ASYMMETRIC ALDOL REACTION OF α -ISOCYANOACETAMIDES WITH ALDEHYDES CATALYZED BY A CHIRAL FERROCENYLPHOSPHINE-GOLD(I) COMPLEX

Yoshihiko Ito,* Masaya Sawamura, Masaaki Kobayashi, and Tamio Hayashi* Department of Synthetic Chemistry, Kyoto University, Kyoto 606, Japan

<u>Summary</u>: Aldol reaction of <u>N</u>,<u>N</u>-dialkyl- α -isocyanoacetamides with primary alkyl aldehydes in the presence of 0.5-1 mol% of a chiral (aminoalkyl)ferrocenylphosphine-gold(I) catalyst proceeded with high enantio- and diastereoselectivity to give trans-5-alkyl-2-oxazoline-4-carbox-amides of up to 98.6% ee, which were converted into optically active threo- β -hydroxyamino acids.

We have studied on catalytic asymmetric aldol reaction of methyl α -isocyanocarboxylates with aldehydes forming optically active 4-methoxycarbonyl-2-oxazolines which can readily be hydrolyzed to β -hydroxyamino acids,¹ and found that high stereoselectivity is achieved by use of a gold(I) catalyst coordinated with a chiral ferrocenylphosphine ligand containing 2-(piperidino)ethylamino la or 2-(morpholino)ethylamino 1b group on the ferrocene side chain.^{2,3} The gold-catalyzed reaction of α -isocyanoacetate is especially stereoselective with aromatic aldehydes and secondary alkyl aldehydes such as isobutyraldehyde giving trans-oxazolines of about 95% ee, but the stereoselectivity is not so high with aldehydes of sterically less hindered alkyls (Scheme 1). Thus, the oxazoline produced from acetaldehyde was found to have at most 89% enantiomeric purity for trans isomer and the ratio of 89/11 for trans/cis isomers. Here we report the use of <u>N,N</u>-dialkyl- α -isocyanoacetamides which improves both enantio- and trans-selectivity in the aldol reaction with primary alkyl aldehydes.

Scheme 1

N,N-Dialky1- α -isocyanoacetamides **2a** and **2b** were prepared by the reaction of methy1 α -isocyanoacetate with dimethylamine and piperidine, respectively, in methanol.⁴ Asymmetric aldol reaction of amide 2 with aldehydes was carried out in essentially the same manner as that of the methyl ester^{1,2} (Scheme 2). Thus, to a solution of 37.2 mg (0.052 mmol) of ferrocenylphosphine ligand la, 25.1 mg (0.050 mmol) of [Au(cyclo-C₆H₁₁NC)₂]BF₄, and 1.12 g (10.0 mmol) of N,N-dimethyl- α -isocyanoacetamide (2a) in 5 mL of dry dichloromethane was added under nitrogen 1.1 mL (20 mmol) of acetaldehyde (3a). The mixture was stirred at 25 °C for 40 h, and materials with low boiling points were removed under reduced pressure. ¹H NMR analysis of the residue indicated that the trans/cis ratio of 5-methyl-2-oxazoline-4-(N,N-dimethyl)carboxamide (4a)⁵ is 91/9. Silica gel column chromatography (Merck, Lobar) of the crude products with ethyl acetate as eluent gave 1.32 g (85% yield) of trans-4a $[\alpha]_D^{20}$ +439° (<u>c</u> 1.0, THF). A part of trans-oxazoline 4a was converted into 3-hydroxy-2-(3,5-dinitrobenzoylamino)butanamide 7a by treatment with conc HCl in methanol followed by N-acylation of the aminoamide hydrochloride 6a with 3,5-dinitrobenzoyl chloride and triethylamine in chloroform, and the enantiomeric purity was determined to be 98.6% ee by HPLC analysis of 7a with a chiral stationary phase column (Sumitomo Chemical Co., Sumipax OA-4500, hexane/dichloroethane/ethanol = 25/10/1). Hydrolysis of the oxazoline to threonine was effected by heating 6.6 mmol of trans-4a with 6 mL of 6 N hydrochloric acid at 100 °C for 40 h in a sealed tube. Dehydrochlorination⁶ by treatment with propylene oxide (3 mL) in ethanol (6 mL) gave 74% yield of L-threonine ($[\alpha]_D^{20}$ -27.9° (c 2.0, $H_2(0)$).⁷ The absolute configuration of trans-4a is (4S,5R), same as that of oxazolines formed in the reaction of methyl isocyanoacetate.^{1,2}

Scheme 2

entry	isonitrile 2	aldehyde 3	time (h)	yield (%) <u>t</u> of trans	² ratio ^C of trans/cis	% ee <u>d</u> trans (<u>c</u>	[α] ²⁰ 1.0-1.5, THF)
1 <u>e</u>	CNCH ₂ CONMe ₂ (2a)	СН ₃ СНО (За)	40	85 (4a)	91/9	98.6	+439°
2 <u>e</u>		сн _з сн ₂ сно (зь)	40	84 (4b)	95/5	96.3	+419°
3		$(CH_3)_2$ CHCH $_2$ CHO (3c)	6	92 (4 c)	94/6	97.3	+379°
4		PhCHO (3d)	25	74 (4d)	94/6	94.1	+318°
5		<u>p</u> -BnO-C ₆ H ₄ -CH ₂ CHO (3e)	80	84 (4e)	>95/5	94.5	+248°
 6 <u>e</u>	CNCH ₂ CON (2b)	СН ₃ СНО (3а)	20	84 (5 a)	94/6	96 . 1	+402°
7		PhCHO (3d)	50	73 (5d)	95/5	93.9	+279°
 8 <u>f</u>	CNCH ₂ COOMe	СН ₃ СНО (За)	- 15	(100) <u>h</u>	85/15	85	
9 <u>8</u>		$(CH_3)_2$ CHCH $_2$ CHO (3c)	16	(99) <u>h</u>	96/4	87	
10 <u>f</u>		PhCHO (3d)	17	(94) <u>h</u>	94/6	95.5	

Table 1. Asymmetric Aldol Reaction of α -Isocyanoacetamides (2) with Aldehydes (3) Catalyzed by Chiral Ferrocenylphosphine [(<u>R</u>)-(<u>S</u>)-1a]-Gold(I) Complex.^a

^{<u>a</u>} The reaction was carried out in dichloromethane at 25 °C. The gold catalyst was prepared in situ from bis(cyclohexyl isocyanide)gold(I) tetrafluoroborate, $[Au(RNC)_2]BF_4$, and $(\underline{R})-\underline{N}$ -methyl-<u>N</u>-[2-(1-piperidino)ethyl]-1-[(<u>S</u>)-1',2-bis(diphenylphosphino)ferrocenyl]ethylamine [(<u>R</u>)-(<u>S</u>)la]. 3/2/catalyst = 1.1/1.0/0.005-0.01, unless otherwise noted. ^{<u>b</u>} Isolated yield by silica gel chromatography (Lobar Si 60, eluted with ethyl acetate). ^{<u>C</u>} Determined by ¹H NMR analysis of the crude reaction product. ^{<u>d</u>} Determined by HPLC analysis of <u>N</u>-acyl derivatives of β hydroxy- α -aminoamides, which were obtained by treatment of the oxazolines 4 or 5 with conc HCl in MeOH, with a chiral stationary phase column (Sumitomo Chemical Co., Sumipax OA series). <u>N</u>-3,5-Dinitrobenzoyl derivatives 7 with OA-4500 for 4a,b and 5a, <u>N</u>,<u>O</u>-bis(3,5-dinitrobenzoyl) derivatives 8 with OA-4500 for 4d and 5d, and <u>N</u>,<u>O</u>-dibenzoyl derivatives 9 with OA-2000 for 4c,e. <u>e</u> 3/2 = 2.0/1.0. <u>f</u> Reported previously in ref 2. <u>&</u> (<u>R</u>)-(<u>S</u>)-1b was used. <u>h</u> Yield of trans/cis mixture.

The results obtained for the aldol reaction of isocyanoacetamides 2 with aldehydes are summarized in Table 1,⁸ which also contains data obtained for the reaction of isocyanoacetate for comparison. Use of amide 2a achieved high enantioselectivity (>96% ee) in the reaction with primary alkyl aldehydes, propionaldehyde (3b) and isovaleraldehyde (3c) as well as acetaldehyde (3a) (entries 1-3). With methyl isocyanoacetate these aldehydes gave lower % ee (entries 8 and 9). Aldol reaction of piperidine amide 2b also proceeded with high stereoselectivity to give trans-oxazoline 5a of 96.1% ee in trans/cis ratio of 94/6 (entry 6). The stereoselectivity was not improved in the reaction with benzaldehyde (entries 4, 7, and 10), i. e., both amides 2a, b and the methyl ester gave the corresponding oxazolines of about 95%ee.

REFERENCES AND NOTES

- 1 Y. Ito, M. Sawamura, and T. Hayashi, J. Am. Chem. Soc., 108, 6405 (1986).
- 2 Y. Ito, M. Sawamura, and T. Hayashi, Tetrahedron Lett., 28, 6215 (1987).
- 3 a) Y. Ito, M. Sawamura, E. Shirakawa, K. Hayashizaki, and T. Hayashi, Tetrahedron Lett.,
 29, 235 (1988). b) Y. Ito, M. Sawamura, E. Shirakawa, K. Hayashizaki, and T. Hayashi,
 Tetrahedron, in press.
- 4 a) K. Matsumoto, M. Suzuki, N. Yoneda, and M. Miyoshi, Synthesis, 249 (1977).
 b) Y. Ozaki, K. Matsumoto, and M. Miyoshi, Agric. Biol. Chem., 42, 1565 (1978).
- ¹H NMR (CDCl₃). trans-4a: δ 1.39 (d, J = 6.5 Hz, 3 H), 2.97 (s, 3 H), 3.24 (s, 3 H), 4.34 (dd, J = 7 and 2 Hz, 1 H), 5.26 (quint, J = 6.5 Hz, 1 H), 6.78 (d, J = 2 Hz, 1 H). cis-4a: δ 1.26 (d, J = 6 Hz, 3 H), 2.93 (s, 3 H), 3.03 (s, 3 H), 4.90 (quint, J = 6 Hz, 1 H), 5.06 (dd, J = 10 and 2 Hz, 1 H), 6.94 (d, J = 2 Hz, 1 H).
- 6 U. Schöllkopf, U. Groth, M.-R. Gull, and J. Nozulak, Liebigs Ann. Chem., 1133 (1983).
- 7 The reported rotation for L-threenine is $[\alpha]_D^{20}$ -28.5° (<u>c</u> 2.4, H₂0): D. F. Elliott, J. Chem. Soc., 62 (1950).
- 8 ¹H NMR (δ CDCl₃) for oxazolines 4 and 5. trans-4b: 0.99 (t, $\underline{J} = 7$ Hz, 3 H), 1.63 (q, $\underline{J} = 7$ Hz, 2 H), 2.98 (s, 3 H), 3.25 (s, 3 H), 4.38 (dd, $\underline{J} = 7$ and 2 Hz, 1 H), 5.13 (q, $\underline{J} = 7$ Hz, 1 H), 6.80 (d, $\underline{J} = 2$ Hz, 1 H). trans-4c: 0.95, 0.97 (a pair of d, $\underline{J} = 6$ Hz, 6 H), 1.15-2.0 (m, 3H), 2.97 (s, 3 H), 3.24 (s, 3 H), 4.32 (dd, $\underline{J} = 8$ and 2 Hz, 1 H), 5.22 (dt, $\underline{J} = 8$ and 6 Hz, 1 H), 6.75 (d, $\underline{J} = 2$ Hz, 1 H). trans-4d: 3.00 (s, 3 H), 3.19 (s, 3 H), 4.19 (dd, $\underline{J} = 8$ and 2 Hz, 1 H), 6.18 (d, $\underline{J} = 8$ Hz, 1 H), 6.99 (d, $\underline{J} = 2$ Hz, 1 H), 7.34 (broad s, 5 H). cis-4d: 2.48 (s, 3 H), 2.70 (s, 3 H), 5.32 (dd, $\underline{J} = 10$ and 2 Hz, 1 H), 5.62 (d, $\underline{J} = 10$ Hz, 1 H), 7.22 (d, $\underline{J} = 2$ Hz, 1 H), 7.34 (broad s, 5 H). trans-4e: 2.97 (s, 3 H), 3.17 (s, 3 H), 4.64 (dd, $\underline{J} = 8$ and 2 Hz, 1 H), 5.02 (s, 2 H), 6.06 (d, $\underline{J} = 8$ Hz, 1 H), 6.88 (d, $\underline{J} = 9$ Hz, 2 H), 6.89 (d, $\underline{J} = 7$ Hz, 3 H), 1.2-2.0 (m, 6 H), 3.3-4.0 (m, 4 H), 4.32 (dd, $\underline{J} = 7.5$ and 2 Hz, 1 H), 5.31 (quint, $\underline{J} = 7$ Hz, 1 H), 6.80 (d, $\underline{J} = 2$ Hz, 1 H). trans-5d: 1.3-1.9 (m, 6 H), 3.3-3.9 (m, 4 H), 4.67 (dd, $\underline{J} = 8$ and 2 Hz, 1 H), 6.21 (d, $\underline{J} = 8$ Hz, 1 H), 6.98 (d, $\underline{J} = 2$ Hz, 1 H), 7.30 (broad s, 5 H).

(Received in Japan 2 September 1988)