Use of a Dipeptide Chemical Library in the Development of Non-Peptide Tachykinin NK₃ Receptor Selective Antagonists

Phil Boden, Jon M. Eden, Julie Hodgson, David C. Horwell, John Hughes, Alexander T. McKnight, Russell A. Lewthwaite, Martyn C. Pritchard, Jenny Raphy,* Ken Meecham, Giles S. Ratcliffe, Nirmala Suman-Chauhan, and Geoffrey N. Woodruff

Parke-Davis Neuroscience Research Centre, Cambridge University Forvie Site, Robinson Way, Cambridge CB2 2QB, U.K.

Received December 6, 1995[®]

The use of a dipeptide library as the source of a micromolar chemical lead compound for the human tachykinin NK₃ receptor is described. The screening of a dipeptide library through a cloned human NK₃ receptor binding assay resulted in the identification of Boc(*S*)Phe(*S*)PheNH₂ (**1**), which has subsequently been developed, following a 'peptoid' design strategy, into a series of high-affinity NK₃ receptor selective antagonists. The structure–activity relationship of the urea derivative Boc(*S*)Phe(*R*) α MePheNH(CH₂)₇NHCONH₂ (**41**, PD157672). This modified dipeptide has a K_e of 7 nM in blocking senktide-induced increases in intracellular calcium levels in human NK₃ receptors stably expressed in CHO cells. Subsequent optimization of the N-terminal BocPhe group and the α MePhe residue side chain of **41** led to the identification of [*S*-(*R**,*S**)]-[2-(2,3-difluorophenyl)-1-methyl-1-[(7-ureidoheptyl)carbamoyl]ethyl]carbamic acid 2-methyl-1-phenylpropyl ester (**60**, PD161182), a non-peptide NK₃ receptor selective antagonist. Compound **60** blocks the senktide-evoked increases in intracellular calcium levels in cloned human NK₃ receptors stably expressed in CHO cells with K_e of 0.9 nM.

Introduction

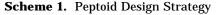
The medicinal chemistry community has been quick to recognize, and subsequently exploit, the concept of large combinatorial chemical libraries as a means of rapid chemical lead identification. Since Houghton,¹ Hruby,² and Fodor's³ key initial publications in this area, the scope of this technology has been significantly broadened to encompass the rapid synthesis of arrays of both peptide¹⁻³ and non-peptide⁴⁻⁸ compound collections generated by resin or solution phase chemical techniques.

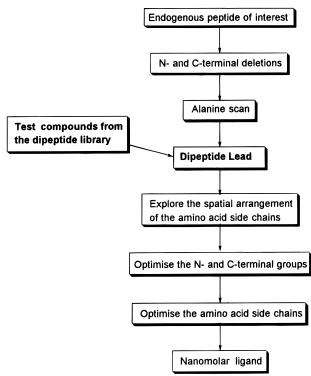
Whichever library type is chosen, it must serve to provide a collection of compounds which are capable of interacting with the biological target of interest at a detectable level. The compounds must also provide suitable starting points for subsequent optimization into a credible drug candidate. With these points in mind, we have recently described a dipeptide library.⁹ The construction of such a library was considered useful as a potential source of novel lead structures since: (a) dipeptides have been shown, by us¹⁰ and other groups,¹¹ to be an excellent starting point for drug design, (b) sufficient quantity of compound, even for in vivo profiling, can easily be prepared at relatively low cost, (c) no specialized equipment is required for the synthesis of such a library, (d) a library containing only 256 compounds can provide a data set that spans a broad spectrum of physicochemical properties in a minimum number of compounds, and (e) no deconvolution is required to identify the lead structures.

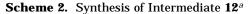
The key requirement of the library so constructed was that the greatest possible diversity of physical properties should be contained in a minimum set of compounds. For this purpose a factorial design using the minimum analogue peptide sets (MAPS)¹² in the principal proper-

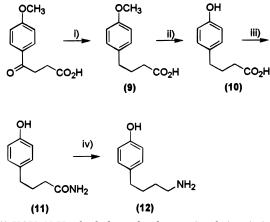
0022-2623/96/1839-1664\$12.00/0

ties of the amino acids was used to select a library of 256 N-protected dipeptides.

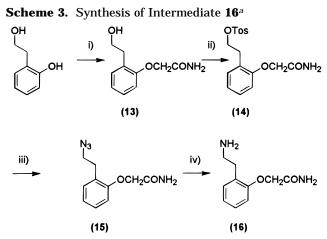

Subsequent hits obtained from the screening of this library in neuropeptide receptor assays were found to contain predominantly lipophilic amino acids (unpublished data). A second library of 64 dipeptides enriched in lipophilic side chains was therefore prepared in order to exploit this observation. These compounds are a set of Boc-protected dipeptide amides constructed from all combinations of the lipophilic amino acids Trp, Phe, Tyr, Val, Leu, Met, Ala, and Thr.


Active interest in the tachykinin research area^{13–15} is reflected in the large number of recent publications describing non-peptide receptor antagonists. The majority of these describe NK₁ and NK₂ receptor selective ligands.¹⁶ Recently the first non-peptide NK₃¹⁷ receptor selective antagonist has been revealed. Our interest in this field has been illustrated by the rational design of both NK₁¹⁸ and NK₂¹⁹ receptor antagonists following a 'peptoid' design strategy. This 'peptoid' design strategy therefore became the starting point for our NK₃ receptor program and is summarized in Scheme 1.


In the development of our NK_1 and NK_2 receptor antagonists, a key step in the 'peptoid' design strategy was the identification of a dipeptide lead. In the case of our NK_3 receptor program, we took the opportunity to investigate whether the initial steps in our 'peptoid' design strategy, *i.e.*, the preparation of N- and Cterminal deletions, and the alanine scan could be superseded by the screening of our dipeptide libraries.


This paper describes the implementation of the dipeptide libraries in the identification of a micromolar affinity NK_3 receptor lead. The subsequent development of this dipeptide lead into high-affinity modified dipeptide²⁰ and non-peptide²¹ nanomolar NK_3 selective receptor antagonists is reported.

[®] Abstract published in Advance ACS Abstracts, March 15, 1996.



 a (i) KOH, N₂H₄, diethylene glycol, 180 °C, 2 h (71%); (ii) 48% HBr, AcOH, 116 °C, 6 h (91%); (iii) DCCI, pentafluorophenol, EtOAc, 4 h, NH₃, 12 h (82%); (iv) 2 M borane–methyl sulfide complex in THF, 65 °C, 6 h (23%).

Chemistry

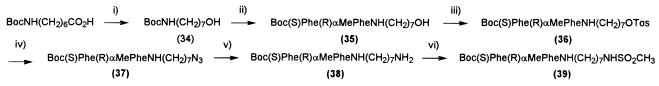
The Boc dipeptides 1–4 were purchased from Neosystem Laboratoire. The dipeptide library compounds **5** and **6** and the *N*- and α -methyl dipeptides **1a**–**j** were prepared by standard peptide-coupling procedures using pentafluorophenyl ester or 2-(1H-benzotriazol-1-yl)-1.1.3.3-tetramethyluronium hexafluorophosphate (HBTU) activation. Schemes 2 and 3 describe the syntheses of the C-terminal fragments 12 and 16 which were subsequently coupled to $Boc(S)Phe(R)\alpha MePheOH^{22}$ using HBTU activation. The sulfonamide derivative 39 was prepared by the treatment of Boc(S)Phe(R)αMePheNH-(CH₂)₇NH₂ with methanesulfonyl chloride and pyridine in dichloromethane as outlined in Scheme 4. The (7aminoheptyl)urea was prepared from 1,7-diaminoheptane and then coupled to $Boc(S)Phe(R)\alpha MePheOH^{22}$ as shown in Scheme 5. Scheme 6 depicts the synthesis of the monoamino acid compounds. The [(isopropylbenJournal of Medicinal Chemistry, 1996, Vol. 39, No. 8 1665

 a (i) 2-Bromoacetamide, $\rm K_2CO_3,$ 2-butanone, 80 °C, 4 h; (ii) p-toluenesulfonyl chloride, DMAP, DCM, pyridine, 16 h (81%); (iii) NaN_3, DMF, 75 °C, 2 h (77%); (iv) Lindlar catalyst, MeOH, H_2, 44 psi, 25 °C, 18 h.

zyl)oxy]carbonyl moiety is introduced by coupling the *p*-nitrophenyl carbonate of the 2-methyl-1-phenyl-1propanol to the appropriate amino acid methyl ester. In the case of the side-chain-substituted α MePhe residues, the resulting diastereoisomers were separated at this stage by column chromatography. The esters were then hydrolyzed with lithium hydroxide, and the (7aminoheptyl)urea moiety was coupled to the acids using HBTU activation.

Biology

The human CHO NK₃ receptor binding assay was carried out as described previously,²³ as were the NK₁ and NK₂ binding assays.^{18,19} The procedures employed in the *in vitro* functional assays have been published and are referenced in Table 8.


Results and Discussion

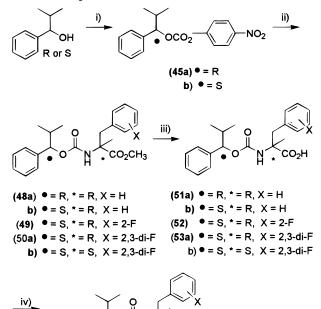
Screening of the dipeptide libraries in a cloned human NK₃ receptor binding assay resulted in the identification of a number of micromolar hits (Table 1). All hits with >10 μ M affinity for the NK₃ receptor contain two aromatic amino acid residues and as a consequence came predominantly from the 64-membered lipophilic dipeptide library described above. From these hits Boc-(*S*)Phe(*S*)PheNH₂ (1) with an IC₅₀ of 1550 nM was selected as the lead compound. This compound is selective for the NK₃ receptor over the NK₁ and NK₂ receptors, for which the IC₅₀ values are >10 μ M in both cases.

Following the identification of a dipeptide lead, the next step in our peptoid design strategy is the exploration of the spatial arrangement of the amino acid side chains and protecting groups. Conformational constraint can be built into the peptide backbone by the strategic placement of methyl groups. This approach has been successful in the improvement of the binding affinity of initial leads in our NK₁,¹⁸ NK₂,¹⁹ and CCK¹⁰ receptor programs. Compounds were therefore prepared in which single methyl groups were appended on the nitrogen atom or α -carbon of the amino acid residues (Table 2).

Unfortunately, no increase in binding affinity was observed as a result of the methylations. The C-terminal α -methyl compound Boc(S)Phe(RS) α MePheNH₂

Scheme 4. Synthesis of 39^a

^{*a*} (i) (a) EtOCOCl, NMM, THF, 0 °C, 1 h, (b) LiBH₄, THF, 3 h (96%); (ii) (a) TFA, DCM, 1 h, (b) Boc(*S*)Phe(*R*)αMePheOH, DCCI, HOBt, DMF, 15 h (67%); (iii) *p*-toluenesulfonyl chloride, NEt₃, DCM, DMAP, 15 h; (iv) NaN₃, DMF, 60 °C, 3 h (69%); (v) Lindlar catalyst, EtOH, H₂, 40 psi, 30 °C, 6 h (76%); (vi) methanesulfonyl chloride, pyridine, DCM, 15 h (21%).


Scheme 5. Synthesis of 41^a

 $H_2N(CH_2)_7NH_2$ → $H_2N(CH_2)_7NHCONH_2$ → $H_2N(CH_2)_7NHCONH_2$ → (40)Boc(S)Phe(R)αMePheNH(CH₂)₇NHCONH₂

(41)

 a (i) Trimethylsilyl isocyanate, THF, 2 h (90%); (ii) Boc(S)-Phe($R)\alpha$ MePheOH, HBTU, DIPEA, DMF, 2 h (47%).

Scheme 6. Synthesis of 54–61^a

a (i) *p*-Nitrophenyl chloroformate, pyridine, DCM, 24 h (92%);
 (ii) (*R*)-αMePheOCH₃, **46** or **47**, DMF, 3 days (26–78%);
 (iii) LiOH, THF/H₂O, 48 h (86–93%);
 (iv) RNH₂, HBTU, DIPEA, DMF, 2–18 h (29–70%).

(1d, $IC_{50} = 1520$ nM) did however display similar binding affinity to that of the parent compound. This compound was selected as the new lead on the basis that the α -methyl may impart some *in vivo* stability.²⁴

The next step in our strategy is the optimization of the N- and C-terminal groups. In order to identify suitable binding moieties for N- and C-terminal modifications of Boc(*S*)Phe(*RS*) α MePheNH₂ (**1d**), we considered the hypothesis that the PhePhe sequence in our ligand mimics the binding characteristics of the same sequence in [(4-hydroxyphenyl)acetyl]PhePheGlyLeu-MetNH₂ (**7**),²⁵ NKB, and senktide (Figure 1). If this hypothesis is valid, it should be possible to increase the binding affinity of the dipeptide **1d** by appending binding groups and/or side chain moieties from these peptides.

Table 1.	Micromolar Hits Identified from Screening the
Dipeptide	Library against the Human NK ₃ Receptor

compd no.	structure	IC_{50} , nM^a
1	Boc(S)Phe(S)PheNH2	1550
2	Boc(S)Trp(S)PheNH ₂	2080
3	Boc(S)Phe(S)TrpNH2	9610
4	Boc(S)Phe(S)TyrNH2	8620
5	(CH ₃) ₂ CH(CH ₂) ₂ COTrpTrpNH ₂	1760
6	(CH ₃) ₂ CH(CH ₂) ₂ COPheTrpNH ₂	3270

 a IC₅₀ is the concentration (nM) producing half-maximal inhibition of the specific binding of $[^{125}I][MePhe^7]NKB$ to NK_3 binding sites in cloned NK_3 receptors stably expressed in CHO cells. Values shown represent the geometric mean of three to six experiments. 23

Table 2. Methylation of the Dipeptide Lead

 Boc(S)Phe(S)PheNH2

compd no.	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	٠		IC ₅₀ , nM ^a
1	Н	Н	Н	Н	S	S	1550
1a	CH_3	Н	Н	Н	RS	S	>10 000
1b	Н	CH_3	Н	Н	RS	S	>10 000
1c	Н	Н	CH_3	Н	S	RS	>10 000
1d	Н	Н	Н	CH_3	S	RS	1520
1e	CH_3	Н	Н	Н	RS	R	>10 000
1f	Н	CH_3	Н	Н	RS	R	>10 000
1g	Н	Н	CH_3	Н	R	RS	>10 000
1ĥ	Н	Н	Н	CH_3	R	RS	>10 000
1i	Н	Н	Н	CH_3	S	S	1490
1j	Н	Н	Н	CH_3	S	R	1830

^a See footnote a, Table 1.

1d

7

Senktide

Boc(S)Phe(RS)αMePheNH₂

4-hydroxy-phenylacetylPhePheGlyLeuMetNH₂

NKB AspMetHisAspPhePheValGlyLeuMetNH₂

SuccAsp**PheNMePhe**GlyLeuMetNH₂

Figure 1. Structure of **1d**, **7**, neurokinin B, and senktide.

The smallest of these peptides (7), *i.e.*, the compound containing the smaller number of residues, was chosen as a template. The affinity of this pentapeptide derivative for the NK₃ receptor ($IC_{50} = 112 \text{ nM}^{23}$) has been attributed to a specific binding interaction of the N-terminal (4-hydroxyphenyl)acetyl group, as the pentapeptide itself has been shown to have significantly lower affinity ($IC_{50} = 10\ 000\ nM$). This moiety was therefore appended to the N- and C-termini of the dipeptide **1d** (Table 3).

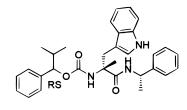
Appending the (4-hydroxyphenyl)acetyl moiety to the N-terminal of **1d** led to a significant drop in NK₃ receptor binding affinity (**8**, $IC_{50} = 5890$ nM). In contrast appending this group at the C-terminal re-

Table 3. NK₃ Receptor Binding Affinities

compd no.	structure	IC_{50} , nM^a
1d	Boc(S)Phe(RS)αMePheNH ₂	1520
8 ^b	$Ph(4-OH)CH_2CO(S)Phe(RS)\alpha MePheNH_2$	5890
17	$Boc(S)Phe(RS)\alpha MePheNHCH_2Ph(4-OH)$	425
18	$Boc(S)Phe(R)\alpha MePheNH(CH_2)_4Ph(4-OH)$	39
19	$Boc(S)Phe(RS)\alpha MePheNHCH_2Ph$	1080
20	$Boc(S)Phe(RS)\alpha MePheNH(CH_2)_4Ph$	162
21	$Boc(S)Phe(RS)\alpha MePheNH(CH_2)_7OH$	111
22	$Boc(S)Phe(RS)\alpha MePheNH(CH_2)_8OH$	92
23	$Boc(S)Phe(RS)\alpha MePheNH(CH_2)_9OH$	106
24	$Boc(S)Phe(S)\alpha MePheNH(CH_2)_8OH$	1690
25^{b}	$Boc(S)Phe(R)\alpha MePheNH(CH_2)_8OH$	40
26	$Boc(S)Phe(RS)\alpha MePheNH(CH_2)_8CH_3$	439
27^{b}	$Boc(S)Phe(RS)\alpha MePheNH(CH_2)_7CO_2H$	229
28 ^b	$Boc(S)Phe(RS)\alpha MePheNH(CH_2)_8OMe$	101

^a See footnote a, Table 1. ^b Synthesis as described in ref 22.

sulted in an *ca.* 3-fold increase in NK₃ receptor binding affinity (**17**, IC₅₀ = 425 nM). Increasing the methylene chain length in compounds of this nature led to an improvement in binding affinity, with four methylenes being optimal (**18**, IC₅₀ = 39 nM). As the replacement of the phenol moiety with a phenyl group in both cases (**19** and **20**) led to a decrease in affinity, the hydroxyl moiety was considered to be important in the binding interaction of these ligands. A series of alkyl alcohols with varying chain lengths were therefore prepared. The optimum chain length for these compounds was identified in **22**, the 8-amino-1-octanol derivative which has an IC₅₀ of 92 nM; the shorter 7-amino-1-heptanol (**21**) and the longer 9-amino-1-nonanol (**23**) derivatives have slightly lower affinities (111 and 106 nM, respectively).


The compounds so far described with the exception of **18** are all equal mixtures of two diastereoisomers having a racemic center at the α MePhe residue. The individual stereoisomers of **22** were prepared to determine the stereochemical preference of these ligands with respect to NK₃ receptor affinity. The preferred stereochemistry was found to be *S*,*R* at the two centers, respectively. The dipeptide with this stereochemistry (**25**) has an IC₅₀ of 40 nM in comparison to the equivalent *S*,*S*-isomer **24** which has an IC₅₀ of 1690 nM (Table 3).

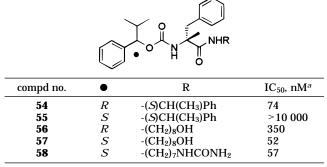
The hydroxyl moiety in the amino alcohol series is strongly implicated in participating in the binding interaction with the NK₃ receptor as the alkyl derivative **26** shows much reduced binding affinity ($IC_{50} = 439 \text{ nM}$; *cf.* **22**, $IC_{50} = 92$ nM; Table 3). In order to optimize the binding interaction of the hydroxyl group, the nature of this interaction was investigated with the preparation of the corresponding hydrogen bond-accepting methyl ether and hydrogen bond-donating carboxylic acid derivatives (Table 3). The methyl ether 28 was found to have a similar binding affinity ($IC_{50} = 101 \text{ nM}$) to the alcohol 22, while the carboxylic acid analogue 27 binds with a lower affinity ($IC_{50} = 229$ nM). These observations led to the postulation that the hydroxyl group is interacting as a hydrogen bond acceptor in these ligands. A series of derivatives were therefore prepared in which the hydroxyl function is replaced with selected hydrogen bond-accepting groups.²⁶ A number of such compounds which bind to the human NK₃ receptor with IC_{50} values in the 20–30 nM range were identified. Among these compounds, the urea derivative 41, Boc-(S)Phe $(R)\alpha$ MePheNH $(CH_2)_7$ NHCONH₂, displays the highest binding affinity (IC₅₀ = 16 nM).

Table 4. NK₃ Receptor Binding Affinities

compd		IC ₅₀ ,
no.	structure	nM ^a
25 ^b	Boc(S)Phe(R)αMePheNH(CH ₂) ₈ OH	40
29	Boc(S)Phe(RS)PheNH(CH2)8OH	4310
30 ^b	$Boc(S)Phe(R)\alpha MePheNH(CH_2)_8CONH_2$	39
31 ^b	Boc(S)Phe(R)αMePheNH(CH ₂) ₈ CONHCH ₃	18
32	$Boc(S)Phe(R)\alpha MePheNH(CH_2)_8CON(CH_3)_2$	28
33 ^b	$Boc(S)Phe(R)\alpha MePheNH(CH_2)_8SO_2Me$	28
39	Boc(S)Phe(R)αMePheNH(CH ₂) ₇ NHSO ₂ Me	31
41	$Boc(S)Phe(R)\alpha MePheNH(CH_2)_7NHCONH_2$	16
42 ^b	$Boc(S)Phe(R)\alpha MePheNH(CH_2)_2Ph(4-OCH_2CONH_2)$	67
43	Boc(S)Phe(R) a MePheNH(CH ₂) ₂ Ph(2-OCH ₂ CONH ₂)	119

^{*a*} See footnote a, Table 1. ^{*b*} Synthesis as described in ref 22.

(44)


Figure 2. Structure of [2-(1*H*-indol-3-yl)-1-methyl-1-[(1-phenylethyl)carbamoyl]ethyl]carbamic acid 2-methyl-1-phenylpropyl ester (**44**).

In order to reduce the chain flexibility of these poly-(methylene) compounds, we prepared analogues in which a phenyl ring was introduced within the alkyl chain. Although the analogues prepared showed no improvement in binding affinity, a preference for the *para* substitution (**42**) over the *ortho* substitution (**43**) was observed. This result suggests that the C-terminal segment may bind in an extended conformation (Table 4).

The contribution to receptor binding affinity of the α -methylation at the C-terminal phenylalanine residue was re-examined by the preparation of the non- α -methyl compound **29**. The binding affinity of this ligand is 4310 nM, which compares to 92 nM for the α -methylated analogue **22**. In these compounds where the C-terminal group plays a major role in the binding affinity of the ligand, the presence of the α -methyl group is crucial, presumably in restricting the number of conformations available to these ligands.²⁷

Having optimized the C-terminal portion of our dipeptide lead, our next objective as outlined in our 'peptoid' design strategy was to examine the N-terminal portion of our compounds. A key consideration was to convert these modified dipeptides into non-peptide derivatives, and to this end the replacement of the N-terminal Boc(S)Phe moiety was investigated. An interesting lead in this area came in the form of 44 (Figure 2) which was prepared as part of our NK_1 receptor program. In addition to having the targeted NK_1 receptor affinity (IC₅₀ = 1400 nM), this monoamino acid derivative was noted to also have micromolar affinity for the NK3 receptor (IC $_{50}$ = 1200 nM). The possible relationship between this monoamino acid derivative and our modified dipeptides was investigated by the substitution of the $(R)\alpha$ MeTrp residue in **44** by the $(R)\alpha$ MePhe residue found in the dipeptide ligands (Table 5). In order to determine which stereochemistry is required at the N-terminal [(isopropylbenzyl)oxy]carbonyl moiety for NK₃ receptor affinity, both stereoisomers at this center were prepared. The compound

Table 5. NK₃ Receptor Binding Affinities

^{*a*} See footnote a, Table 1.

Table 6. NK₃ Receptor Binding Affinities

			,N,NH₂
compd no.	•	R	IC ₅₀ , nM ^a
58	R	-CH ₂ Ph	57
59	R	-CH ₂ Ph(2-F)	16
60	R	-CH ₂ Ph(2,3-diF)	7
61	S	-CH2Ph(2,3-diF)	1400

^{*a*} See footnote a, Table 1.

with the R stereochemistry at the [(isopropylbenzyl)oxy]carbonyl moiety (54) is clearly preferred, having an IC_{50} value of 74 nM, in comparison to the *S*-isomer **55**, which has an IC₅₀ value of >10000 nM. Encouraged by this increase in NK₃ receptor affinity with compound 54, we went on to append the C-terminal groups identified as optimum in our modified dipeptides. Appending the 8-amino-1-octanol moiety found in 25 results in a marginal increase in NK₃ receptor affinity (57, $IC_{50} = 52$ nM). The observed binding affinity of 57 is very similar to that of 25 (IC $_{50}$ = 40 nM), suggesting that the (S)-[(isopropylbenzyl)oxy]carbonyl group is a good replacement for the N-terminal Boc(S)-Phe moiety in the dipeptide ligands. Interestingly, when the C-terminal α -methylbenzylamine is replaced by the 8-amino-1-octanol group, a switch in the preferred stereochemistry at the N-terminal for optimal NK₃ receptor binding affinity is observed. In these compounds the S,R isomer has highest affinity for the NK₃ receptor. The replacement of the 8-amino-1-octanol group with the (7-aminoheptyl)urea group found in 41 results in no further increase in NK₃ receptor affinity (58, $IC_{50} = 57 \text{ nM}$).

The final stage in our peptoid design strategy is the optimization of the amino acid side chains. The central α MePhe phenyl ring structure–activity relationship (SAR) was investigated using a Topliss²⁸ type approach. This lead to the identification of a 2-chlorinated compound with a 2-fold increase in NK₃ receptor affinity. The 2-position was further investigated by the preparation of a number of halogen and alkyl 2-substituted α MePhe derivatives. Substitution in this position with fluorine increases NK₃ receptor affinity just over 3-fold (**59**, IC₅₀ = 16 nM); see Table 6. Affinity is further increased in the 2,3-difluoro analogue **60** (IC₅₀ = 7 nM). The stereochemistry at the two chiral centers was confirmed as *S*,*R* from an X-ray crystallographic structure of compound **50a**.

Both the modified dipeptide ligands, *e.g.*, **25** and **41**, and the non-peptide ligands **59** and **60** show good

 Table 7. Tachykinin Receptor Selectivity

	binding affinities (IC ₅₀ , nM)					
compd no.	NK ₁ ^a (IM9)	NK ₂ ^b (HUB)	NK ₃ ^c (GP)	NK3 ^d (CHO)	NK3 ^e (rat)	
NKB	98	3.6	2	9.7		
senktide	>10 000		12	22	11	
25	>10 000	6160	22	40	2790	
		(3840 - 9990)	(12 - 51)	(26 - 61)	(2000 - 3700)	
41	>10 000	6540	9	16	1730	
		(4100 - 9700)	(5 - 13)	(8 - 24)	(1100 - 2200)	
59	2200	1500	14	16	83	
	(750 - 3700)	(1300 - 1700)	(8 - 18)	(14 - 20)	(44 - 156)	
60	3000	790	4	7	30	
	(2900-3100)	(480–1100)	(1-6)	(6-9)	(13-78)	

 a Values shown represent the geometric mean of three separate experiments carried out using $[^{125}I]$ Bolton-Hunter substance P to label NK₁ binding sites in human lymphoma IM9 cells.¹⁸ b Values shown represent the geometric mean of three separate experiments carried out using $[^{125}I]$ NKA to label NK₂ binding sites in membranes prepared from hamster urinary bladder.¹⁹ c Values shown represent the geometric mean of three to six separate experiments carried out using $[^{125}I]$ MePhe⁷]NKB to label NK₃ binding sites in guinea pig cortical membranes.²³ d See footnote a, Table 1. e Values shown represent the geometric mean of three to six separate experiments carried out using $[^{125}I]$ MePhe⁷]MKB to label NK₃ binding sites in rat cortical membranes.²³

Table 8. In Vitro Functional Data

compd	<i>in vitro</i> functional assays (<i>K</i> _e , nM)					
no.	CHO ^a cells	GP ^b ileum	GP ^c hab	$rat hab^d$		
25	29 (25-35)	14 (8-40)	54 (34-108)			
41	7 (2-22)	42 (26-130)	16 (12-21)			
59	2 (2-11)		13 (5-21)			
60	0.9 (0.5-1.5)		6 (4-7)	19 (10-34)		

^{*a*} Inhibition of senktide-evoked increases in intracellular calcium levels in cloned human NK₃ receptors stably expressed in CHO cells measured using the fluorescent indicator Fura2.²⁹ Equilibrium constants shown represent the mean of at least three separate experiments. ^{*b*} Isomeric contractions were recorded from longitudinal muscle myenteric plexus preparations with responses to the NK₃ receptor selective agonist senktide.³⁰ Data represent the geometric means of individual values in at least three separate experiments. ^{*c*} Inhibition of senktide-induced increases in spontaneous firing of guinea pig habenula neurons *in vitro*.³¹ Values are the mean of at least three separate experiments. *in vitro*.³¹ Values are the mean of at least three separate experiments.

selectivity for the NK₃ receptor over NK₁ and NK₂ receptors in human and hamster preparations, respectively (Table 7). It is interesting to note that while the dipeptide ligands **25** and **41** have low affinity for the rat NK₃ receptor (IC₅₀ = 2790 and 1730 nM, respectively), the non-peptide ligands **59** and **60** have appreciable affinity for the rat NK₃ receptor (IC₅₀ = 83 and 30 nM, respectively).

Selected ligands were tested in human and guinea pig in vitro functional assays. The ability of these ligands to inhibit senktide-evoked increases in intracellular calcium levels in cloned human NK₃ receptors stably expressed in CHO cells and senktide-induced increases in spontaneous firing of guinea pig habenula neurons *in vitro* was examined (Table 8). These functional assays show potent and competitive NK₃ receptor selective antagonism with these compounds. The nonpeptide **60** has K_e values of 0.9 and 6 nM in these two assays, respectively. As **60** had been shown to have moderate affinity for the rat NK₃ receptor, its ability to inhibit the senktide-induced increase in the spontaneous firing of rat medial habenula neurons *in vitro* was investigated. The K_e for antagonism of senktide by **60** in this assay is 19 nM, only some 3-fold lower than that seen in the guinea pig habenula.

Conclusion

In this paper we have described the development of a novel series of high-affinity non-peptide NK₃ receptor selective antagonists. The initial lead compound in this program was identified from the screening of a dipeptide chemical library through a human NK₃ receptor binding assay. Optimization of the C-terminal portion of this dipeptide lead resulted in the identification of a series of modified dipeptides. These compounds bind selectively to the human NK₃ receptor with comparable binding affinity to the peptide ligands neurokinin B and senktide. The C-terminal urea derivative **41** has the highest affinity for the NK₃ receptor in this series of compounds (IC₅₀ = 16 nM).

These modified dipeptide ligands were then further developed following our 'peptoid' design strategy (Scheme 1). Modification of the N-terminal portion and substitution of the α MePhe residue side chain led to the identification of **60**, a true non-peptide NK₃ receptor selective antagonist. **60** has an affinity of 7 nM for the human NK₃ receptor and has been shown to be a competitive antagonist in human, guinea pig, and rat functional assays with K_e values of 0.9, 6, and 19 nM, respectively.

To our knowledge this is the first published example in which an initial hit obtained from the screening of a synthetic peptide chemical library has been developed into a high-affinity non-peptide ligand for a membranebound receptor. With these non-peptide NK₃ receptor antagonists now in hand, we can begin to determine whether such ligands will be of therapeutic value in such areas as analgesia,³² schizophrenia,¹⁷ and Parkinson's disease.³³

Experimental Section

Melting points were determined with a Mettler FP80 or a Reichert Thermovar hot-stage apparatus. Proton NMR were recorded on a Bruker AM300 or a Varian Unity +400 spectrometer; chemical shifts are recorded in ppm downfield from tetramethylsilane. IR spectra were recorded with the compound neat on a sodium chloride disk on a Perkin-Elmer System 2000 Fourier transform spectrophotometer. Optical rotations were determined with a Perkin-Elmer 241 polarimeter. Mass spectra were recorded with a Finnigan MAT TSQ70 or Fisons VG Trio-2A instrument. Elemental analyses are within $\pm 0.4\%$ of theoretical values and were determined by Medac Ltd., Uxbridge, U.K. Normal Phase silica gel used for chromatography was Merck no. 9385 (230-400 mesh), and reverse phase silica gel used was Lichroprep RP-18 (230-400 mesh); both were supplied by E. Merck, A.G., Darmstadt, Germany. Anhydrous solvents were purchased in septumcapped bottles from Fluka Chemicals Ltd., Glossop, U.K.

[1-[(1-Carbamoyl-2-phenylethyl)carbamoyl]-2-phenylethyl]methylcarbamic Acid *tert*-Butyl Ester (1a). Boc-(*RS*)NMePheOH (150 mg, 0.54 mmol) was dissolved in DMF (5 mL), and DCCI (111 mg, 0.54 mmol) and HOBt (83 mg, 0.54 mmol) were added. The reaction mixture was stirred for 4 h, after which H-PheNH₂ (90 mg, 0.55 mmol) was added and stirring was continued for a further 12 h. The solvent was removed *in vacuo*, and the residue was redissolved in EtOAc (100 mL) and washed with aqueous NaHCO₃ (3 × 50 mL), 1 M HCl (3 × 50 mL), and water (3 × 50 mL). The organic layer was separated, dried over MgSO₄, and evaporated. The residue was purified by reverse phase column chromatography to afford a white solid: mp 55–60 °C; 125 mg (54%); [α]²⁰_D = -22.2° (*c* = 0.5, MeOH); ¹H-NMR (DMSO-*d*₆, 340 K) δ 1.26 (s, 9H), 2.46, 2.62 (2 × s, 3H), 2.65–2.95 (m, 2H), 3.00, 3.10 (m) 2H), 4.50–4.60 (m, 1H), 4.65–4.85, (m, 1H), 6.90–7.00 (m, 1H), 7.10–7.25 (m, 10H), 7.40–7.50 (m, 1H); IR (film) 3331, 2978, 1665 cm⁻¹; MS m/e (CI) 426 (M + H) (5), 326 (100). Anal. (C₂₄H₃₁N₃O₄·0.1H₂O) C, H, N.

[1-[(1-Carbamoyl-2-phenylethyl)carbamoyl]-1-methyl-2-phenylethyl]carbamic Acid tert-Butyl Ester (1b). Boc-(RS)aMePheOH (213 mg, 0.76 mmol) was dissolved in DMF (10 mL), and DCCI (157 mg, 0.76 mmol) and pentafluorophenol (140 mg, 0.76 mmol) were added. The reaction mixture was stirred for 2 h, after which the precipitate was removed by filtration. The H-PheNH₂ (138 mg, 0.84 mmol) in EtOAc (10 mL) was added, and the reaction mixture was stirred for 3 days. The solvent was removed in vacuo, and the residue was redissolved in EtOAc (25 mL) and washed with aqueous NaHCO₃ (3 \times 10 mL), 1 M HCl (2 \times 10 mL), and water (3 \times 10 mL). The organic layer was separated, dried over MgSO₄ and evaporated. The residue was purified by column chromatography, 50% EtOAc/hexane, to afford a white solid: mp 80-85 °C; 127 mg (39%); $[\alpha]^{21}_{D} = -40.4^{\circ}$ (c = 0.5, MeOH); ¹H-NMR (DMSO- d_6) δ 0.93, 1.08 (2 × s, 3H), 1.38, 1.41 (2 × s, 9H), 2.83-3.25 (m, 4H), 4.30-4.53 (m, 1H), 6.74-6.95 (m, 3H), 7.14-7.26 (m, 10H), 7.79-7.89 (m, 1H); IR (film) 3400-3200, 1675, 1608, 1520, 1369 cm⁻¹. Anal. ($C_{24}H_{31}N_3O_4 \cdot 0.3H_2O$), C, H, N.

[1-[(1-Carbamoyl-2-phenylethyl)methylcarbamoyl]-2phenylethyl]carbamic Acid tert-Butyl Ester (1c). Boc-(S)PheOH (124 mg, 0.47 mmol) was dissolved in DMF (5 mL), and HBTU (177 mg, 0.47 mmol) and DIPEA (362 mg, 2.79 mmol) were added. The reaction mixture was stirred for 10 min, and TFA·H-(S)-NMePheNH₂ (150 mg, 0.51 mmol) was added. The reaction mixture was stirred for 30 min, and the solvent was then removed *in vacuo* and the residue redissolved in EtOAc (25 mL) and washed with aqueous NaHCO₃ (3 \times 10 mL), 1 M HCl (2 \times 10 mL), and water (3 \times 10 mL). The organic layer was separated, dried over MgSO₄, and evaporated. The residue was purified by reverse phase column chromatography, 65-95% MeOH in water, to afford a white solid: mp 113–117 °C; 42 mg (21%); $[\alpha]^{20}_{D} = -29.0^{\circ}$ (c = 0.5, MeOH); ¹H-NMR (DMSO-d₆) δ 1.27–1.30 (m, 9H), 2.19–2.44 (m, 1H), 2.69-3.02 (m, 4H), 3.14-3.34 (m, 1H), 4.20-4.50 (m, 1H), 4.81-4.99, 5.20-5.29 (m, 1H), 6.83-7.36 (m, 13H); IR (film) 3412, 3079, 1690, 1680, 1641, 1632, 1496 cm⁻¹. Anal. (C₂₄H₃₁N₃O₄·1.5H₂O) C, H; N: calcd, 9.29; found, 8.84.

[1-[(1-Carbamoyl-1-methyl-2-phenylethyl)carbamoyl]-2-phenylethyl]carbamic Acid *tert*-**Butyl Ester (1d).** The compound was prepared by the method described for **1c** in 47% yield: mp 141–143 °C; $[\alpha]^{21}_{D} = -32.0^{\circ}$ (c = 0.5, MeOH); ¹H-NMR (DMSO- d_6) δ 1.30 (s, 9H), 1.42 (s, 3H), 2.73–3.39 (m, 4H), 4.03–4.18 (m, 1H), 7.08–7.26, (m, 13H), 7.57 (s, 1H); IR (film) 3300–3200, 1676, 1497 cm⁻¹. Anal. (C₂₄H₃₁N₃O₄·0.1H₂O) C, H, N.

[1-[(1-Carbamoyl-2-phenylethyl)carbamoyl]-2-phenylethyl]methylcarbamic Acid *tert*-Butyl Ester (1e). The compound was prepared by the method described for 1b in 35% yield: mp 98–106 °C; ¹H-NMR (DMSO-*d*₆, 340 K) δ 1.19 (s, 9H), 2.41 (d, *J* = 14.2 Hz, 1H), 2.60–3.08 (m, 6H), 4.40–4.58 (m, 1H), 4.60–4.91 (m, 1H), 7.12–7.50 (m, 12H), 7.72–7.98 (m, 1H); IR (film) 3300–3000, 2930, 1667, 1516 cm⁻¹. Anal. (C₂₄H₃₁N₃O₄·0.6H₂O) C, H, N.

[1-[(1-Carbamoyl-2-phenylethyl)carbamoyl]-2-phenylethyl]carbamic Acid *tert*-**Butyl Ester (1g).** The compound was prepared by the method described for **1c** in 33% yield: mp 47–50 °C; ¹H-NMR (DMSO- d_6) δ 1.10–1.37 (m, 9H), 2.19–2.42 (m, 1H), 2.59–3.04 (m, 5H), 3.13–3.40 (m, 1H), 4.20–4.70 (m, 1H), 4.82–5.28 (m, 1H), 6.88–7.39 (m, 13H); IR (film) 3308, 3196, 1680, 1640, 1496 cm⁻¹. Anal. (C₂₄H₃₁N₃O₄·0.25H₂O) C, H, N.

[1-[(1-Carbamoyl-1-methyl-2-phenylethyl)carbamoyl]2-phenylethyl]carbamic Acid *tert*-Butyl Ester (1h). The compound was prepared by the method described for 1c in 41% yield: mp 138–143 °C; $[\alpha]^{21}{}_{\rm D} = +52.7^{\circ}$ (c = 0.5, MeOH); ¹H-NMR (DMSO- d_6) δ 1.29 (s, 9H), 1.37 (s, 3H), 2.67–2.78 (m, 1H), 2.93–3.08 (m, 1H), 3.18–3.37 (m, 1H), 3.98–4.18 (m, 1H), 7.07 (d, J = 5.9 Hz, 1H), 7.17–7.28, (m, 12H), 7.74 (s, 1H); IR (film) 3306, 2980, 1664, 1498 cm⁻¹. Anal. (C₂₄H₃₁N₃O₄·0.5H₂O) C, H, N.

[*S*-(*R**,*R**)]-[1-[(1-Carbamoyl-1-methyl-2-phenylethyl)carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (1i). The compound was prepared by the method described for 1c in 64% yield: mp 160–162 °C; $[\alpha]^{21}_{D} = +60.0^{\circ}$ (*c* = 0.5, MeOH); ¹H-NMR (DMSO-*d*₆) δ 1.27 (s, 9H), 1.20 (s, 3H), 2.73– 2.96 (m, 2H), 3.23–3.37 (m, 2H), 3.98 (m, 1H), 7.07 (d, *J* = 6.2 Hz, 2H), 7.19–7.28 (m, 11H), 7.77 (s, 1H); IR (film) 3306, 2980, 1665, 1498 cm⁻¹. Anal. (C₂₄H₃₁N₃O₄) C, H, N.

[*R*-(*R*^{*},*S*^{*})]-[1-[(1-Carbamoyl-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (1j). The compound was prepared by the method described for 1c in 58% yield: mp 191–195 °C; $[\alpha]^{21}_D = +4.0^\circ$ (c = 0.5, MeOH); ¹H-NMR (DMSO- d_6) δ 1.16, 1.28 (2 × s, 9H), 1.36, 1.50 (2 × s, 3H), 2.58–2.79 (m, 1H), 3.13–3.35 (m, 3H), 4.08– 4.17 (m, 1H), 7.08–7.26 (m, 13H), 7.73 (s, 1H); IR (film) 3172, 1674, 1655, 1541 cm⁻¹. Anal. (C₂₄H₃₁N₃O₄) C, H, N.

4-(4-Methoxyphenyl)butyric Acid (9). 4-(4-Methoxyphenyl)-4-oxobutyric acid³⁴ (3.46 g, 16.6 mmol), hydrazine monohydrate (1.61 mL, 33 mmol), and KOH pellets (3.77 g, 66 mmol) were heated under reflux in diethylene glycol (20 mL) for 1.5 h. The temperature was increased to 180 °C for 2 h, during which time the hydrazine and water distilled over. On cooling additional hydrazine (1.61 mL) was added, and the process was repeated; 10% citric acid solution (130 mL) was added, and the mixture was extracted with ether (3 imes 200 mL). The organic layer was washed with water and dried over MgSO₄, the solvent was evaporated, and the residue was purified by column chromatography, ether/hexane (2:3), to give a white solid: 2.30 g (71%); ¹H-NMR (CDCl₃) δ 1.93 (q, 2H), 2.35 (t, 2H), 2.61 (t, 2H), 3.78 (s, 3H), 6.82 (d, 2H), 7.08 (d, 2H); IR (film) 2936, 1707 cm⁻¹. MS m/e (CI) 194 (M), 177 (100)

4-(4-Hydroxyphenyl)butyric Acid (10). 9 (1.0 g, 5 mmol) was dissolved in 48% HBr (50 mL) and glacial acetic acid (80 mL), and the solution was heated under reflux for 6 h. The solution was poured onto ice (300 mL) and stirred for a further 12 h. The mixture was extracted with ether (3×300 mL), and the combined extracts were washed with water (3×200 mL). The organic layer was dried over MgSO₄, and the solvent was evaporated to given an oil which was purified by reverse phase chromatography, 10-80% methanol/water. A white solid was obtained: 0.82 g (91%); ¹H-NMR (CDCl₃) δ 1.77 (q, 2H), 2.16 (t, 2H), 2.45 (t, 2H), 6.63 (d, 2H), 6.86 (d, 2H), 8.16 (s, 1H); MS m/e (CI) 181 (M + H), 163 (100).

4-(4-Hydroxyphenyl)butyramide (11). 4-(4-Hydroxyphenyl)butyric acid **10** (0.80 g, 4.4 mmol), DCCI (0.92 g, 4.4 mmol), and pentafluorophenyl (0.82 g, 4.4 mmol) were dissolved in EtOAc (80 mL), and the solution was stirred for 4 h. The precipitate was removed by filtration, and the filtrate was concentrated *in vacuo*. The residue was dissolved in DCM (60 mL), and ammonia gas was bubbled through the solution for 1 h. Stirring was continued for a further 12 h, and the solvent was then evaporated. The residue was purified by column chromatography, 6% MeOH/DCM, to give a white solid: 0.70 g (82%); ¹H-NMR (DMSO-*d*₆) δ 1.66 (m, 2H), 1.98 (t, 2H), 2.39 (t, 2H), 6.20 (m, 3H), 6.91 (d, 2H), 7.17 (s, 1H), 9.05 (s, 1H); IR (film) 3357, 3183, 1676, 1608 cm⁻¹.

4-(4-Aminobutyl)phenol (12). BSM (2 M) in THF (3.23 mL, 6.5 mmol) was added dropwise to a solution of **11** (0.50 g, 2.8 mmol) in THF (25 mL) under N_2 . The reaction mixture was heated under reflux for 6 h and then cooled to room temperature. MeOH (3 mL) was added, and the solution was stirred overnight. Dry HCl gas was bubbled through the solution for 20 min, and the solution was then reheated under reflux for 1 h. The solvent was removed *in vacuo*, and the residue was dissolved in EtOAc (100 mL) and washed with 2 M HCl (2 × 60 mL). The pH of the aqueous phase was

adjusted to 10 with solid Na₂CO₃, and the mixture was then extracted with EtOAc (3 \times 100 mL). The organic layer was dried, and the solvent was evaporated to give a solid: 105 mg (23%); ¹H-NMR (DMSO-*d*₆) δ 1.28 (m, 2H), 1.46 (t, 2H), 2.39 (t, 2H), 3.50 (m, 2H), 6.60 (d, 2H), 6.90 (d, 1H); IR (film) 3313, 2924, 1576, 1462 cm⁻¹.

2-[2-(2-Hydroxyethyl)phenoxy]acetamide (13). Potassium carbonate (1.20 g, 8.7 mmol) was added to a solution of 2-(2-hydroxyethyl)phenol (1.20 g, 8.7 mmol) and 2-bromoacetamide (1.32 g, 8.7 mmol) in 2-butanone (25 mL). The suspension was heated under reflux for 4 h and stirred at room temperature for 15 h. The solid was removed by filtration, and the filtrate was concentrated *in vacuo*. Purification by column chromatography, 5% MeOH/EtOAc, gave a white solid: 1.50 g (88%); ¹H-NMR (DMSO-*d*₆) δ 2.75 (t, 2H), 3.55 (m, 2H), 4.38 (s, 2H), 4.57 (m, 1H), 6.75–7.15 (m, 4H), 7.30 (br s, 1H); TR (film) 3377, 1682, 1590, 1040 cm⁻¹.

Toluene-4-sulfonic Acid 2-[2-(Carbamoylmethoxy)phenyl]ethyl ester (14). *p*-Toluenesulfonyl chloride (1.77 g, 9.3 mmol) in DCM (25 mL) was added dropwise over 2 h to a solution of the alcohol **13** (1.45 g, 7.4 mmol) and DMAP (1.13 g, 9.3 mmol) in DCM (75 mL) at 0 °C. The reaction mixture was stirred at room temperature for 16 h and then washed with 10% citric acid (2 × 50 mL) and water (50 mL). The organic layer was dried over MgSO₄, and the solvent was removed *in vacuo* to give a residue which was purified by column chromatography, 60% EtOAc/hexane, to give an oil: 2.10 g (81%); ¹H-NMR (DMSO-*d*₆) δ 2.36 (s, 3H), 2.91 (t, 2H), 4.18 (t, 2H), 4.29 (s, 2H), 6.72–7.62 (m, 10H); IR (film) 3330, 2916, 1684, 1585, 1357, 1175 cm⁻¹.

2-[2-(2-Azidoethyl)phenoxy]acetamide (15). 14 (2.05 g, 5.9 mmol) and NaN₃ (0.42 g, 6.5 mmol) were dissolved in DMF (20 mL), and the reaction mixture was heated to 75 °C for 2 h. The solution was cooled to room temperature and poured onto ice (120 mL). The aqueous phase was then extracted with ether (3 × 100 mL) and dried over MgSo₄, and the solvent was removed *in vacuo* to give a white solid which was used without purification: 0.99 g (77%); ¹H-NMR (DMSO-*d*₆) δ 2.88 (t, 2H), 3.50 (t, 2H), 4.42 (s, 2H), 6.80–7.40 (m, 6H); IR (film) 2924, 2104, 1694 cm⁻¹; MS *m*/*e* (CI) 221 (M + H), 107 (100).

2-[2-(2-Aminoethyl)phenoxy]acetamide (16). A solution of the azide **15** (205 mg, 0.9 mmol) in MeOH (40 mL) was treated with Lindlar catalyst (100 mg) and hydrogen gas at 44 psi, 25 °C, for 18 h. After removal of the catalyst by filtration through Kieselguhr, the solvent was removed *in vacuo* to give a gum (182 mg), which was used without purification: ¹H-NMR (DMSO- d_6) δ 2.60–2.80 (m, 4H), 4.39 (s, 2H), 6.80–7.20 (m, 4H), 7.36 (br s, 1H), 7.42 (br s, 1H); IR (film) 3297, 2927, 1682 cm⁻¹.

[1-[[1-[(4-Hydroxybenzyl)carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (17). The compound was prepared by coupling *p*-hydroxybenzylamine³⁵ to Boc(*S*)Phe(*RS*) α MPheOH²² by the procedure described for 1a. The product was purified by column chromatography, 50% EtOAc/hexane, to give the compound: 97 mg (37%); mp 86–90 °C; ¹H-NMR (CDCl₃) δ 1.26, 1.28 (2 × s, 9H), 1.50, 1.59 (2 × s, 3H), 2.73–3.08 (m, 3H), 3.32–3.41 (m, 1H), 3.98–4.39 (m, 3H), 4.88, 4.99 (2 × d, *J* = 5.2 Hz, 1H), 5.89, 6.27 (2 × s, 1H), 6.72–7.32 (m, 14H); IR (film) 3329, 1689, 1673, 1650, 1516 cm⁻¹. Anal. (C₂₄H₃₁N₃O₄·0.1H₂O) C, H, N.

[*R*-(*R**,*S**)]-[1-[[1-[[4-(4-Hydroxyphenyl)butyl]carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (18). The amine 12 was coupled to Boc(*S*)Phe(*SR*) α MePheOH²² using HOBt activation as described for 1a. The compound was purified by column chromatography, 5% MeOH/DCM, to give a white solid: 105 mg (61%); mp 66–71 °C; [α]²³_D = +10.4° (*c* = 1.0, MeOH); ¹H-NMR (DMSO-*d*₆) δ 1.04–1.45 (m, 16H), 2.40 (t, *J* = 6.8 Hz, 2H), 2.60–3.18 (m, 6H), 4.08–4.15 (m, 1H), 6.60–7.22 (m, 15H), 7.51 (s, 1H), 7.71 (s, 1H), 9.02 (s, 1H); IR (film) 3347, 2927, 1693, 1652, 1515 cm⁻¹; MS *m*/e (CI) 574 (M + H), 474, 166, 134 (100). Anal. (C₃₄H₄₃N₃O₅) C, H, N.

[1-[[1-(Benzylcarbamoyl)-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester

(19). The compound was prepared by coupling benzylamine to Boc(*S*)Phe(*RS*) α MePheOH²² using DCCI/pentafluorophenol as described for 1b. The crude material was purified by reverse phase chromatography to give the required compound in 89% yield: mp 60–62 °C; ¹H-NMR (DMSO-*d*₆) δ 1.73, 1.80 (2 × s, 9H), 1.32, 1.36 (2 × s, 3H), 2.60–2.34 (m, 4H), 4.06–4.36 (m, 1H), 6.92–7.30 (m, 15H), 7.89, 7.93 (2 × s, 1H), 8.15 (m, 1H); MS *m*/*e* (CI) 516 (M + H), 416, 309, 281, 134 (100). Anal. (C₃₁H₃₆N₃O·0.3H₂O) C, H, N.

[1-[[1-Methyl-2-phenyl-1-[(4-phenylbutyl)carbamoyl]-ethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert***-Bu-tyl Ester (20).** The compound was prepared by coupling 4-phenylbutylamine to Boc(*S*)Phe(*R*S)αMePheOH²² using HBTU activation as described for **1c**. The compound was purified by column chromatography, 50% EtOAc/hexane, to give a white solid: 180 mg (65%); mp 66–70 °C; ¹H-NMR (CDCl₃) δ 1.28 (m, 2H), 1.31, 1.35 (2 × s, 9H), 1.48, 1.57 (2 × s, 3H), 1.52 (m, 2H), 2.61 (t, *J* = 8 Hz, 2H), 2.75–3.40 (m, 6H), 4.05 (m, 1H), 4.83, 4.92 (2 × d, *J* = 7 Hz, 1H), 5.86, 6.18 (2 × s, 1H), 6.50, 6.66 (2 × s, 1H), 6.94 (br s, 2H), 7.10–7.35 (m, 13H); IR (film) 3327, 1688, 1652, 1497 cm⁻¹. Anal. (C₃₄H₄₃N₃O₄·0.5H₂O) C, H, N.

[1-[[1-[(7-Hydroxyheptyl)carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (21). The compound was prepared as described for 35 using Boc(S)Phe(RS) α MePheOH²² to give a white solid: 80 mg (59%); ¹H-NMR (CDCl₃) δ 1.18–1.56 (m, 22H), 2.75–3.49 (m, 6H), 3.63 (t, J = 6.5 Hz, 2H), 3.98–4.12 (m, 1H), 4.84, 4.92 (2 × d, J = 7 Hz, 1H), 5.87, 6.18 (2 × s, 1H), 6.50, 6.64 (2 × s, 1H), 6.95 (m, 2H), 7.16–7.36 (m, 8H); IR (film) 3339, 2931, 1687, 1648, 1533 cm⁻¹; MS m/e (FAB) 540 (M⁺), 440, 134. Anal. (C₃₁H₄₅N₃O₅·0.35H₂O) C, H, N.

[1-[[1-[(8-Hydroxyoctyl)carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (22). 8-Amino-1-octanol²² was coupled to Boc-(*S*)Phe(*RS*) α MePheOH²² by the method described for 1c to give a white solid: 60 mg (22%); mp 46–48 °C; ¹H-NMR (CDCl₃) δ 1.32–1.66 (m, 25H), 2.75–3.43 (m, 6H), 3.63 (t, *J* = 6.5 Hz, 2H), 4.00–4.10 (m, 2H), 4.86, 4.96 (2 × d, *J* = 7 Hz, 1H), 5.86, 6.20 (2 × s, 1H), 6.52, 6.65 (2 × s, 1H), 6.95 (m, 2H), 7.16–7.34 (m, 8H); IR (film) 3340, 2931, 1690, 1650, 1530 cm⁻¹; MS *m*/e (FAB) 555 (M + H), 454, 307, 28. Anal. (C₃₂H₄₇N₃O₅·0.8H₂O) C, H, N.

[1-[[1-[(9-Hydroxynonanyl)carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert***-Butyl Ester (23).** 9-Amino-1-nonanol was coupled to Boc(*S*)-Phe(*RS*)αMePheOH²² by the method described for **1c** to give a white solid: 189 mg (55%); mp 58–63 °C; ¹H-NMR (CDCl₃) δ 1.20–1.65 (m, 26H), 2.75–3.40 (m, 6H), 3.63 (t, J = 7 Hz, 2H), 4.05 (m, 1H), 4.83, 4.93 (2 × br s, 1H), 5.88, 6.21 (2 × s, 1H), 6.49, 6.63 (2 × s, 1H), 6.96 (m, 2H), 7.15–7.35 (m, 8H); IR (film) 3339, 2929, 2836, 1682, 1651, 1531 cm⁻¹. Anal. (C₃₃H₄₉N₃O₅·0.2H₂O) C, H, N.

[S·(R^* , R^*)]-[1-[[1-[(8-Hydroxyoctyl)carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (24). 8-Amino-1-octanol²² was coupled to Boc(S)Phe(S)αMePheOH³⁶ using HBTU as described for 1c to give a white solid: 460 mg (42%); mp 108–114 °C; [α]²⁰_D = +49.9° (c = 0.5, MeOH); ¹H-NMR (CDCl₃) δ 1.30–1.58 (m, 26H), 2.85–3.95 (m, 6H), 3.64 (t, J = 6.4 Hz, 2H), 4.10 (m, 1H), 4.85 (m, 1H), 6.15 (s, 1H), 6.50 (s, 1H), 6.95 (m, 2H), 7.16– 7.33 (m, 8H); IR (film) 3326, 2978, 2856, 1678, 1651, 1532 cm⁻¹; MS m/e (CI) 555 (M + H), 554, 454, 146, 134 (100). Anal. (C₃₂H₄₇N₃O₅) C, H, N.

[1-[[1-Methyl-1-(nonylcarbamoyl)-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (26). The compound was prepared by coupling nonylamine to Boc(*S*)Phe(*RS*) α MePheOH²² using HBTU as described for 1c. The crude material was purified by column chromatography to give a white solid: 134 mg (48%); mp 63–68 °C; ¹H-NMR (CDCl₃) δ 0.88 (t, *J* = 7 Hz, 3H), 1.25 (m, 14H), 1.33, 1.37 (2 × s, 9H), 1.45, 1.55 (2 × s, 3H), 2.70–3.20 (m, 5H), 3.37 (m, 1H), 4.05 (m, 1H), 4.85 (m, 1H), 5.85, 6.20 (2 × s, 1H), 6.45, 6.60 (2 × s, 1H), 6.95 (m, 2H), 7.15–7.40 (m, 8H); IR (film) 3307, 2927, 2855, 1671, 1645, 1531 cm⁻¹. Anal. (C₃₃H₄₉N₃O₄) C, H, N.

[1-[[1-[(8-Hydroxyoctyl)carbamoyl]-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (29). 8-Amino-1-octanol²² was coupled to Boc(*S*)Phe(*RS*)-PheOH³⁶ using DCCI/HOBt as described for **1a**. The crude product was purified by reverse phase chromatography to give a white solid: 20 mg (47%); mp 98–105 °C; $[\alpha]^{21}_{D} = -5.1^{\circ}$ (c = 0.5, MeOH); ¹H-NMR (CDCl₃) δ 1.41–1.65 (m, 22H), 2.79–3.40 (m, 6H), 3.61–3.66 (t, J = 6.5 Hz, 2H), 4.01 (m, 2H), 4.97–5.07 (m, 1H), 5.70–6.62 (m, 2H), 6.97–7.36 (m, 10H); IR (film) 3291, 2929, 1695, 1645, 1538 cm⁻¹. Anal. (C₃₁H₄₅N₃O₅·0.55H₂O) C, H, N.

[*R*-(*R**,*S**)]-[1-[[1-[[8-(Dimethylcarbamoyl)octyl]carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (32). The compound was prepared by coupling dimethylamine to Boc(*S*)Phe-(*R*)αMePheOH²² using HBTU as described for 1c. A glass was obtained: 180 mg (88%); $[\alpha]^{22}_{D} = +8.8^{\circ}$ (*c* = 1.0, MeOH); ¹H-NMR (CDCl₃) δ 1.20–1.65 (m, 24H), 2.30 (t, 2H), 2.75–3.44 (m, 12H), 4.03 (m, 1H), 4.95 (br s, 1H), 5.92 (br s, 1H), 6.65 (br s, 1H), 6.95–7.00 (m, 2H), 7.20–7.40 (m, 8H); IR (film) 3326, 2930, 1692, 1652 cm⁻¹. Anal. (C₃₅H₅₂N₄O₅•0.2H₂O) C, H, N.

(7-Hydroxyheptyl)carbamic Acid tert-Butyl Ester (34). (tert-Butoxycarbonyl)-7-aminoheptanoic acid (0.45 g, 1.8 mmol) and N-methylmorpholine (0.22 mL, 2 mmol) were dissolved in THF (10 mL). The solution was cooled to 0 °C, and ethyl chloroformate (0.2 mL, 2 mmol) in THF (10 mL) was added dropwise over 10 min. The solution was stirred for 1 h, and the precipitate was then removed by filtration. The filtrate was recooled to 0 °C, and 1 M LiBH₄ in THF (3 mL, 6 mmol) was added dropwise over 5 min. The solution was stirred with slow warming to room temperature over 3 h, and the solvent was then removed in vacuo. The residue was dissolved in EtOAc (50 mL), washed with water (3 \times 50 mL) and brine (50 mL), and then dried over MgSO₄. The solvent was removed in vacuo to given an oil, 0.40 g (96%), which was used without purification: ¹H-NMR (CDCl₃) δ 1.28–1.60 (m, 19H), 3.10 (m, 2H), 3.64 (m, 12H), 4.50 (br s, 1H); IR (film) 33.44, 2931, 2858, 1689, 1531 cm⁻¹.

[R-(R*,S*)]-[1-[[1-[(7-Hydroxyheptyl)carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid tert-Butyl Ester (35). (7-Hydroxyheptyl)carbamic acid tertbutyl ester (34) (0.4 g, 1.7 mmol) was dissolved in DCM (10 mL)/TFA (10 mL), and the solution was stirred for 1 h. The solvent was then removed in vacuo, and the residue was added to a mixture of Boc(*S*)Phe(*R*)αMePheOH²² (0.64 g, 1.5 mmol), DCCI (0.31 g, 1.5 mmol), and HOBt (0.2 g, 1.5 mmol) in DMF (3 mL). DIPEA (0.7 mL, 4 mmol) was added, and the reaction mixture was stirred for 15 h. The precipitate was removed by filtration, and the solvent was concentrated in vacuo. The residue was dissolved in EtOAc (100 mL), and the solution was washed with 1 M HCl (3×50 mL), saturated NaHCO₃ (3) \times 50 mL), water (3 \times 50 mL), and brine (50 mL). The organic layer was dried over MgSO₄, and the solvent was removed in vacuo to give a residue which was purified by reverse phase chromatography, 0-100% MeOH/water. A white solid was obtained: 0.54 g (67%); ¹H-NMR (CDCl₃) δ 1.29–1.58 (m, 22H), 2.75-3.45 (m, 6H), 3.63 (t, J = 6.8 Hz, 2H), 4.00 (m, 1H), 4.96 (br d, 1H), 5.85 (br s, 1H), 6.65 (br s, 1H), 6.96-6.98 (m, 2H), 7.19-7.35 (m, 8H); IR (film) 3324, 3029, 2929, 1661, 1516 cm⁻¹; MS m/e (CI) 540 (M + H), 440, 134. Anal. (C₃₁H₄₅N₃O₅·0.25H₂O) C, H, N.

[*R*-(*R*^{*},*S*^{*})]-Toluene-4-sulfonic Acid 7-[[2-[[2-[(*tert*-Butoxycarbonyl)amino]-3-phenylpropionyl]amino]-2-methyl-3-phenylpropionyl]amino]heptyl Ester (36). The alcohol 35 (267 mg, 0.5 mmol) was dissolved in DCM (3 mL), and *p*-toluenesulfonyl chloride (105 mg, 0.55 mmol), NEt₃ (0.08 mL, 0.6 mmol), and DMAP (catalytic) were added. The reaction mixture was stirred for 15 h and then diluted with DCM (50 mL). The solution was washed with 1 M HCl (3 × 20 mL), saturated aqueous NaHCO₃ (3 × 20 mL), water (3 × 20 mL), and brine (20 mL). The organic layer was dried over MgSO₄, and the solvent was removed *in vacuo* to give a white solid (359 mg) which was used without purification: ¹H-NMR (CDCl₃) δ 1.21–1.66 (m, 22H), 2.45 (s, 3H), 2.75–3.45 (m, 6H), 4.01 (m, 3H), 4.90 (br d, 1H), 5.85 (br s, 1H), 6.70 (br s, 1H), 6.96–6.98 (m, 2H), 7.12–7.35 (m, 10H), 7.70 (d, J = 8.4 Hz, 2H); IR (film) 3351, 2978, 2935, 1687, 1657, 1521, 1598, 1366, 1175 cm⁻¹.

[R-(R*,S*)]-[1-[[1-[(7-Azidoheptyl)carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid tert-Butyl Ester (37). The tosylate 36 (317 mg, 0.46 mmol) was dissolved in DMF (5 mL), and sodium azide (33 mg, 0.51 mmol) was added. The reaction mixture was heated to 60 °C, stirred for 3 h, and then cooled to room temperature and stirred for a further 15 h. The solution was poured onto ice and extracted with DCM (3×100 mL). The combined extracts were washed with water $(3 \times 100 \text{ mL})$ and brine (100 mL) and then dried over MgSO₄, and the solvent was removed in vacuo. The residue was purified by column chromatography, 50% ether/hexane, to give a white solid: 179 mg (69%); ¹H-NMR (CDCl₃) δ 1.30–1.60 (m, 22H), 2.75–3.45 (m, 8H), 4.00 (m, 1H), 4.90 (br d, 1H), 5.85 (br s, 1H), 6.70 (br s, 1H), 6.97-6.99 (m, 2H), 7.20-7.36 (m, 8H); IR (film) 3322, 2932, 2095, 1683, 1651, 1517 cm⁻¹.

[*R*-(*R*^{*},*S*^{*})]-[1-[[1-[(7-Aminoheptyl)carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (38). A solution of the azide 37 (275 mg, 0.49 mmol) in EtOH (20 mL) was treated with Lindlar catalyst (60 mg) and hydrogen gas at 40 psi, 30 °C, for 6 h. After removal of the catalyst by filtration through Kieselguhr, the solvent was removed *in vacuo* to give a white solid (266 mg). The product was dissolved in MeOH containing 1 M HCl and purified by reverse phase chromatography, 50–100% MeOH/ water, to give a white solid: 215 mg (76%); mp 94–102 °C; ¹H-NMR (CDCl₃) δ 1.20–1.50 (m, 20H), 2.84 (br t, 2H), 2.75– 3.33 (m, 8H), 4.00 (m, 1H), 5.20 (br s, 1H), 6.24 (br s, 1H), 6.79 (br t, 1H), 6.97–6.99 (m, 2H), 7.18–7.33 (m, 8H), 8.34 (br s, 3H); IR (film) 3322, 2933, 1689, 1652, 1520 cm⁻¹.

[R-(R*,S*)]-[1-[[1-[[7-[(-Methylsulfonyl)amino]heptyl]carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid tert-Butyl Ester (39). The amine 38 (100 mg, 0.2 mmol) was dissolved in pyridine, and methanesulfonyl chloride (16 µL, 0.2 mmol) in pyridine/DCM (2 mL) was added dropwise over 10 min. The solution was stirred for 15 h, and then diluted with aqueous NaHCO₃ (20 mL). The mixture was extracted with DCM (3 \times 20 mL), and the combined extracts were washed with water (50 mL) and dried over MgSO₄. The solvent was removed in vacuo, and the residue was purified by column chromatography, 5% MeOH/ DCM, to give a white solid: 25 mg (21%); mp 55-59 °C; ¹H-NMR (CDCl₃) δ 1.20–1.60 (m, 22H), 2.95 (s, 3H), 2.72–3.45 (m, 8H), 4.00 (m, 1H), 4.84 (m, 1H), 5.02 (br d, 1H), 5.82 (br s, 1H), 6.70 (br s, 1H), 6.95-6.98 (m, 2H), 7.19-7.36 (m, 8H); IR (film) 3340, 2932, 2859, 1688, 1652, 1520 cm⁻¹. Anal. $(C_{32}H_{48}N_4O_6S\cdot 0.3H_2O)$ C, H, N.

(7-Aminoheptyl)urea (40). A solution of trimethylsilyl isocyanate (0.35 mL, 2.6 mmol) in anhydrous THF (75 mL) was added dropwise over 30 min to a stirred solution of 1,7-diaminoheptane (1.0 g, 7.7 mmol) in THF (25 mL). The reaction mixture was stirred at room temperature for 2 h, and water (10 mL) was then added. After stirring for a further 2 h, the solvent was removed *in vacuo*. The residue was slurried with hot EtOAc, and the solid was collected by filtration. The solid was then slurried with water (25 mL) and filtered and the solvent evaporated to give a white solid: 398 mg (90%); mp 108–114 °C; ¹H-NMR (DMSO-*d*₆) δ 1.24–1.35 (m, 10H), 2.48–2.52 (m, 2H), 2.90–2.95 (m, 2H), 5.32 (s, 2H), 5.87 (s, 1H); IR (film) 3326, 2928, 2856, 1649, 1561, 1155 cm⁻¹; MS *m*/e (CI) 174, 157, 144, 131, 114. Anal. (C₈H₁₉N₃O₄·0.25H₂O) C, H, N.

[*R*-(*R**,*S**)]-[1-[[1-Methyl-2-phenyl-1-[(7-ureidoheptyl)carbamoyl]ethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (41). (7-Aminoheptyl)urea (40) was coupled to Boc(*S*)Phe(*R*) α MePheOH²² using HBTU as described for 1c. Purification by column chromatography, 5% MeOH/DCM, gave a white solid: 66 mg (47%); mp 65–72 °C; ¹H-NMR (CDCl₃) δ 1.21–1.52 (m, 22H), 2.75–3.22 (m, 8H), 4.02 (m, 1H), 4.55 (br s, 2H), 5.05, 5.15 (2 × br s, 2H), 5.95 (br s, 1H), 6.80 (br s, 1H), 6.97–6.99 (m, 2H), 7.18–7.34 (m, 8H); IR (film) 3344, 2931, 1693, 1651, 1539 cm⁻¹. MS m/e (FAB) 605 (M + Na), 582 (M + H), 482, 335. Anal. (C_{31}H_{47}N_5O_5 \cdot 0.4H_2O) C, H, N.

[*R*-(*R*^{*},*S*^{*})]-[1-[[1-[[2-(Carbamoylmethoxy)phenyl]ethyl]carbamoyl]-1-methyl-2-phenylethyl]carbamoyl]-2-phenylethyl]carbamic Acid *tert*-Butyl Ester (43). The amine 16 was coupled to Boc(*S*)Phe(*R*)αMePheOH²² by the procedure described for 1a. The crude product was purified by reverse phase chromatography, 60–80% MeOH/water, to give a white solid: 180 mg (34%); mp 98–103 °C; $[\alpha]^{23}_{D} = +8.1^{\circ}$ (*c* = 1.0, MeOH); ¹H-NMR (DMSO-*d*₆) δ 1.21 (s, 3H), 1.26 (s, 9H), 2.60– 3.27 (m, 8H), 4.15 (m, 1H), 4.40 (s, 2H), 6.80–7.23 (m, 15H), 7.41 (s, 1H), 7.50 (s, 1H), 7.70 (m, 1H), 7.76 (s, 1H); IR (film) 3328, 2979, 1694, 1683, 1652 cm⁻¹. Anal. (C₃₄H₄₂N₄O₆) C, H, N

[2-(1H-Indol-3-yl)-1-methyl-1-[(1phenylethyl)carbamoyl]ethyl]carbamic Acid 2-Methyl-1-phenylpropyl Ester (44). (R,S)-2-Methyl-1-phenyl-1-propanol p-nitrophenyl carbonate (184 mg, 0.3 mmol) was added to a stirred solution of α -amino- α -methyl-N-(1-phenylethyl)-[R-(R^* , S^*)]-1H-indole-3propanamide¹⁸ (94 mg, 0.6 mmol) in EtOAc (20 mL). A catalytic amount of DMAP was added, and the reaction mixture was stirred for 4 days. The solution was diluted with Et₂O (25 mL) and washed with 5% citric acid (3 \times 25 mL) and brine (25 mL). The organic layer was dried over MgSO₄ and filtered and the solvent evaporated. The residue was purified by column chromatography, 33% EtOAc/hexane, to give a solid: 36 mg (25%); mp 65–75 °C; ¹H-NMR (CDCl₃) δ 0.76 (m, 3H), 0.93 (m, 3H), 1.16-1.43 (m, 3H), 1.55 (m, 3H), 2.03 (m, 1H), 3.17-3.50 (m, 2H), 4.87-4.99 (m, 1H), 5.29-5.42 (m, 2H), 6.42 (br, 1H), 6.52, 6.75 (2 × s, 1H), 7.04-7.33 (m, 13H), 7.55 (m, 1H), 7.88, 8.07 (2 × s, 1H); IR (film) 3339, 2965, 1707, 1655, 1494, 1069 cm⁻¹. Anal. (C₃₁H₃₅N₃O₃·0.2H₂O) C, H, N.

(R)-Carbonic Acid 2-Methyl-1-phenylpropyl Ester 4-Nitrophenyl Ester (45a). A solution of pyridine (8.8 mL, 0.1 mmol) in anhydrous DCM (20 mL) was added dropwise over 30 min to a stirred solution of *p*-nitrophenyl chloroformate (22.2 g, 0.11 mmol) and S-(-)-2-methyl-1-phenyl-1-propanol (15.0 g, 0.1 mmol) in anhydrous DCM (200 mL) cooled to 0 °C. The solution was stirred for 24 h with slow warming to room temperature. The reaction mixture was diluted with DCM (200 mL) and washed with 10% HCl (3 \times 100 mL) and brine (100 mL). The organic layer was dried over MgSO₄, the solvent was removed in vacuo, and the residue was purified by column chromatography, 10% EtOAc/heptane, to give a gum: 28.87 g (92%); ¹H-NMR (CDCl₃) δ 0.85 (d, J = 6.8 Hz, $\overline{3}$ H), 1.09 (d, J = 6.8 Hz, 3H), 2.25 (m, 1H), 5.38 (d, J = 7.6Hz, 1H), 7.26–7.41 (m, 7H), 8.24 (d, J = 9.2 Hz, 2H); IR (film) 3362, 1764, 1526, 1224, 1218 cm⁻¹. Anal. (C₁₇H₁₇NO₅) C, H, N

(*S*)-Carbonic Acid 2-Methyl-1-phenylpropyl Ester 4-Nitrophenyl Ester (45b). The compound was prepared as described for 45a; purification by column chromatography, 10% ether/hexane, gave an oil: 1.50 g (82%); ¹H-NMR (CDCl₃) δ 0.85 (d, J = 6.8 Hz, 3H), 1.09 (d, J = 6.8 Hz, 3H), 2.23 (m, 1H), 5.37 (d, J = 6.8 Hz, 1H), 7.31–7.41 (m, 7H), 8.24 (d, 2H); IR (film) 3424, 3088, 2968, 1746, 1526, 1347, 1255, 1218 cm⁻¹.

2-Amino-3-(2-fluorophenyl)-2-methylpropionic Acid **Methyl Ester (46).** To a suspension of (S)-alanine methyl ester hydrochloride (5.0 g, 36 mmol), 4-chlorobenzaldehyde (5.1 g, 36 mmol), and MgSO₄ (2 g) in DCM (60 mL) was added NEt₃ (5 mL, 36 mmol). The reaction mixture was stirred for 20 h, filtered, and concentrated *in vacuo*. The resulting gum was triturated with ether, and the precipitate was removed by filtration. The filtrate was concentrated to give an oil (7.9 g, 98%). The Schiff base (2 g, 8.9 mmol) was dissolved in THF (20 mL) under an atmosphere of N_2 , and the solution was cooled to -78 °C; 1 M LHMDS in THF (9.8 mL, 9.8 mmol) was added dropwise, and the reaction mixture was stirred for 1 h. 2-Fluorobenzyl bromide (1.7 g, 8.9 mmol) was added dropwise in THF (5 mL), and the solution was stirred for 20 h with slow warming to room temperature. HCl (1 M, 200 mL) was then added, and stirring was continued for 2 h. The solvent was removed *in vacuo*, and the residue was partitioned between 1 M HCl (200 mL) and EtOAc (200 mL). The pH of the aqueous layer was adjusted to 8 with Na₂CO₃, and the mixture was extracted with EtOAc (3 \times 100 mL). The

Dipeptide Library for NK₃ Receptor Lead Development

combined extracts were washed with water (3 \times 100 mL) and dried over MgSO₄, and the solvent was removed *in vacuo* to give an oil: 1.54 g (82%); ¹H-NMR (CDCl₃) δ 1.39 (s, 3H), 2.93 (d, *J* = 13.6 Hz, 1H), 3.09 (d, *J* = 13.6 Hz, 1H), 3.72 (s, 3H), 7.00-7.25 (m, 4H); IR (film) 2952, 1735 cm⁻¹.

2-Amino-3-(2,3-difluorophenyl)-2-methylpropionic Acid Methyl Ester (47). The compound was prepared following the procedure described for **46**. The product was obtained as an oil: 0.38 g (73%); ¹H-NMR (CDCl₃) δ 1.40 (s, 3H), 2.96 (d, J = 13 Hz, 1H), 3.12 (d, J = 13 Hz, 1H), 3.72 (s, 3H), 6.92– 7.08 (m, 3H); IR (film) 3378, 2954, 1735, 1491, 1206 cm⁻¹.

[R-(R*,R*)]-2-Methyl-2-[[(2-methyl-1-phenylpropoxy)carbonyl]amino]-3-phenylpropionic Acid Methyl Ester (48a). The carbonate 45a (3.00 g, 9.5 mmol) and (R)αMe-PheOMe (1.84 g, 9.5 mmol) were dissolved in anhydrous DMF (20 mL), and the solution was stirred for 3 days. The solvent was removed in vacuo, and the residue was dissolved in EtOAc (100 mL) and washed with 10% aqueous K_2CO_3 (5 \times 75 mL) and brine (75 mL). The organic layer was dried over MgSO₄, and the solvent was concentrated. The residue was purified by column chromatography, 10% ether/heptane, to give a white solid: 2.5 g (70%); mp 118–120 °C; $[\alpha]^{23}_{D} = +46^{\circ}$ (c = 0.5, acetone); ¹H-NMR (CDCl₃) δ 0.83 (d, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 1.55 (s, 3H), 2.06–2.11 (m, 1H), 3.19 (d, J =13.4 Hz, 1H), 3.39 (d, J = 13.4 Hz, 1H), 3.75 (s, 3H), 5.41 (m, 2H), 6.96-6.98 (m, 2H), 7.18-7.37 (m, 8H); IR (film) 3353, 2959, 1732, 1714, 1497, 1451 cm⁻¹; MS *m*/*e* (CI) 370 (M + H), 238, 194, 133.

[*S*-(*R**,*S**)]-2-Methyl-2-[[(2-methyl-1-phenylpropoxy)carbonyl]amino]-3-phenylpropionic Acid Methyl Ester (48b). The compound was prepared as described for 48a using carbonate 45b. Column chromatography gave an oil: 1.4 g (78%); $[\alpha]^{23}_{D} = +21^{\circ}$ (*c* = 0.25, acetone); ¹H-NMR (CDCl₃) δ 0.81 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 1.66 (s, 3H), 2.03-2.10 (m, 1H), 3.05 (d, *J* = 13.6 Hz, 1H), 3.40 (d, *J* = 13.4 Hz, 1H), 3.72 (s, 3H), 5.35 (d, *J* = 6.8 Hz, 1H), 5.55 (s, 1H), 6.76-6.77 (m, 2H), 7.08-7.40 (m, 8H); IR (film) 3423, 2960, 1740, 1721, 1496, 1451 cm⁻¹; MS *m*/*e* (CI) 370 (M + H), 238, 194, 133.

[*S*·(*R**,*S**)]-3-(2-Fluorophenyl)-2-methyl-2-[[(2-methyl-1-phenylpropoxy)carbonyl]amino]propionic Acid Methyl Ester (49). The compound was prepared as described for **48a** using carbonate **45b** and 2-fluoro-(*RS*) α MePheOMe (46). The two diastereoisomers were separated by column chromatography, 10% ether/heptane, and the desired product (the more polar isomer) was isolated as an oil: 165 mg (26%); ¹H-NMR (CDCl₃) δ 0.81 (d, *J* = 6.8 Hz, 3H), 0.97 (d, *J* = 6.8 Hz, 3H), 1.54 (s, 3H), 2.08 (m, 1H), 3.25 (d, *J* = 13.6 Hz, 1H), 3.40 (d, J = 13.4 Hz, 1H), 3.73 (s, 3H), 5.39 (m, 2H), 6.86–7.36 (m, 9H); IR (film) 3354, 2960, 1739, 1717 cm⁻¹.

[*S*(*R**,*S**)]-3-(2,3-Difluorophenyl)-2-methyl-2-[[(2-methyl-1-phenylpropoxy)carbonyl]amino]propionic Acid Methyl Ester (50a). The compound was prepared as described for **48a** using carbonate **45b** and 2,3-difluoro-(*RS*) α MePheOMe (**47**). The two diastereomers were separated by column chromatography, 10% ether/heptane, and the desired product (the more polar isomer) was isolated as a white solid: 111 mg (35%); mp 112–115 °C; [α]²³_D = +36° (*c* = 0.1, MeOH); ¹H-NMR (CDCl₃) δ 0.81 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 1.54 (s, 3H), 2.07 (m, 1H), 3.29 (d, *J* = 14 Hz, 1H), 3.46 (d, *J* = 14 Hz, 1H), 3.76 (s, 3H), 5.38 (m, 2H), 6.65 (m, 1H), 6.85 (m, 1H), 7.02 (m, 1H), 7.26–7.36 (m, 5H); IR (film) 3343, 2957, 1735, 1713, 1492, 1268, 1071 cm⁻¹; MS *m*/e (CI) 406 (M + H), 130, 133. Anal. (C₂₂H₂₅NO₄F₂) C, H, N.

[*S*·(*R**,*R**)]-3-(2,3-Difluorophenyl)-2-methyl-2-[[(2-methyl-1-phenylpropoxy)carbonyl]amino]propionic Acid Methyl Ester (50b). The compound was prepared as described for 50a. The two diastereoisomers were separated by column chromatography, 10% ether/heptane, and the desired product (the less polar isomer) was isolated as an oil: 87 mg (27%); [α]²³_D = -105° (*c* = 0.2, MeOH); ¹H-NMR (CDCl₃) δ 0.83 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 1.65 (s, 3H), 2.07 (m, 1H), 3.26 (d, *J* = 14 Hz, 1H), 3.38 (d, *J* = 14 Hz, 1H), 3.72 (s, 3H), 5.34 (d, *J* = 6.8 Hz, 1H), 5.55 (s, 1H), 6.46 (m, 1H), 6.68 (m, 1H), 6.97 (m, 1H), 7.26-7.38 (m, 5H); IR (film) 3350,

2961, 1739, 1720, 1493, 1260 cm $^{-1};$ MS m/e (CI) 406 (M + H), 230, 133. Anal. (C_{22}H_{25}NO_4F_2) C, H, N.

[*R*-(*R*^{*},*R*^{*})]-2-Methyl-2-[[(2-methyl-1-phenylpropoxy)carbonyl]amino]-3-phenylpropionic Acid Methyl Ester (51a). The ester 48a (0.74 g, 2 mmol) was dissolved in THF (20 mL), and LiOH monohydrate (0.16 g, 4 mmol) in water (4 mL) was added. The reaction mixture was heated under reflux for 48 h, and the solvent was then removed in vacuo. The residue was partitioned between 2 M HCl (100 mL) and EtOAc (100 mL), the aqueous layer was re-extracted with EtOAc (3 \times 100 mL), and the combined extracts were dried over MgSO₄. The solvent was removed to give a white solid: 0.6 g (86%); $[\alpha]^{23}_{D} = +44^{\circ}$ (c = 0.4, MeOH); ¹H-NMR (CDCl₃) δ 0.82 (d, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 1.55 (s, 3H), 2.10 (m, 1H), 3.29 (m, 2H), 5.27 (s, 1H), 5.42 (d, J = 7.2 Hz, 1H), 6.99 (m, 2H), 7.17-7.38 (m, 8H); IR (film) 3409, 2969, 1713, 1497, 1452, 1052 cm⁻¹; MS m/e (CI) 356 (M + H), 302, 266, 180, 133

[*S*-(*R**,*S**)]-2-Methyl-2-[[(2-methyl-1-phenylpropoxy)carbonyl]amino]-3-phenylpropionic Acid Methyl Ester (51b). The compound was prepared from the ester **48b** as described for **51a**. A white solid was obtained: 1.32 g (93%); $[\alpha]^{23}_{D} = +14^{\circ}$ (*c* = 0.4, MeOH); ¹H-NMR (CDCl₃) δ 0.81 (d, *J* = 6.8 Hz, 3H), 0.99 (d, *J* = 6.8 Hz, 3H), 1.67 (s, 3H), 2.10 (m, 1H), 3.13-3.42 (d × d, 2H), 5.37 (d, *J* = 7 Hz, 1H), 5.42 (s, 1H), 6.87 (m, 2H), 7.11-7.39 (m, 8H); IR (film) 3414, 2964, 1711, 1498, 1452, 1053 cm⁻¹; MS *m*/*e* (CI) 356 (M + H), 224, 180, 133.

[*S*-(*R**,*S**)]-3-(2-Fluorophenyl)-2-methyl-2-[[(2-methyl-1-phenylpropoxy)carbonyl]amino]propionic Acid (52). The compound was prepared as described for **51a** from ester **49**. A white solid was obtained: 127 mg (97%); ¹H-NMR (CDCl₃) δ 0.81 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 1.52 (s, 3H), 2.07 (m, 1H), 3.34 (m, 2H), 5.22 (s, 1H), 5.39 (d, *J* = 7 Hz, 1H), 6.85–7.38 (m, 9H); IR (film) 2964, 1714, 1494 cm⁻¹.

[*S*·(*R**,*S**)]-3-(2,3-Difluorophenyl)-2-methyl-2-[[(2-methyl-1-phenylpropoxy)carbonyl]amino]propionic Acid (53a). The compound was prepared as described for **51a** from ester **50a**. A white solid was obtained: 94 mg (94%); ¹H-NMR (CDCl₃) δ 0.80 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 1.52 (s, 3H), 2.08 (m, 1H), 3.35 (d, *J* = 14 Hz, 1H), 3.42 (d, *J* = 14 Hz, 1H), 5.21 (s, 1H), 5.38 (d, *J* = 6.8 Hz, 1H), 6.57 (m, 1H), 6.82 (m, 1H), 7.02 (m, 1H), 7.26–7.38 (m, 5H); IR (film) 3418, 3035, 2965, 1715, 1493 cm⁻¹.

[*S*-(*R**,*R**)]-3-(2,3-Difluorophenyl)-2-methyl-2-[[(2-methyl-1-phenylpropoxy)carbonyl]amino]propionic Acid (53b). The compound was prepared as described for **51a** from ester **50b**. A white solid was obtained: 67 mg (90%); ¹H-NMR (CDCl₃) δ 0.81 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 1.62 (s, 3H), 2.08 (m, 1H), 3.37 (s, 2H), 5.36 (m, 2H), 6.62 (m, 1H), 6.79 (m, 1H), 7.02 (m, 1H), 7.26–7.36 (m, 5H); IR (film) 2965, 1715, 1492, 1290, 1258, 1071 cm⁻¹.

[1-Methyl-2-phenyl-1-[(1-phenylethyl)carbamoyl]ethyl]carbamic Acid 2-Methyl-1-phenylpropyl Ester (54). The compound was prepared by coupling (*S*)-α-methylbenzylamine to acid **51a** by the method described for **1a**. A white solid was obtained: 41 mg (70%); mp 151–161 °C; $[α]^{20}_{D} =$ +10° (*c* = 0.5, acetone); ¹H-NMR (CDCl₃) δ 0.81 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 1.32 (d, *J* = 6.8 Hz, 3H), 1.48 (s, 3H), 2.02–2.11 (m, 1H), 3.14 (d, *J* = 14 Hz, 1H), 3.28 (d, *J* = 14 Hz, 1H), 4.93–5.00 (m, 1H), 5.26 (m, 1H), 5.38 (d, *J* = 7.6 Hz, 1H), 6.39 (d, *J* = 7.1 Hz, 1H), 6.99–7.01 (m, 2H), 7.14–7.36 (m, 13H); IR (film) 3326, 3031, 2930, 1721, 1694, 1645, 1485, 1078 cm⁻¹; MS *m*/*e* (CI) 459 (M + H), 327, 283, 133. Anal. (C₂₉H₃₄N₂O₃·0.25H₂O) C, H, N.

[1-Methyl-2-phenyl-1-[(1-phenylethyl)carbamoyl]ethyl]carbamic Acid 2-Methyl-1-phenylpropyl Ester (55). The compound was prepared by coupling (*S*)- α -methylbenzylamine to acid **51b** by the method described for **1a**. A white solid was obtained: 51 mg (50%); mp 183–189 °C; [α]²⁰_D = +6° (c = 0.5, acetone); ¹H-NMR (CDCl₃) δ 0.78 (d, J = 6.8 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 1.38 (d, J = 6.8 Hz, 3H), 1.44 (s, 3H), 2.01–2.10 (m, 1H), 3.07 (d, J = 14 Hz, 1H), 3.33 (d, J =14 Hz, 1H), 5.01–5.08 (m, 1H), 5.15 (s, 1H), 5.38 (d, J = 7.8Hz, 1H), 6.41 (d, J = 7.3 Hz, 1H), 6.92 (d, J = 6.8 Hz, 2H), 7.09–7.36 (m, 13H); IR (film) 3331, 2960, 1692, 1647, 1524, 1455, 1081 cm $^{-1}$; MS m/e (CI) 459 (M + H), 327, 283, 133. Anal. (C_{29}H_{34}N_2O_3) C, H, N.

[*R*•(*R**,*R**)]-[1-[(8-Hydroxyooctyl)carbamoyl]-1-methyl-2-phenylethyl]carbamic Acid 2-Methyl-1-phenylpropyl Ester (56). The compound was prepared by coupling 8-aminooctanol²² to acid 51a by the method described for 1a. Purification by column chromatography, 33-50% EtOAc/ hexane, gave a gum: 23 mg (34%); [α]²⁰_D = +9° (*c* = 0.8, acetone); ¹H-NMR (CDCl₃) δ 0.81 (d, *J* = 6.8 Hz, 3H), 0.99 (d, *J* = 6.8 Hz, 3H), 1.19-1.42 (m, 10H), 1.52-1.59 (m, 3H), 2.04-2.14 (m, 1H), 3.06-3.23 (m, 3H), 3.27 (d, *J* = 14 Hz, 1H), 3.64 (t, *J* = 6.6 Hz, 2H), 5.24 (m, 1H), 5.38 (d, *J* = 7.6 Hz, 1H), 6.01 (br, 1H), 7.00-7.02 (m, 2H), 7.18-7.36 (m, 8H); IR (film) 3366, 3031, 2930, 1720, 1649, 1488, 1078 cm⁻¹; MS *m*/e (CI) 483 (M + H), 307, 266, 133. Anal. (C₂₉H₄₂N₂O₄·0.5H₂O) C, H, N.

[*S*(*R**,*S**)]-[1-[(8-Hydroxyooctyl)carbamoyl]-1-methyl-2-phenylethyl]carbamic Acid 2-Methyl-1-phenylpropyl Ester (57). The compound was prepared by coupling 8-aminooctanol²² to acid **51b** by the method described for **1a**. Purification by column chromatography, 33–50% EtOAc/ hexane, gave a gum: 24 mg (39%); $[\alpha]^{20}_{D} = +7^{\circ}$ (*c* = 1.0, acetone); ¹H-NMR (CDCl₃) δ 0.80 (d, J = 6.8 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 1.19–1.42 (m, 10H), 1.50–1.62 (m, 3H), 2.08 (m, 1H), 3.08 (d, J = 14 Hz, 1H), 3.17–3.22 (m, 2H), 3.33 (d, J = 14 Hz, 1H), 3.64 (t, J = 6.6 Hz, 2H), 5.11 (m, 1H), 5.39 (d, J = 7.6 Hz, 1H), 6.17 (br, 1H), 6.94–6.95 (m, 2H), 7.14–7.38 (m, 8H); IR (film) 3363, 3031, 2856, 1719, 1649, 1494, 1079 cm⁻¹; MS *m*/e (CI) 483 (M + H), 307, 266, 133. Anal. (C₂₉H₄₂N₂O₄·0.5H₂O) C, H, N.

[*S*·(*R**,*S**)]-[1-Methyl-2-phenyl-1-[(7-ureidoheptyl)carbamoyl]ethyl]carbamic Acid 2-Methyl-1-phenylpropyl Ester (58). The compound was prepared by coupling the amino urea **40** to acid **51b** by the method described for **1c**. Purification by column chromatography, 80% EtOAc/heptane, gave a white solid: 30 mg (43%); mp 54–57 °C; ¹H-NMR (CDCl₃) δ 0.79 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 1.21–1.60 (m, 13H), 2.07 (m, 1H), 3.05 (d, *J* = 14 Hz, 1H), 3.32 (d, *J* = 14 Hz, 1H), 3.14–3.22 (m, 4H), 4.42 (br, 2H), 4.85 (s, 1H), 5.09 (s, 1H), 5.37 (d, *J* = 7.6 Hz, 1H), 6.28 (br, 1H), 6.92–7.38 (m, 10H); IR (film) 3347, 2931, 1713, 1651, 1538 cm⁻¹; MS *m*/e (APCI) 511 (M + H). Anal. (C₂₉H₄₂N₄O₄·0.6H₂O) C, H, N.

[*S*-(*R*^{*},*S*^{*})]-[2-(2-Fluorophenyl)-1-methyl-1-[(7-ureidoheptyl)carbamoyl]ethyl]carbamic Acid 2-Methyl-1phenylpropyl Ester (59). The compound was prepared by coupling the amino urea **40** to acid **52** by the method described for **1c**. Purification by column chromatography, 5% MeOH/ DCM, gave a white solid: 17 mg (29%); mp 67–72 °C; ¹H-NMR (CDCl₃) δ 0.81 (d, *J* = 6.8 Hz, 3H), 1.00 (d, *J* = 6.8 Hz, 3H), 1.20–1.58 (m, 13H), 2.10 (m, 1H), 3.10–3.30 (m, 6H), 4.48 (br, 2H), 4.98 (s, 1H), 5.38 (m, 2H), 6.22 (br, 1H), 6.82–7.36 (m, 9H); IR (film) 3343, 2932, 2858, 1713, 1651, 1539 cm⁻¹. Anal. (C₂₉H₄₁N₄O₄F·0.2H₂O) C, H, N.

[*S*·(*R*^{*},*S*^{*})]-[2-(2,3-Difluorophenyl)-1-methyl-1-[(7-ureidoheptyl)carbamoyl]ethyl]carbamic Acid 2-Methyl-1phenylpropyl Ester (60). The compound was prepared by coupling the amino urea 40 to acid 53a by the method described for 1c. Purification by column chromatography, 5% MeOH/DCM, gave a white solid: 39 mg (55%); mp 59–64 °C; ¹H-NMR (CDCl₃) δ 0.80 (d, *J* = 6.8 Hz, 3H), 0.99 (d, *J* = 6.8 Hz, 3H), 1.26–1.57 (m, 13H), 2.09 (m, 1H), 3.19 (m, 4H), 3.26 (d, *J* = 14 Hz, 1H), 3.36 (d, *J* = 14 Hz, 1H), 4.40 (br, 2H), 4.80 (s, 1H), 5.28 (br, 1H), 5.37 (br, 1H), 6.25 (br, 1H), 6.55 (m, 1H), 6.76 (br, 1H), 7.00 (br, 1H), 7.26–7.38 (m, 5H); IR (film) 3363, 2932, 2864, 1709, 1651, 1539 cm⁻¹; MS *m*/e (APCI) 1050 (M²⁺) 547 (M), 504. Anal. (C₂₉H₄₀N₄O₄F₂·0.75H₂O) C, H, N.

[*S*·(*R*^{*},*R*^{*})]-[2-(2,3-Difluorophenyl)-1-methyl-1-[(7-ureidoheptyl)carbamoyl]ethyl]carbamic Acid 2-Methyl-1phenylpropyl Ester (61). The compound was prepared by coupling the amino urea 40 to acid 53b by the method described for 1c. Purification by column chromatography, 5% MeOH/DCM, gave a white solid: 54 mg (62%); mp 56–61 °C; ¹H-NMR (CDCl₃) δ 0.81 (d, *J* = 6.8 Hz, 3H), 1.00 (d, *J* = 6.8 Hz, 3H), 1.17–1.49 (m, 8H), 1.56 (m, 5H), 2.08 (m, 1H), 3.14– 3.35 (m, 6H), 4.43 (s, 2H), 4.82 (br, 1H), 5.35 (d, J = 7.2 Hz, 1H), 5.42 (br, 1H), 6.12 (m, 1H), 6.68 (m, 1H), 6.87 (m, 1H), 7.04 (m, 1H), 7.26–7.34 (m, 5H); IR (film) 3351, 2932, 2858, 1709, 1651, 1540 cm⁻¹; MS m/e (APCI) 547 (M), 504. Anal. (C₂₉H₄₀N₄O₄F₂·0.2H₂O) C, H, N.

Acknowledgment. The authors wish to thank Miss H. Chilvers, Mrs. R. Franks, Miss P. Grimson, Mrs. L. Webdale, and Dr. P. D. McDonnel for their excellent technical assistance.

Supporting Information Available: X-ray crystallographic coordinates and experimental parameters for compound **50a** (22 pages). Ordering information is given on any current masthead page.

References

- Houghten, R. A.; Pinilla, C.; Blondelle, S. E.; Appel, J. R.; Dooley, C. T.; Cuervo, J. H. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. *Nature* 1991, 354, 84–86.
- (2) Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.; Kazmierski, W. M.; Knapp, R. J. A new type of synthetic peptide library for identifying ligand-binding activity. *Nature* **1991**, *354*, 82– 84.
- (3) Fodor, S. P. A.; Read, J. L.; Pirrung, M. C.; Stryer, L.; Tsai Lu, A.; Solas, D. Light-directed, spatially addressable parallel chemical synthesis. *Science* **1991**, *251*, 767–773.
- (4) Bunin, B. A.; Ellman, J. A general and expedient method for the solid-phase synthesis of 1,4-benzodiazepine derivatives. J. Am. Chem. Soc. Soc. 1992, 114, 10997–10998.
- (5) Hobbs, DeWitt, S.; Kiely, J. S.; Stankovic, C. J.; Schroeder, M. C.; Reynolds Cody, D. M.; Pavia, M. R. "Diversomers": An approach to nonpeptide, nonoligomeric chemical diversity. *Proc. Natl. Acad. Sci. U.S.A.* **1993**, *90*, 6909–6913.
- (6) Gordon, D. W.; Steele, J. Reductive alkylation on a solid phase: Synthesis of a piperazinedione combinatorial library. *Bioorg. Med. Chem. Lett.* 1995, 5, 47–50.
- (7) Kurth, M. J.; Ahlberg Randall, L. A.; Chen, C.; Melander, C.; Miller, R. B.; McAlister, K.; Reitz, G.; Kang, R.; Nakatsu, T.; Green, C. Library-based lead compound discovery: Antioxidants by an analogous synthesis/deconvolutive assay strategy. *J. Org. Chem.* **1994**, *59*, 5862–5864.
- (8) Smith, P. W.; Lai, J. Y. Q.; Whittington, A. R.; Cox, B.; Houston, J. G.; Stylli, C. H.; Banks, M. N.; Tiller, P. R. Synthesis and biological evaluation of a library containing potentiall 1600 amides/esters. A strategy for rapid compound generation and screening. *Bioorg. Med. Chem. Lett.* **1994**, *4*, 2821–2824.
 (9) Horwell, D. C.; Howson, W.; Ratcliffe, G. S.; Rees, D. C. The
- (9) Horwell, D. C.; Howson, W.; Ratcliffe, G. S.; Rees, D. C. The design of a dipeptide library for screening at peptide receptor sites. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 799–802.
 (10) Horwell, D. C.; Hughes, J.; Hunter, J. C.; Pritchard, M. C.; Richardson, R. S.; Roberts, E.; Woodruff, G. N. Rationally Richardson, R. S.; Robertson, R. S.; R
- (10) Horwell, D. C.; Hughes, J.; Hunter, J. C.; Pritchard, M. C.; Richardson, R. S.; Roberts, E.; Woodruff, G. N. Rationally designed "dipeptoid" analogues of CCK. α-Methyltryptophan derivatives as highly selective and orally active gastrin and CCK-B antagonists with potent anxiolytic properties. J. Med. Chem. 1991, 34, 404-414.
- (11) Ondetti, M. D.; Rubin, B.; Cushman, D. W. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. *Science* **1977**, *196*, 441–444.
- (12) Hellberg, S.; Eriksson, L.; Jonsson, J.; Lindgren, F.; Sjostrom, M.; Skagerberg, B.; Wold, S.; Andrews, P. Minimimum analogue peptide sets (MAPS) for quantitative structure-activity relationships. *Int. J. Pept. Protein Res.* **1991**, *37*, 414–424.
- (13) Maggi, C. A.; Patacchini, R.; Rovero, P.; Giachetti, A. Tachykinin receptors and tachykinin antagonists. J. Auton. Pharmacol. 1993, 13, 23–93.
- (14) Regoli, D.; Boudon, A.; Fauchere, J.-L. Receptors and antagonists for substance P and related peptides. *Pharmacol. Rev.* 1994, 46, 551–599.
- (15) Pritchard, M. C.; Boden, P. Tachykinin NK₃ receptors: biology and development of selective peptide and nonpeptide ligands. *Drugs Future* **1995**, *20*, 1163–1173.
- (16) Watling, K. J.; Krause, J. E. The rising sun shines on substance P and related peptides. *Trends Pharmacol. Sci.* 1993, 14, 81– 84.
- (17) Emonds-Alt, X.; Bichon, D.; Ducoux, J. P.; Heaulme, M.; Miloux, B.; Poncelet, M.; Proietto, V.; Van Broeck, D.; Vilain, P.; Neliat, G.; Soubrie, P.; Le Fur, G.; Breliere, J. S. SR 142801 The first potent non-peptide antagonist of the tachykinin NK₃ receptor. *Life Sci.* **1995**, *56*, 27–32.
- (18) Boyle, S.; Guard, S.; Higginbottom, M.; Horwell, D. C.; Howson, W.; McKnight, A. T.; Martin, K.; Pritchard, M. C.; O'Toole, J.; Raphy, J.; Rees, D. C.; Roberts, E.; Watling, K. J.; Woodruff, G. N.; Hughes, J. Rational design of high affinity tachykinin NK1 receptor antagonists. *Biorg. Med. Chem.* **1994**, *2*, 357–370.

- (19) Boyle, S.; Guard, S.; Hodgson, J.; Horwell, D. C.; Howson, W.; Hughes, J.; McKnight, Ä. T.; Martin, K.; Pritchard, M. C.; Watling, K. J.; Woodruff, G. N. Rational design of high affinity tachykinin NK2 receptor antagonists. Bioorg. Med. Chem. 1994 2, 1Ŏ1-113.
- (20) Boden, P.; Eden, J. M.; Hodgson, J.; Horwell, D. C.; Howson, W.; Hughes, J.; McKnight, A. T.; Meecham, K.; Pritchard, M. C.; Raphy, J.; Ratcliffe, G. S.; Suman-Chauhan, N.; Woodruff, G. N. The rational development of small molecule tachykinin NK₃ receptor selective antagonists-The utilisation of a dipeptide chemical library in drug design. Bioorg. Med. Chem. Lett. 1994, 4, 1679-1684.
- (21) Boden, P.; Eden, J. M.; Hodgson, J.; Horwell, D. C.; Pritchard, M. C.; Raphy, J.; Suman-Chauhan, N. The development of a novel series of non-peptide tachykinin NK3 receptor selective antagonists. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 1773–1778. (22) Patent publication no. US 228236, Apr. 15, 1994.
- Suman-Chauhan, N.; Grimson, P.; Gaurd, S.; Madden, Z.; Chung, F.-Z.; Watling, K.; Pinnock, R.; Woodruff, G. Characterisation of [125I][MePhe7]neurokinin B binding to tachykinin NK3 receptors: evidence for interspecies variance. Eur. J. Pharmacol. **1994**, *269*, 65-72.
- (24) Horwell, D. C.; Ratcliffe, G.; Roberts, E. Stabilities of typtopha-Mylphenylethylamides to acid and alkaline conditions. *Bioorg.* Med. Chem. Lett. **1991**, *1*, 169–172.
- Michelot, R.; Mayer, M.; Magneney, S.; Pham, Van Chuong, P.; Schmitt, P.; Potier, P. Activity of the C-terminal part of (25)substance P on guinea pig ileum and trachea preparations 1. N-Acylated pentapeptides SP(7-11). *Eur. J. Med. Chem.* **1988**, *23*. 243–247
- (26) Abraham, M. H.; Duce, P. P.; Prior, D. V.; Barratt, D. G.; Morris, J. J.; Taylor, P. J. Hydrogen bonding. Part 9. Solute proton donor and proton acceptor scales for use in drug design. J. Chem. Soc., Perkin Trans. II 1989, 1355–1375.
 (27) Higginbottom, M.; Kneen, C.; Ratcliffe, G. S. Rationally designed
- "dipeptoid" analogues of CCK. A Free-Wilson/Fujita-Ban analy-

sis of some α-methyltryptophan derivatives as CCK-B antagonists. J. Med. Chem. 1992, 35, 1572-1577.

Topliss, J. G. Utilization of operational schemes for analog (28)synthesis in drug design. J. Med. Chem. 1972, 15, 1006-1011.

- (29)Suman-Chauhan, N.; Daum, P.; Hill, D. R.; Woodruff, G. CCK/ Gastrin receptor-mediated changes in intracellular calcium in AR42J cells. Br. J. Pharmacol. 1992, 107, 149P.
- (30) Guard, S.; Boyle, S. J.; Tang, K. W.; Watling, K. J.; McKnight, A. T.; Woodruff, G. N. The interaction of the NK1 receptor antagonist CP-96,345 with L-type calcium channels and its functional consequences. Br. J. Pharmacol. 1993, 110, 385-391.
- (31) Boden, P.; Woodruff, G. N. Presence of NK₃-sensitive neurones in different proportions in the medial habenula of guinea-pig, rat and gerbil. Br. J. Pharmacol. **1994**, 112, 717–719.
- (32) Laneuville, O.; Dorais, J.; Couture, R. Characterization of the effects produced by neurokinins and three agonists selective for neurokinin subtypes in a spinal nociceptive reflex of the rat. Life Sci. 1988, 42, 1295-1305.
- (33) Bannon, M. J.; Brownschidle, L. A.; Tian, Y.; Whitty, C. J.; Poosch, M. S.; D'sa, C.; Moody, C. A. Neurokinin-3 receptors modulate dopamine cell function and alter the effects of 6-hydroxydopamine. Brain Res. 1995, 695, 19-24. Thomas, D. G.; Nathan, A. H. 6-Methoxy-1-tetralone. J. Am.
- (34)Chem. Soc. 1948, 70, 331-334.
- (35) Witkop, B.; Beiler, T. W. Studies on Schiff bases in connection with the mechanism of transamination. J. Am. Chem. Soc. 1954. 76, 5589-5597.
- (36) Boc(S)Phe(S)αMePheOH and Boc(S)Phe(RS)PheOH were prepared as described for Boc(S)Phe(R)aMePheOH in ref 22.

JM950892R