antici-
pated that aldehyde (E)-13 should adopt the more favorable
chair-like transition state (E)-13B to stereoselectively pro-
vide 2,3-cis-2,6-cis-tetrahydropyran 14 owing to the severe
1,3-diaxial interaction between the C4 dithiane group and
the C6 alkyl group in competing transition state (E)-13A.
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Figure 1. Examples of natural products containing 3-methyl-2,6-disubstituted tetrahydropyrans.

Figure 2. Conformational analysis of the oxa-Michael reactions.
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However, the stereoselective synthesis of 2,3-trans-2,6-trans-
tetrahydropyran 15 by using the tandem oxidation/oxa-
Michael reaction was expected to be more challenging. A
stereochemical mismatch between the C3 methyl group and
the C6 alkyl group in (Z)-13A and (Z)-13B was expected to
hamper the formation of a well-defined transition state in
the oxa-Michael step leading to 15, thus having an impact
on the stereoselectivity and reactivity.

To test the feasibility of the oxa-Michael reaction for the
stereoselective synthesis of 2,3-trans-2,6-trans-tetrahydro-
pyrans, we prepared allyl alcohol (Z)-18a, by coupling (Z)-
17[6b] and (S)-glycidyl benzyl ether (16a), and subjected it
to the tandem oxidation/oxa-Michael reaction (Scheme 1).
As predicted, the tandem reaction of (Z)-18a provided alde-
hyde (Z)-19a as the major product (65–70%) because of
repulsive interactions in the transition states. Both starting
material and product also decomposed during the pro-
longed reaction time (72 h).

Scheme 1. Preparation of allyl alcohol (Z)-18a and attempts
towards the synthesis of 2,3-trans-2,6-trans-tetrahydropyrans
through the tandem oxa-Michael reaction.

To overcome the stereochemical mismatch in the transi-
tion states and to promote the oxa-Michael step by increas-
ing the reactivity of (Z)-19a, we converted (Z)-19a into the
corresponding iminium ion by reacting it with a range of
amines and acids (Table 1). The iminium activation of (Z)-
19a by treatment with pyrrolidine and BzOH at 25 °C dra-
matically promoted the oxa-Michael reaction, but afforded
undesired 2,3-cis-2,6-cis-tetrahydropyran 21a as a single
diastereomer (Table 1, Entry 1).[8] Surprisingly, when the re-
action was attempted at low temperature (–40 or –78 °C),
the stereoselectivity was reversed to provide 2,3-trans-2,6-
trans-tetrahydropyran 20a as the major diastereomer (3.5–
4.1:1 dr; Table 1, Entries 2 and 3).[8] Use of piperidine as an
alternative amine source further improved the stereoselecti-
vity (7.4:1dr; Table 1, Entry 6). Encouraged by these results,
we decided to test chiral organocatalysts to further improve
the stereoselectivity of the oxa-Michael reaction.[9,10] When
(Z)-19a was treated with (S)-22[11] at –40 °C, the organocat-
alytic oxa-Michael reaction proceeded smoothly to provide
20a with excellent stereoselectivity and yield (12:1 dr, 96%;
Table 1, Entry 9). When (R)-22 was employed, the organo-
catalytic oxa-Michael reaction provided 20a with no stereo-
selectivity (Table 1, Entry 10).
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Table 1. The organocatalytic oxa-Michael reaction of α,β-unsatu-
rated aldehydes.

Entry Amine Acid T Time Yield dr[b]

[°C] [h] [%][a]

1 pyrrolidine BzOH 25 1 98 21a only
2 pyrrolidine BzOH –40 4 96 3.5:1
3 pyrrolidine BzOH –78 14 93 4.1:1
4 pyrrolidine HOAc –40 4 95 3:1
5 pyrrolidine TFA –40 5 75 2.5:1
6 piperidine BzOH –40 13 95 7.4:1
7 (S)-22 BzOH 0 3 96 6:1
8 (S)-22 BzOH –20 5 93 10:1
9 (S)-22 BzOH –40 14 96 12:1
10 (R)-22 BzOH 0 3 95 1:1

[a] Combined yield of isolated 20a and 21a. [b] The diastereomeric
ratio (20a/21a) was determined by integration of relevant 1H NMR
spectroscopic signals of the crude product.

Our proposed rationales (Rationale 1 and Rationale 2,
Figure 3) for the stereochemical outcome, as a function of
reaction temperature observed in the organocatalytic oxa-
Michael reaction, are illustrated in Figure 3. Rationale 1
shows that at low temperature (–40 or –78 °C), the iminium
ion of (Z)-19a would adopt conformation 23B to avoid the
severe 1,3-diaxial interaction between the axially oriented
C3 methyl group and the C2 iminium diene group to afford
2,3-trans-2,6-trans-tetrahydropyran 20a. At 25 °C, (Z)-imin-
ium ions 23A and 23B readily undergo isomerization to give
the more stable (E)-iminium ion 23C, which subsequently
cyclizes to give the kinetically and thermodynamically more
favorable product 2,3-cis-2,6-cis-tetrahydropyran 21a. An
alternative explanation (Rationale 2) is that the iminium ion
of (Z)-19a initially forms the kinetically more favorable
product 20a at 25 °C. Compound 20a could then be con-
verted into the corresponding (E)-enal through a retro-
Michael reaction to form 21a. The low reaction tempera-
ture would minimize the isomerization of (Z)-iminium ions
and/or the retro-Michael/isomerization/oxa-Michael reac-
tion of 20a. When 20a was subjected to the oxa-Michael
reaction conditions (pyrrolidine, BzOH and CH2Cl2 at
25 °C for 2.5 h), 21a (96%, �20:1dr) was formed exclu-
sively, suggesting that Rationale 2 is most likely. Because no
equilibrium in the retro-Michael reaction was observed for
the tandem oxidation/oxa-Michael reaction,[5] the equilib-
rium between 20a and 21a observed in the organocatalytic
oxa-Michael reaction was attributed to activation by the
iminium ion formation and/or the stereochemical mismatch
between the C3 methyl group and the C6 alkyl chain in 20a.
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To the best of our knowledge, this is the first report of a
temperature-dependent configurational switch for the syn-
thesis of both 2,3-trans-2,6-trans- and 2,3-cis-2,6-cis-tetra-
hydropyrans from a common substrate by using oxa-
Michael reactions.

Figure 3. Proposed rationales for the stereochemical outcome of
the organocatalytic oxa-Michael reaction.

To investigate the substrate scope and stereochemical
outcome of the organocatalytic oxa-Michael reaction, we
prepared α,β-unsaturated aldehydes (Z)-19a–e with a vari-
ety of substituents at the C6 position by coupling (Z)-17
with commercially or readily available chiral epoxides 16a–
e (Scheme 2).

Under the standard reaction conditions [(S)-22 and
BzOH in CH2Cl2 at –40 °C], the organocatalytic oxa-
Michael reaction of (Z)-19a–e proceeded smoothly to pro-
vide the corresponding 2,3-trans-2,6-trans-tetrahydropyran
aldehydes 20a–e with good to excellent stereoselectivities
(11–20:1dr; Table 2).
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Scheme 2. Preparation of α,β-unsaturated aldehydes (Z)-19a–e for
the organocatalytic oxa-Michael reaction.

Table 2. Substrate scope of the organocatalytic oxa-Michael reac-
tion.

Entry Substrate Time [h] Yield [%][a] dr[b]

1 19a 14 96 12:1
2 19b 7 97 20:1
3 19c 8 98 11:1
4 19d 13 98 �20:1
5 19e 12 95 13:1

[a] Combined yield of the isolated 2,3-trans-2,6-trans- and 2,3-cis-
2,6-cis-tetrahydropyrans. [b] The diastereomeric ratio (2,3-trans-
2,6-trans-tetrahydropyran/2,3-cis-2,6-cis-tetrahydropyran) was de-
termined by integration of the 1H NMR spectroscopic signals of
the crude product.

As illustrated in Figure 2, conformational analysis sug-
gested that the stereoselective synthesis of 2,3-trans-2,6-cis-
tetrahydropyrans and 2,3-cis-2,6-cis-tetrahydropyrans
through the tandem oxa-Michael reaction should be
straightforward. To explore the utility of the tandem oxa-
Michael reaction in the stereoselective synthesis of these
compounds, we prepared allyl alcohols (E)-25a–d, (Z)-25a–
d, and (E)-18a–d by coupling (E)-24, (Z)-24, and (E)-17,
respectively, with chiral epoxides 16a–d (Scheme 3).

As expected, the tandem oxa-Michael reaction (MnO2 in
CH2Cl2 at 25 °C) of (E)- and (Z)-25a–d afforded 2,3-trans-
2,6-cis-tetrahydropyrans 26a–d with excellent stereoselecti-
vities (Table 3, Entries 1–8).[8,12] Under the same reaction
conditions, (E)-18a–d gave rise to 2,3-cis-2,6-cis-tetra-
hydropyrans 21a–d as single diastereomers (Table 3, En-
tries 9–12).[8]
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Scheme 3. Preparation of allyl alcohols.

Table 3. Synthesis of 2,3-trans-2,6-cis- and 2,3-cis-2,6-cis-tetra-
hydropyrans 26a–d and 21a–d through tandem oxa-Michael reac-
tions.

Entry Substrate Time [h] Yield [%] dr[a]

1 (E)-25a 12 83 �20:1
2 (E)-25b 12 90 �20:1
3 (E)-25c 12 83 �20:1
4 (E)-25d 12 82 �20:1
5 (Z)-25a 10 84 �20:1
6 (Z)-25b 10 85 �20:1
7 (Z)-25c 10 81 �20:1
8 (Z)-25d 12 88 �20:1
9 (E)-18a 10 87 �20:1
10 (E)-18b 10 84 �20:1
11 (E)-18c 10 85 �20:1
12 (E)-18d 12 81 �20:1

[a] The diastereomeric ratio was determined by integration of the
1H NMR spectroscopic signals of the crude product.

The tandem and organocatalytic oxa-Michael reactions
of α,β-unsaturated aldehydes can be broadly applicable to
the stereoselective synthesis of structurally complex tetra-
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hydropyrans and natural products. To demonstrate the effi-
ciency of the temperature-dependent configurational switch
from a common substrate, we synthesized the precursors to
the C21–C29 and C30–C37 fragments of ent-(+)-sorang-
icin A (ent-1, Figure 4). The marine macrolide (+)-sorang-
icin A (1, Figure 1) was isolated from the myxobacterium
Sorangium cellulosum by Jansen and co-workers.[13] (+)-Sor-
angicin A is active against both Gram-positive (MIC =
0.01–0.1 μg/mL) and Gram-negative (MIC = 3–30 μg/mL)
bacteria.[14] Reichenbach and co-workers determined that
the antibacterial activity of 1 arises from its inhibition of
RNA polymerase.[14] Owing to its potent antibiotic activity
and architectural complexity, the synthesis of 1 has at-
tracted considerable interest from a number of groups,[15–17]

with the first total synthesis reported by Smith and co-
workers.[15] We envisioned that both 2,3-trans-2,6-trans-
tetrahydropyran and 2,3-cis-2,6-cis-tetrahydropyran units
embedded in ent-1 could be constructed from a common
substrate through the temperature-dependent configura-
tional switch of the organocatalytic oxa-Michael reaction.

Figure 4. Structure of ent-(+)-sorangicin A (ent-1).

The synthesis of the precursors to the C21–C29 and
C30–C37 fragments of ent-1 started with the preparation of
chiral epoxide 31 (Scheme 4). Bn protection of commer-
cially available (R)-(+)-glycidol (27), opening of epoxide 28
by trimethylsulfonium iodide, and Sharpless asymmetric
epoxidation of allyl alcohol 29 provided known epoxide
30.[18] Protection of 30 by using p-methoxybenzyl chloride
completed the synthesis of chiral epoxide 31.

Scheme 4. Preparation of chiral epoxide 31.
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Dithiane coupling of (Z)-17 with 31 followed by MnO2

oxidation of the corresponding allyl alcohol (Z)-32 set the
stage for the organocatalytic oxa-Michael reactions
(Scheme 5). The organocatalytic oxa-Michael reaction of
(Z)-33 at 25 °C in the presence of pyrrolidine proceeded
smoothly to provide 2,3-cis-2,6-cis-tetrahydropyran 34 as a
single diastereomer (�20:1dr).[12] When (S)-22 was used for
the oxa-Michael reaction of (Z)-33 at –40 °C, 2,3-trans-2,6-
trans-tetrahydropyran 35 was obtained with excellent
stereoselectivity (17:1dr). The temperature-dependent con-

Scheme 5. Synthesis of the precursors to the C21–C29 and C30–
C37 fragments of ent-1 through the organocatalytic oxa-Michael
reaction.

Scheme 6. Synthesis of the precursor to the C21–C29 fragment of
ent-(+)-sorangicin A through a tandem oxidation/oxa-Michael re-
action.

www.eurjoc.org © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Eur. J. Org. Chem. 2012, 1025–10321030

figurational switch was successfully used to prepare dia-
stereomeric tetrahydropyrans 34 and 35 from common sub-
strate (Z)-33.

In addition, the tandem oxidation/oxa-Michael reaction
was effective in the stereoselective synthesis of 2,3-cis-2,6-
cis-tetrahydropyran 34 as a single diastereomer (Scheme 6).
Coupling of (E)-17 and 31 provided allyl alcohol (E)-32 in
76% yield. The tandem oxidation/oxa-Michael reaction of
(E)-32 (MnO2 in CH2Cl2 at 25 °C for 12 h) proceeded
smoothly to provide 34 with excellent stereoselectivity and
yield (�20:1dr, 85 %). Compounds 34 and 35 can be further
elaborated into C21–C29 fragment 36 and C30–C37 frag-
ment 37 of ent-1.

Conclusion

In summary, tandem and organocatalytic oxa-Michael
reactions have been used to stereoselectively synthesize
structurally complex tetrahydropyrans. In particular, the
synthesis of thermodynamically unfavorable 2,6-trans-tetra-
hydropyrans was achieved through a reagent-controlled, or-
ganocatalytic oxa-Michael reaction. A temperature-depend-
ent configurational switch allowed the preparation of both
2,3-trans-2,6-trans- and 2,3-cis-2,6-cis-tetrahydropyrans
from a common substrate, which was applied in the synthe-
sis of the precursors to the C21–C29 and C30–C37 frag-
ments of ent-(+)-sorangicin A. We expect that tandem and
organocatalytic oxa-Michael reactions will be used for the
stereoselective synthesis of a diverse set of tetrahydropyrans
and be applied to the synthesis of complex natural products
with interesting biological activities.

Experimental Section
General Methods: All reactions were conducted in oven-dried glass-
ware under nitrogen. All commercial chemical reagents were used
as supplied. Anhydrous tetrahydrofuran (THF) was distilled from
sodium/benzophenone. Analytical thin layer chromatography
(TLC) was performed on SiO2 (60 Å) with florescent indication
(Whatman). Visualization was accomplished by UV irradiation at
254 nm and/or by staining with para-anisaldehyde solution. Flash
column chromatography was performed by using silica gel 60 (par-
ticle size 4063 µm, 230400 mesh). 1H NMR, 13C NMR, and 2D
NMR (COSY, NOESY) spectra were recorded with a Varian 400
(400 MHz) and a Bruker 500 (500 MHz) spectometer in CDCl3 by
using the signal of residual CHCl3 as an internal standard. All
NMR δ values are given in ppm, and all J values are in Hz. Electro-
spray ionization (ESI) mass spectra (MS) were recorded with an
Agilent 1100 series (LC/MSD trap) spectrometer and were per-
formed to obtain the molecular masses of the compounds. Infrared
(IR) absorption spectra were determined with a Thermo-Fisher
(Nicolet 6700) spectrometer. Optical rotation values were measured
with a Rudolph Research Analytical (A21102, API/1W) polarime-
ter.

Typical Procedure for the Organocatalytic Oxa-Michael Reaction:
To a cooled (–40 °C) solution of aldehyde (Z)-19a (28.8 mg,
0.079 mmol) in CH2Cl2 (0.039 m, 2.0 mL) was added dropwise a
mixture of (S)-(–)-α,α-diphenyl-2-pyrrolidinemethanol trimethyl-
silyl ether (5.1 mg, 0.016 mmol) and BzOH (2.0 mg, 0.016 mmol)
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in CH2Cl2 (0.5 mL). After stirring at –40 °C for 14 h, the reaction
mixture was diluted with hexanes (25.0 mL), filtered through a
short pad of silica gel (hexanes/EtOAc, 3:1), and concentrated in
vacuo. The residue was purified by column chromatography (silica
gel; hexanes/EtOAc, 2:1) to afford 2,3-trans-2,6-trans-tetrahydro-
pyran 20a (25.9 mg, 90%) and 2,3-cis-2,6-cis-tetrahydropyran 21a
(2.1 mg, 7%) as colorless oils. Data for 20a: [α]D25 = +16.0 (c = 0.92,
CHCl3). 1H NMR (500 MHz, CDCl3): δ = 9.75 (dd, J = 2.0,
2.0 Hz, 1 H), 7.26–7.37 (m, 5 H), 4.54 (s, 2 H), 4.25 (ddd, J = 7.0,
7.0, 7.0 Hz, 1 H), 4.15 (dddd, J = 5.5, 5.5, 5.5, 5.5 Hz, 1 H), 3.80
(dd, J = 6.0, 1.5 Hz, 2 H), 3.08 (ddd, J = 14.5, 11.5, 3.0 Hz, 1 H),
2.96 (ddd, J = 14.5, 11.5, 3.0 Hz, 1 H), 2.65–2.75 (m, 5 H), 2.26
(dd, J = 14.5, 5.5 Hz, 1 H), 2.00–2.07 (m, 1 H), 1.94 (dddd, J =
7.0, 7.0, 7.0, 7.0 Hz, 1 H), 1.79–1.89 (m, 1 H), 1.21 (d, J = 7.0 Hz,
3 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 201.4, 138.1, 128.3,
127.6, 73.3, 70.55, 70.37, 69.6, 52.3, 47.5, 43.2, 36.5, 26.1, 25.7,
25.2, 13.9 ppm. IR (neat): ν̃ = 1722, 1452, 1277, 1097, 906, 738,
698 cm–1. HRMS (ESI): calcd. for C19H26O3S2 [M + H]+ 367.1396;
found 367.1396. Data for 21a: [α]D25 = –26.9 (c = 1.07, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 9.77 (dd, J = 2.0, 2.0 Hz, 1 H), 7.24–
7.36 (m, 5 H), 4.84 (ddd, J = 9.5, 4.5, 2.0 Hz, 1 H), 4.53 (AB, Δυ
= 16.5, JAB = 11.5 Hz, 2 H), 4.06–4.12 (m, 1 H), 3.48 (dd, J = 10.5,
5.5 Hz, 1 H), 3.42 (dd, J = 10.5, 4.5 Hz, 1 H), 2.66–2.90 (m, 5 H),
2.34 (ddd, J = 17.0, 4.5, 2.0 Hz, 1 H), 2.09 (ddd, J = 7.5, 7.5,
7.5 Hz, 1 H), 1.90–2.02 (m, 3 H), 1.85 (dd, J = 13.5, 11.5 Hz, 1 H),
1.11 (d, J = 7.5 Hz, 3 H) ppm. 13C NMR (125 MHz, CDCl3): δ =
201.0, 138.1, 128.3, 127.6, 73.3, 72.59, 72.56, 70.1, 53.3, 47.4, 38.3,
34.6, 26.0, 25.4, 25.2, 8.9 ppm. IR (neat): ν̃ = 1722, 1453, 1376,
1108, 1026, 738, 698 cm–1. HRMS (ESI): calcd. for C19H26O3S2 [M
+ H]+ 367.1393; found 367.1396.

Typical Procedure for the Tandem Oxidation/Oxa-Michael Reac-
tion: To a solution of diol (E)-25a (15.5 mg, 0.042 mmol) in CH2Cl2
(0.021 m, 2.0 mL) was added MnO2 (18.3 mg, 0.21 mmol). The re-
sulting mixture was stirred for 1 h at 25 °C. An addition of MnO2

(18.3 mg, 0.21 mmol) was repeated three times every 1 h. After stir-
ring for an additional 6 h, the reaction mixture was filtered through
a pad of Celite and concentrated in vacuo. The residue was purified
by column chromatography (silica gel; hexanes/EtOAc, 2:1) to af-
ford 2,3-trans-2,6-cis-tetrahydropyran 26a (12.8 mg, 83 %) as a col-
orless oil. [α]D25 = +16.4 (c = 0.17, CHCl3). 1H NMR (500 MHz,
CDCl3): δ = 9.78 (dd, J = 3.5, 1.5 Hz, 1 H), 7.26–7.40 (m, 5 H),
4.56 (s, 2 H), 4.09–4.15 (m, 2 H), 3.52 (dd, J = 10.0, 5.0 Hz, 1 H),
3.47 (dd, J = 10.5, 5.0 Hz, 1 H), 3.14 (ddd, J = 14.5, 12.5, 2.5 Hz,
1 H), 2.91 (ddd, J = 14.5, 12.0, 2.5 Hz, 1 H), 2.76 (dd, J = 14.0,
1.5 Hz, 1 H), 2.62–2.69 (m, 2 H), 2.58 (ddd, J = 16.0, 4.0, 2.0 Hz,
1 H), 2.44 (ddd, J = 15.5, 9.0, 3.5 Hz, 1 H), 2.05–2.12 (m, 1 H),
1.77–1.88 (m, 2 H), 1.69–1.76 (m, 1 H), 1.16 (d, J = 7.0 Hz, 3 H)
ppm. 13C NMR (100 MHz, CDCl3): δ = 201.6, 138.2, 128.4, 127.7,
73.4, 73.1, 72.8, 72.5, 54.3, 47.4, 45.5, 39.9, 25.68, 25.55, 25.0,
12.2 ppm. IR (neat): ν̃ = 1722, 1452, 1380, 1054, 908, 736,
698 cm–1. HRMS (ESI): calcd. for C19H26O3S2 [M + H]+ 367.1392;
found 367.1396.

Supporting Information (see footnote on the first page of this arti-
cle): Complete characterization data and copies of the 1H and 13C
NMR spectra.
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