Preparation of Bistrifluoromethylamino-derivatives of Phosphorus(III) and Arsenic(III)

By H. G. ANG and H. J. EMELÉUS

(University Chemical Laboratory, Cambridge)

BISTRIFLUOROMETHYLAMINO-DERIVATIVES of mercury,¹ sulphur,² selenium,³ and boron⁴ are already known. Very recently three such derivatives of phosphorus(v), (CF₃)₂NPF₃Cl, (CF₃)₂ NPF₂Cl₂, and (CF₃)₂NPF₂O were prepared in this laboratory.⁵ The first two were made by the interaction of $(CF_3)_2$ NCl with PF₃ and PF₂Cl respectively and the last by controlled hydrolysis of the dichlorocompound. We have now examined the analogous reaction of $(CF_3)_2NCl$ with $(CF_3)_3P$ and $(CF_3)_3As$. With equimolar quantities of reactants the trisphosphine yields $(CF_3)_2NP(CF_3)_2$ in high yield (b.p. 51°), CF₃Cl being eliminated. This in turn undergoes further stepwise reaction with $(CF_3)_2NCl$, giving $[(CF_3)_2N]_2PCF_3$ (b.p. 92.5°) and $[(CF_3)_2N]_3P$ (b.p. $135^\circ).$ These are all stable liquids at room temperature and have been characterised by analysis and by infrared and n.m.r. spectroscopy. Their mass spectra show the presence of molecular ions.

A number of reactions of these substances are being studied. The first, $(CF_3)_2NP(CF_3)_2$ yields a white sublimable crystalline solid with chlorine, for which the formula $(CF_3)_2NP(CF_3)_2Cl_2$ has been

established. All of the compounds are readily hydrolysed by dilute alkali, CF₃ being eliminated as CF₃H and the (CF₃)₂N group completely broken down.

A similar reaction occurs between $(CF_3)_2NCl$ and (CF₃)₃As; CF₃Cl is eliminated and, by a stepwise $(CF_3)_2 NAs(CF_3)_2$ 70°) reaction (b.p. and $[(CF_3)_2N]_2AsCF_3$ (b.p. 109°) are formed. So far we have been unsuccessful in preparing the tris compound $[(CF_3)_2N]_3$ As. Considerable amounts of $CF_3N = CF_2$ are formed in this case. Reaction between $(CF_3)_3Sb$ and $(CF_3)_2NCl$ is likewise different, the main products isolated being $CF_3N = CF_2$, CF_3Cl , and SbF_3 . It seems reasonable to suppose that an unstable quinquevalent derivative of the Group V element is an intermediate in all of these reactions. The only clear evidence so far obtained to support this hypothesis is the formation of a white 1:1 adduct from $(CF_3)_2NI$ and $[(CF_3)_2N]_2AsCF_3$. It was, however unstable and evolved $CF_3N = CF_2$.

(Received, June 13th, 1966; Com. 403.)

¹ J. A. Young, S. N. Tsoukalas, and R. D. Dresdner, *J. Amer. Chem. Soc.*, 1958, **80**, 3604. ² J. A. Young, S. N. Tsoukalas, and R. D. Dresdner, *J. Amer. Chem. Soc.*, 1960, **82**, 396.

- ³ R. C. Dobbie and H. J. Emeléus, J. Chem. Soc., 1964, 5892.
- ⁴ N. N. Greenwood and K. A. Hooton, J. Chem. Soc. (A), 1966, 751.
- ⁵ H. J. Emeléus and T. Onak, J. Chem. Soc., 1966, in the press.